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Abstract: The states and unknown parameters of a simplified non-linear grinding mill circuit
model for process control was estimated from real plant data by means of an Extended Kalman
Filter. The output of the model as calculated from the states and parameters estimated by the
Extended Kalman Filter closely follow the actual output of the plant. The continuous estimate of
states and parameters from plant data allows for the continuous update of a process model used
for process control. This limits model-plant mismatch which deteriorates controller performance.
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1. INTRODUCTION

A grinding mill circuit is generally difficult to control
because of strong coupling between variables, large time
delays, uncontrollable disturbances, the variation of pa-
rameters over time, the non-linearities in the process and
instrumentation inadequacies. Though model predictive
controllers can successfully control a grinding mill circuit,
the performance of the controller depends on the quality
of the plant model that is available (Chen et al., 2007).
Model-plant mismatch, which deteriorates controller per-
formance, occurs when unknown parameters and unmea-
surable states in a grinding mill circuit are estimated incor-
rectly. Because of the time-varying nature of the process,
the process model needs to be updated continuously to
minimize the effect of model-plant mismatch on controller
performance (Olivier et al., 2012).

This study aims to estimate the states and unknown
parameters of a non-linear grinding mill circuit model
developed for process control purposes by means of an
Extended Kalman Filter (EKF). Real plant data is used to
estimate the states and unknown parameters of the model.

2. PROCESS DESCRIPTION

The three main elements of the single-stage closed grinding
mill circuit shown in Fig. 1 are the mill, the sump and the
classification screen. The circuit variables are described in
Table 1. The mill receives four streams: oversize from the
screen, mined ore (MFS), water (MIW ) and additional
steel balls (MFB) to assist with the breakage of ore. The
mill rotates and lifts the material in the mill. At a certain
height the material falls back on itself. This causes the ore
to break either through impact, abrasion or attrition. The
ground ore in the mill mixes with the water to create a
slurry. The volume of charge in the mill is represented by
LOAD. The slurry in the mill is then discharged to the
sump either by overflow or through a discharge screen. In

Fig. 1. A single-stage grinding mill circuit closed with a
classification screen.

the case of the discharge screen, the particle size of the
discharged slurry from the mill is limited by the aperture
size of the screen. The volume of slurry in the sump is
represented by SV OL. The slurry in the sump is diluted
with water (SFW ) before it is pumped to the classification
screen. Spillage water is also added to the sump, but is not
necessarily a manipulated variable. The outflow from the
pump is the classifier feed flow-rate CFF and the density
of the classifier feed is CFD. The slurry flow across the
classification screen can either pass through the apertures
in the screen as undersize material or over the apertures
in the screen to be discharged from the screen as oversize
material. The process of classification is assisted by the
addition of water to the screen (CWA). The oversize flow
of slurry is returned to the mill for further grinding. The
undersize flow of slurry contains the final product (PSE)
that is passed to a downstream process (Napier-Munn
et al., 1999; Coetzee et al., 2010).
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Table 1. Description of circuit variables

Manipulated Variables

MIW flow-rate of water to the mill [m3/h]
MFS feed-rate of ore to the mill [t/h]
MFB feed-rate of steel balls to the mill [t/h]
SFW flow-rate of water to the sump [m3/h]
CFF flow-rate of slurry to the classifier [m3/h]
CWA flow-rate of water to the classifier [m3/h]

Controlled Variables

LOAD volume of charge within the mill [m3]
SV OL volume of slurry in sump [m3]
CFD classifier feed density [t/m3]
PSE product particle size estimate [%]

Table 2. Description of subscripts

Subscript Description

X∆− f-feeder; m-mill; s-sump; c-cyclone
X−∆ w-water; s-solids; c-coarse; f-fines; r-rocks; b-balls
V−−∆ i-inflow; o-outflow; os-oversize; us-undersize

3. MODEL DESCRIPTION

The model used to describe the circuit in Fig. 1 consists
of four modules: a feeder, a semi-autogenous mill with an
end-discharge screen, a sump and a classification screen.
All the modules, except the feeder, can be seen in Fig. 1.

The feeder, mill and sump modules can be described by
the reduced complexity non-linear model found in le Roux
et al. (2013), of which a brief description is given below.
The approach in the derivation of the model was to use as
few fitted parameters as possible while making the model
produce responses that are reasonably accurate and in the
right direction. The sizing performance of the classification
screen is modelled by an efficiency curve.

