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Abstract: In the process industry, advanced control is usually implemented so that they ensure stability 
and constraints satisfaction. Moreover, a competitive global market and environmental regulations results 
in the necessity for the economic optimization of the process operation. Real Time Optimization (RTO), 
which is based on an economic criterion, is usually performed in an upper level of the control structure 
and sends optimizing targets to the lower dynamic control layer where the advanced control drives the 
system to optimum targets. In this structure, the RTO employs a complex stationary non-linear model of 
the process for the optimization and the advanced control is usually implemented through a MPC based 
on a linear model. In this paper, the application of such optimization structure to an industrial 
Propylene/Propane (PP) splitter is tested in a simulation platform based on the integration of the 
commercial dynamic simulator Dynsim® and the rigorous steady-state optimizer ROMeo® with real-time 
facilities of Matlab. The advanced control is represented by an Infinite Horizon Model Predictive 
Controller (IHMPC), based on a space-state model in the incremental form that reproduces the step 
response model and considers the existence of zone control, optimizing targets for the inputs and can 
accommodate time delays. In this simulation platform the optimization and advanced control of a 
Propylene/Propane splitter of an oil refinery is studied. The simulation results show that proposed 
RTO/advanced control structure is stable and can be implemented in the real system. 

Keywords: Model Predictive Control, Process Optimization, Dynamic simulation 

1. INTRODUCTION 

As is usual in the process industry, there is a hierarchical 
control structure [Engell, 2007] in which, based on an 
complex non-linear stationary model of the plant and on an 
economic criteria, a RTO layer computes optimizing 
targets, which are sent to a MPC layer. In the MPC layer, 
at each sample time, an optimal sequence of control inputs 
is computed so that the true system is driven to the RTO 
targets while the controller’s cost function is minimized. 
This optimization problem includes constraints for the 
outputs and inputs. Two essential ingredients of this 
complex structure are stability and offset-free control. One 
of the usual forms to obtain guaranteed nominal stability in 
MPC is to adopt an infinite horizon prediction [Rawlings 
and Muske, 1993]. However, to produce an offset-free 
tracking operation, the model can be written in the 
incremental form in the inputs, this formulation adds 
integrating modes to the system output. The drawback of 
this formulation is that the integrating modes must be 
zeroed at the end of the control horizon to keep the infinite 
horizon cost bounded [Gonzales and Odloak, 2009].  

Several successful MPC implementations are cited in the 
literature. In [Pinheiro et al., 2012], it was studied the 
implementation of APC in a Fluid Catalytic Cracking 
(FCC) Unit through rigorous modeling and simulation of    
--------------------------------------------- 
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the process. In [Carrapiço et al., 2009] an IHMPC was 
implemented in an industrial deisobutanizer column, using 
a space-state model that reproduces the step response of 
transfer function models and takes into account time 
delays and integrating modes.  

Nonetheless, their model was not always observable and 
more recently, to circumvent this problem [Santoro and 
Odloak, 2012] developed a new space-state representation 
that still reproduces the step response model while 
preserving observability. This new space-state model is 
particularly suited to the implementation of the infinite 
horizon controller (IHMPC) with zone control and 
optimizing targets for stable, integrating and time-delayed 
systems with guaranteed nominal stability. Then, this sort 
of model will be adopted here. 

As plant designs are becoming more complex, integrated 
and interactive, they represent a challenge of increasing 
complexity for dynamic control [Svrcek et al., 2000]. 
Nevertheless, the use of first principle-based dynamic 
simulation can help in the understanding of process 
dynamics and control strategies, especially in processes 
with many variables and/or long settling time. In this way, 
commercial advanced process controllers (APC) can be 
implemented using dynamic simulation in order to 
eliminate plant step-test and to show that rigorous steady-
state and dynamic models are useful to analyze new 
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control strategies,  to develop inferences, to train and to 
tune new APC strategies [Alsop and Ferrer, 2006]. 

The main scope of this work is to study the 
implementation of an advanced control strategy, based on 
the Infinite Horizon Model Predictive Control (IHMPC), 
in an industrial Propylene/Propane (PP) splitter. Also, the 
closed-loop performance of this controller will be tested 
through the dynamic simulation of the process. The control 
scheme to be simulated assumes that a RTO layer is 
present in the real system and the RTO provides targets for 
the manipulated inputs. 

2. CONTROL PROBLEM OF THE 
PROPYLENE/PROPANE SPLITTER 

The industrial PP splitter studied here was designed to 
produce high-purity propylene (99.5%), which is separated 
from propane and contains other hydrocarbons with four 
atoms of carbon. A typical feed composition involves 
about ten components and the propylene stream is 
produced as the top stream of the splitter. The propane 
stream is obtained as the bottom product of the splitter. 

The distillation system considered in this study is a heavy 
energy consumer, and to reduce costs, there is an energy 
recovery system (heat pump) where the top vapor is 
recompressed and condensed in the reboilers at the bottom 
of the column. The area exposed to heat transfer depends 
on the liquid level inside the bottom drum and can be 
varied through the manipulation of the liquid level.  

The high purity required for the propylene product implies 
that a high reflux ratio will be required, which means that a 
large amount of energy will be manipulated through the 
variable heat transfer area of the bottom reboilers. These 
are typical ingredients that justify the implementation of 
advanced control and optimization strategies. Then, the 
purpose of this study is to verify if the use of a 
multivariable advanced controller will produce a 
significant increase in the economic benefit while 
maintaining the product qualities. Possible manipulated 
inputs of the advanced controller are: the feed flow rate, 
reflux flow rate and heat pump flow rate, and the 
controlled outputs are the molar content of propane in the 
propylene stream, propylene molar content in the propane 
stream and condensed liquid level in the bottom drum, 
which affects the exposed heat transfer area in the bottom 
reboilers. The controller to be implemented should have a 
good performance in terms of driving the system inputs to 
the optimum targets while keeping the system outputs 
inside zones that are defined by the operators. Stability is 
an additional issue to be considered. 
 

3. STATE-SPACE FORMULATION 

Here, we present briefly the model that is adopted in the 
advanced controller that is intended to be implemented in 
the PP splitter. For this purpose, consider a system with nu 
inputs and ny outputs, and assume that there is a transfer 
function relating inputs and outputs of the system. Then, 

we use a state space realization of the step response model 
also designated as Output Predictive Oriented Model 
(OPOM) originally presented in [Rodrigues and Odloak, 
2003] and extended in [Santoro and Odloak, 2012] for the 
case of time delayed systems. For the time delay system, 
let us designate θmax as the maximum time delay between 
an input and an output, and na as the maximum order of 
the transfer functions of the system. 

Then, the state space model, which represents the PP 
splitter that has only stable poles, can be written as 
follows: 
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The advantage of using the model structure defined in (1) 
is that the state components can be associated to the 
systems modes. The state component xs corresponds to 
integrating modes related with the input incremental form 
and is equal to the predicted output steady-state, and 
component xd corresponds to the dynamic modes that 
naturally tends to zero when the system approaches steady 
state. The state components 

max1, ,z zθ are related with 
the time delay and correspond to last implemented input 
moves. For the case of non-repeated poles F is a diagonal 
matrix with components of the form it re∆ ⋅ where ir  is a 
pole of the system and t∆  is the sampling period.   

Matrices s
lB  with max1, ,l θ= 

 can be computed as 
follows: 
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Construction of matrices d
lB  needs a little more attention. 

If there are no time delays (l = 0) then
0
d dB D FN= , where 

matrices dD  and N are computed as follows: 
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Alternatively, if l ≠ 0, then each matrix d
lB will have the 

same dimension as dD FN  where those elements 
corresponding to transfer functions with dead time 
different from l are replaced with zeros. 
Finally, matrix Ψ  is defined as follows 
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4. IHMPC WITH ZONE CONTROL AND 
OPTIMIZING TARGETS 

Based on the work of [Gonzáles and Odloak, 2009], and 
considering that the propylene/propane splitter is an open 
loop stable system, we consider the following nominal cost 
function: 
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where ( )|u k j k∆ + is the control move computed at time k 
to be applied at time k+j, m is the control or input horizon, 
Qy, Qu, R, Sy, Su are positive weighting matrices of 
appropriate dimension, ysp,k and udes,k are the output set 
point and input optimizing target, respectively. The output 
set-point ysp,k becomes a decision variable of the control 
problem when the output has no optimizing target and 
consequently the output needs only to be kept within a 
zone. This cost explicitly incorporates an input deviation 
penalty that tries to accommodate the system into an 
optimal economic stationary point. The slack variable 

,y kδ  eliminates any infeasibility of the control problem. It 
can be shown that the cost defined in Eq. (3) will be 
bounded only if the following constraint is included in the 
control problem: 

( )max , ,| 0s
sp k y kx k m k yθ δ+ + − − =   (4) 

Equation 4 means that, it is desired that the predicted 
values of the outputs at steady-state be equal to the set 
points. As it is not always possible to attain this target after 
a finite number of time steps, we include the slack 
variables, ,y kδ , to guarantee the feasibility of the control 
problem. Nevertheless, the system has time delays and it is 
necessary to wait m+

maxθ  time intervals until the last 
control action affects the output with the largest time delay. 

As any model predictive controller, the IHMPC also 
allows the natural inclusion of operating constraints such 
as actuator bound limits. It is also usual to include 
constraints in the input control moves as follows: 

( )
( )

min max

min max
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u u k j k u j
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(5) 

The proposed controller considers the existence of input 
targets, udes, and in order to assure that the term that 
penalizes the distance to this target is bounded even when 
the target is unreachable, we should not impose the exact 
value of the inputs at the end of the control horizon, 
instead of that a relaxed constraint will be used. 

( ) , ,1 0des k u ku k m u δ+ − − − =  (6) 

The slack variable ,u kδ , by definition, is unrestricted and 
guarantees feasibility of Eq. (6) under any condition. As it 
is done typically, the use of this slack variable in the 
objective function is heavily penalized to prevent that 
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controller rather to use 
, 0u kδ ≠ instead of a possible 

control move. 