The model uses five states to represent the constituents
of charge in the milling circuit. The states are rocks,
solids, fines, balls and water. Rocks are ore too large to
be discharged from the mill, whereas solids are ore that
can be discharged from the mill. The solids consist of the
sum of fine and coarse ore, where fine ore is smaller than
the product specification size and coarse ore is larger than
the product specification size. Balls and rocks are only
found in the mill, as they are too large to pass through
the apertures in the end-discharge screen.

Each of the four modules and their mathematical descrip-
tions are shown below. For the equations, V denotes a
flow-rate in m3/h and X denotes the states of the model
as volumes in m3. Table 2 provides a description of the
subscripts for V and X. The first subscript indicates the
module considered, the second subscript specifies which
of the five states are considered and in the case of flow-
rates the final subscript shows if it is an inflow, outflow,
oversize or undersize flow. The nomenclature for the model
is shown in Table 3.

3.1 Feeder Module

The feeder module divides the ore fed to the mill into
various streams. Each stream represents the flow-rate of
one of the five states out of the feeder module into the
mill module: water (Vfwo), solids (Vfso), fines (Vffo), rocks
(Vfro) and balls (Vfbo). The flow-rates are defined as:

Table 3. Feeder, mill and screen parameters

Feeder and Mill Parameters

αf Fraction fines in the ore
αr Fraction rock in the ore
αP Fractional power reduction per fractional reduction

from maximum mill speed
αφf

Fractional change in kW/fines produced per change in
fractional filling of mill

αspeed Fraction of critical mill speed
δPs Power-change parameter for fraction solids in the mill
δPv Power-change parameter for volume of mill filled
DB Density of steel balls [t/m3]
DS Density of feed ore [t/m3]
εsv Max fraction solids by slurry volume at 0 slurry flow
φb Steel abrasion factor [kWh/t]
φf Power needed per tonne of fines produced [kWh/t]
φr Rock abrasion factor [kWh/t]
ϕPmax Rheology factor for max mill power draw
Pmax Maximum mill motor power draw [kW]
vmill Mill volume [m3]
vPmax Fraction of mill volume filled for max power draw
VV Volumetric flow per flowing volume driving force [h−1]
χP Cross-term for maximum power draw

Screen Parameters

D1 Split of solids to oversize
D2 Fitting constant for product size estimate

Time Delays

Tsc Time delay between sump and classifier [s]
Tcm Time delay between classifier and mill [s]

Vfwo = MIW (1)

Vfso = MFS(1− αr)/DS (2)
Vffo = MFSαf/DS (3)
Vfro = MFSαr/DS (4)
Vfbo = MFB/DB (5)

3.2 Mill Module

The population volume balance of the hold-up of water
(Xmw), solids (Xms), fines (Xmf ), rocks (Xmr) and balls
(Xmb) in the mill are defined in terms of the inflow and
outflow of each state:

Ẋmw = Vfwo + Vcwos − Vmwo (6)

Ẋms = Vfso + Vcsos − Vmso +RC (7)

Ẋmf = Vffo + Vcfos − Vmfo + FP (8)

Ẋmr = Vfro −RC (9)

Ẋmb = Vfbo −BC (10)
where RC, BC and FP refer to rock consumption,
ball consumption and fines production respectively. These
three breakage functions are described in eqs. (16), (17)
and (18) respectively.

The mill outlet flow-rates for water (Vmwo), solids (Vmso),
fines (Vmfo), rocks (Vmro) and balls (Vmbo) are defined as:

Vmwo = VV ϕX
2
mw/ (Xms +Xmw) (11)

Vmso = VV ϕXmwXms/ (Xms +Xmw) (12)
Vmfo = VV ϕXmwXmf/ (Xms +Xmw) (13)

where Vmro = 0 and Vmbo = 0 because balls and rocks do
not pass through the mill’s end-discharge screen.

The model adds the effect of the rheology of the slurry on
the milling performance by means of the empirically de-

fined rheology factor ϕ =
{

max
[
0, 1−

(
εsv−1
εsv

)
Xms

Xmw

]} 1
2

.
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The mill-power draw is defined as:

Pmill = Pmax(αspeed)
αP

{1− δPvZ2
x − 2χP δPvδPsZxZr − δPsZ2

r}
(14)

where the effect of the volume of the mill filled on power
consumption is defined as Zx = LOAD

vmillvPmax
− 1 and the

effect of the slurry rheology on power consumption is
defined as Zr = ϕ

ϕPmax
− 1. The total volume of the mill

filled is given by:

LOAD = Xmw +Xmr +Xms +Xmb (15)

As the ore grinds in the mill it results in the consumption
of rocks and balls over time, as well as the production of
fines. The definition for rock consumption is:

RC =
Pmillϕ

DSφr

(
Xmr

Xmr +Xms

)
(16)

Ball consumption is defined as:

BC =
Pmillϕ

φb

(
Xmb

DS (Xmr +Xms) +DBXmb

)
(17)

The fines produced from the ground ore is defined as:

FP = Pmill
(
DSφf

[
1 + αφf

(LOAD/vmill − vPmax
)
])−1

(18)

3.3 Mixed-sump Module

For mixed-sump module it is assumed that the con-
stituents inside the sump are fully mixed. The only con-
stituents (states) found in this module are water, solids
and fines. The population volume balance of the hold-up
of water (Xsw), solids (Xss) and fines (Xsf ) in the sump
are defined as:

Ẋsw = Vmwo − Vswo + SFW (19)

Ẋss = Vmso − Vsso (20)

Ẋsf = Vmfo − Vsfo (21)

Equation (19) includes the flow-rate of water added to the
slurry in the sump (SFW ) to manipulate the density of the
slurry feed to the classifier. The classifier feed density has
a significant impact on the performance of the classifier:

CFD = (Xsw +DsXss) / (Xsw +Xss) (22)

The sump discharge flow-rates of water (Vswo), solids
(Vswo) and fines (Vsfo) are defined as:

Vswo = CFF (Xsw/SV OL) (23)

Vsso = CFF (Xss/SV OL) (24)

Vsfo = CFF (Xsf/SV OL) (25)

where the volume of the sump filled is given by:

SV OL = Xsw +Xss (26)

3.4 Classification Screen Module

Because the dynamics of the screen is much faster than
the rest of the circuit, the screen is described by a set
of algebraic equations. The sizing performance of screens
can be presented by an efficiency curve which describes
the proportion of a given size of solids reporting to the
oversize product. The efficiency curve for the undersize
flow will be the complement of the oversize flow efficiency
curve (Napier-Munn et al., 1999).

Water, fines and a fraction of the solids pass through the
apertures of the screen to the undersize flow. The oversize

flow consists only of the fraction of the solids too large
to pass through the screen apertures. It is assumed that
a negligible amount of water pass to the oversize flow.
Therefore, the flow-rates at the oversize of the screen are:

Vcsos = D1Vcsi (27)

Vcwos = Vcfos = 0 (28)

where D1 is the proportion of the ore within the solids size
class which report to the oversize product. The flow-rates
at the undersize of the screen are defined as:

Vcwus = CWA+ Vswo (29)

Vcsus = (1−D1)Vsso (30)

Vcfus = Vsfo (31)

The final product particle size estimate is given by:

PSE = 100 (D2 − Vcfus/Vcsus) (32)

where D2 is a fitting parameter.

4. STATE AND PARAMETER ESTIMATION

Dynamic data of the grinding mill circuit was obtained
from a real plant. The data represent the operation of the
circuit during a step-test campaign by the operators of
the plant to determine linear transfer function models of
the circuit. Because of the limitations of linear transfer
function models, this study aims to fit the non-linear
model described in Section 3 to the plant. This should
provide a more detailed model of the plant for control
purposes without increasing modelling costs.

The following input u and output y variables were mea-
sured by the plant:

u = [MIW MFS MFB SFW CFF ]
T

(33)

y = [Pmill SV OL CFD PSE]
T

(34)

All the states in the mill and sump cannot be measured
directly and need to be estimated:

x = [Xmw Xms Xmf Xmr Xmb Xsw Xss Xsf ]
T

(35)

Although many of the parameters in the model can be ob-
tained directly from plant data, the following parameters
need to be estimated:

p = [δPs
δPv

D1 D2 φb φr VV χP ]
T

(36)

The unmeasurable states and parameters within the mill
and the sump can be estimated by an EKF by creating an
augmented states vector z = [x p]T .

The description of the EKF below is taken from Simon
(2006). The process considered in this study is governed
by continuous-time dynamics and discrete time measure-
ments:

ż = f (z, u, w, t)
yk = hk(zk, uk, vk)
w(t) ∼ (0, Q) ; vk ∼ (0, Rk)

(37)

The process noise w(t) is continuous-time white noise with
covariance Q and the measurement noise vk is discrete-
time white noise with covariance Rk. Between each mea-
surement, the state estimate ẑ and its covariance P is
propagated according to the known non-linear dynamics
of the system:

˙̂z = f (ẑ, u, 0, t)

Ṗ = AP + PAT +Q
(38)
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where A = δf
δz |ẑ and it is assumed that δf

δw |ẑ= I. Equation

(38) propagates ẑ from ẑ+k−1 to ẑ−k and propagates P from

P+
k−1 to P−k . At each time measurement the state estimate

and its covariance are updated:

Kk = P−k H
T
k

(
HkP

−
k H

T
k +Rk

)−1
ẑ+k = ẑ−k +Kk

[
yk − hk

(
ẑ−k , u, v0, tk

)]
P+
k = (I −KkHk)P−k (I −KkHk)

T
+KkRkK

T
k

(39)

where Hk = δh
δz |ẑ−k and it is assumed that δh

δv |ẑ= I.

Equations (40)-(48) below describe function f of eq. (37).
It is assumed that the additional states p in the augmented
state vector z have no dynamics. Note that the flow-rate
Vsso in eq. (41) is delayed by Tsc + Tcm, the time delays
between the sump and classifier and between the classifier
and mill respectively.

Ẋmw = MIW − VV ϕXmwXmw/ (Xms +Xmw) (40)

Ẋms = MFS
DS

(1− αr)− VV ϕXmwXms

Xms+Xmw
+

Pmillϕ
DSφr

(
Xmr

Xmr+Xms

)
+D1Vsso

(41)

Ẋmf = MFS
DS

αf − VV ϕXmwXmf/ (Xms +Xmw) +

Pmill

DSφf

[
1 + αφf

(
Xmw+Xmr+Xms+Xmb

vmill
− vPmax

)]−1 (42)

Ẋmr =
MFS

DS
αr −

Pmillϕ

DSφr

(
Xmr

Xmr +Xms

)
(43)

Ẋmb =
MFB

DB
− PmillϕXmb

φb [DS (Xmr +Xms) +DBXmb]
(44)

Ẋsw =
VV ϕXmwXmw

Xms +Xmw
− CFFXsw

Xsw +Xss
+ SFW (45)

Ẋss =
VV ϕXmwXms

Xms +Xmw
− CFFXss

Xsw +Xss
(46)

Ẋsf =
VV ϕXmwXmf

Xms +Xmw
− CFFXsf

Xsw +Xss
(47)

δ̇Ps = δ̇Pv = Ḋ1 = Ḋ2 = φ̇b = φ̇r = V̇V = χ̇P = 0 (48)

Function h in eq. (37) can be constructed from eqs. (14),
(26), (22) and (32). Because real plant data was used, it
was necessary to reject outliers in the output data. At
each sampling instance tk the vector of measured output
data yk is presented to the EKF. If the vector contains an
outlier, the state estimate ẑ−k and its covariance P−k are
not updated according to eq. (39), but simply propagated
further based on the previous measurements at tk−1.
Because the measurement noise matrix for the data from
the plant was estimated as R = diag [400, 20, 0.1, 5]

2
,

outliers in the data were rejected if the difference between
the actual data and the model output was greater than one
standard deviation of the diagonal elements in the noise

matrix |yk − hk
(
ẑ−k , u, v0, tk

)
| ≥ [400 20 0.1 5]

T
.

5. RESULTS AND DISCUSSION

Although spillage water added to the sump did not form
part of the model formulation in the previous section,
the plant analysed in this study added significant spillage
water to the sump. The added water has a significant
impact on both SV OL and CFD. To account for the effect
of spillage water, another state to be estimated was added
to vector z:

z′ = [z z17]T (49)

This required a change to function f in eq. (45):

Ẋsw =
VV ϕXmwXmw

Xms +Xmw
− CFFXsw

Xsw +Xss
+ SFW + z17 (50)

and the addition of a new equation to function f :

ż17 = 0 (51)

The initialization values of the state estimate z′, its
covariance P as well as the covariance of the process noise
matrix Q are shown in Table 4. These values were obtained
from an analysis of dynamic data of the plant at steady-
state. The values for the remaining parameters calculable
from plant data are shown in Table 5.

The output of the circuit determined from the states and
parameters estimated by the EKF and the actual output
of the system as measured during the step-test campaign
of the plant can be seen in Figs. 2 and 3. The four
controlled variables, Pmill, SV OL, CFD and PSE follow
the measured data of the plant closely.

The mill and sump states of vector x in eq. (35) as
estimated by the EKF are shown in Fig. 4. The parameters
in vector p of eq. (36) as estimated by the EKF are shown
in Figs. 5 and 6. Fig. 7 shows the estimation of the spillage
water added to the sump.

The sudden change of VV in Fig. 6b at approximately 7.5
h can be attributed to a sudden change in the operating
condition of the plant. The change in the operating condi-
tion can be seen in the change of the controlled variables
in Figs. 2 and 3 at 7.5 h.

It is necessary to test the effectiveness of the EKF esti-
mation by means of a consistency check. This requires the
calculation of z̃ = z − ẑ where z̃ is the error between the
EKF estimation ẑ and the actual state value z. However,
the consistency check cannot be done because the actual
state vector z was not measured by the plant during the
step-tests. This vector can rarely be measured. Still, the
EKF should be tuned so that the standard deviation of
each state estimate (P+

k )0.5 converge. The standard de-
viation of each state estimate was normalised with the
respective state value in

√
P0 and is shown in Figs. 8-10.

In all cases the standard deviation of the state estimate is
converging, which is a fair indication of proper tuning of
the EKF.

The system described in eq. (37) was considered to be state
observable if for any time t1 > 0 the initial state z′0 can
be determined from the time history of the input u and
the output y in the time interval [0, t1]. The observability
was tested by considering the modes mi of A = δf/δz′

which are observable if and only if δh
δz′ ti 6= 0 for all

right eigenvectors ti associated with mi. The system is
observable if and only if every mode mi is observable
(Skogestad and Postlethwaite, 2005). It was found that the
states in vector z′ are observable for the estimation period.
This method was deemed valid since the EKF linearises
functions f and hk in eq. (37) as shown in eq. (39).

According to Fig. 11 which shows the autocorrelation of
yk − hk(z−k , uk, v0, tk), the assumption of white noise for
Pmill, SV OL, CFD and PSE is valid.

Although results show that the EKF gives fair results, the
covariance for some parameters does not readily converge

IFAC DYCOPS 2013
December 18-20, 2013. Mumbai, India

181



Table 4. Initial values for states estimate (ẑ0),
state standard deviations (

√
P0) and noise

standard deviations (
√
Q)

Z′ Z′0
√
P0

√
Q Z′ Z′0

√
P0

√
Q

Xmw 31.22 20 5 δPs 3 10 1
Xms 37.64 20 10 D1 0.15 0.1 0.0025
Xmf 12.96 5 5 D2 0.75 0.2 0.1
Xmr 21.34 15 10 φb 4028 500 5
Xmb 38.69 10 1 φr 2.12 0.5 0.03
Xsw 49.72 15 5 VV 15.60 10 6
Xss 13.28 5 2 χP -2 10 1
Xsf 4.57 2.5 0.5 z17 80 40 40
δPv -3.5 10 1

Table 5. Model parameter values

Parm Value Parm Value Parm Value

αf 0.01 αr 0.8 αφf
0.01

αP 1 αspeed 0.75 DS 3.6 t/m3

DB 7.85 t/m3 εsv 0.6 φf 40.2 kWh/t
ϕPmax 0.42 Pmax 7440kW vmill 379 m3

vPmax 0.34 Tsc 30 s Tcm 10 s
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Fig. 2. (a) Actual Pmill versus Pmill estimated from EKF
output (normal and zoomed plot). (b) Actual SV OL
versus SV OL estimated from EKF output (normal
and zoomed plot).

to zero. An unscented Kalman or particle filter may
improve the convergence rate and thus the confidence in
the parameter estimations.

6. CONCLUSION

The unknown parameters and states for a grinding mill
circuit model for process control was estimated by an
EKF from real plant data. The output of the circuit as
predicted by the model from the estimated states and
parameters closely follow the actual output measured by
the plant. The estimation of the parameters and states as
the process continuous makes it possible to continuously
update process models. This estimation process may be
used to reduce model-plant mismatch for models used
in model predictive controllers and could improve overall
controller performance.
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Fig. 3. (a) Actual CFD versus CFD estimated from EKF
output (normal and zoomed plot). (b) Actual PSE
versus PSE estimated from EKF output (normal and
zoomed plot).
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