As explained before, there are no fixed set points for the 
outputs as in the conventional MPC formulations and there 
will be a control zone in which the output variables must 
remain. As a result, the value of set points ysp,k is not a 
parameter proposed for the optimization layer and it 
becomes a decision variable of the optimization problem. 
The constraint that must be imposed to these set points is 
the definition of control zone: 

min , maxsp ky y y≤ ≤  (7) 

Finally, the objective function of the controller could be 
defined as: 
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It is easy to show that the problem defined above can be 
characterized as quadratic programming because all 
constraints are linear and the objective function is 
quadratic. The advantage of solving a quadratic 
programming is the good robustness of the commercial 
solvers and the guarantee that the optimum solution is 
global optimum because of the convexity of the problem. 

5. PROCESS SIMULATION AND 
OPTIMIZATION 

The steady-state simulation of the process was performed 
using the software ROMeo, which is a rigorous equation-
based steady-state optimizer. The dynamic simulation was 
developed in Dynsim, which is first-principle dynamic 
simulation software. ROMeo and Dynsim are trademarks 
of Invensys.  

5.1 Steady-State Simulation and Optimization 

Firstly, the steady-state process modeling was developed 
using ROMeo’s simulation mode based on the real process 
and equipment data. After that, the optimization mode was 
triggered based on the selected controlled and manipulated 
variables and their respective constraints. The input 
optimizing targets were then determined by ROMeo, 
which considers the rigorous steady-state simulation model 
of the process to calculate the optimum operation point of 
the plant, based on the economic function that was defined 
as: 

* *
1 1

*
1

n products n feed
PPS PFR PFS FFRi i i i

i i

n utilities
PU UCi i

i

ecof
° °

∑ ∑= −
= =

°
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         (9) 

 

where, 

PPS: Price of Product [$/ton] 
PFR: Product Flow Rate [ton/h] 
PFS: Price of Feed [$/ton] 
FFR: Feed Flow Rate [ton/h] 
PU:  Price of electricity [$/kW-h] 
UC: Electricity consumption [kW-h/h] 
 
5.2 Dynamic Simulation 

The idea was to use the dynamic simulation as a virtual 
plant so that the costs related with the implementation of 
the advanced control, the controller tuning and the 
identification of the linear model to be included in the 
MPC will be significantly reduced in the real plant. All the 
real plant dynamic equipment data and regulatory PID 
control loops are included in the simulation in order to 
make the simulation as close as possible to the real plant. 
This dynamic simulation also helped to identify the system 
model corresponding to the most common operating point. 
This identification experiment would be difficult and 
expensive in the real system because of the large settling 
time of the distillation column. The idea is to compare the 
performance of the IHMPC based on the linear model 
obtained with the dynamic simulation and an existing 
model obtained through an identification experiment in the 
real plant. 

6. REAL-TIME DATA TRANSFER 

The advanced controller was developed in Matlab and 
steady-state optimization was done in ROMeo, while the 
dynamic simulation that represents the true plant was 
developed in Dynsim. Therefore, it was necessary to install 
a communication interface using OPC technology that 
allows the real-time data transfer between Dynsim, 
MATLAB and ROMeo. The OPC facility is designed to 
provide a common bridge for Windows based software 
applications and process control hardware. To obtain a 
successful communication, there must be at least one OPC 
server and one or various OPC clients. In this case, the 
OPC server is the OPC Gateway which lies in Dynsim and 
the OPC clients are the OPC DA which is part of the OPC 
toolbox of MATLAB, and the OPC EDI (External Data 
Interface) of ROMeo. Once the data transfer is established, 
reading and writing of data was configured accordingly to 
the controller sample time and real-time dynamic 
simulation speed. 

7. RESULTS 

The system considered in this study is the 
Propylene/Propane splitter of the propylene production 
unit of the Capuava Refinery (RECAP/PETROBRAS) 
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located in São Paulo, Brazil. Figure 1 shows the schematic 
representation of the industrial system with the existing 
regulatory control strategies. In the simplified control 
strategy proposed here, the advanced controller (IHMPC) 
manipulates three variables: u1 is the bottom heat pump 
flow rate (FC 3 in Fig.1), u2 is the column feed flow rate 
(FC 1) and u3 is the reflux flow rate (FC 2). The controlled 
variables are the following: y1 is the liquid level in the 
main reboiler (LC 5), y2 is the propane molar % in the 
propylene product (AC 1) and y3 is the propylene molar % 
in the propane product (AC 2). 

1
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 Fig.1. Schematic representation of the PP splitter 

The transfer function model 1( )G s corresponds to the 
model identified using step tests in the dynamic simulation 
at the normal operating condition, and model 2 ( )G s  
corresponds to a similar identification experiment in the 
real distillation column at the design operation conditions. 
In these transfer functions the time constants are in 
minutes. It can be easily observed that there are some 
differences between the two models mainly related with 
the gains and time delays. 
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The output zones considered in the simulation case 
described here are given in Table 1, and input bounds as 
well as the maximum input moves, are shown in Table 2. 

Table 1. Output zones of the PP splitter 

Output ymin ymax 
y1 (% level) 4 80 
y2 (%molar) 0 0.45 
y3 (%molar) 0 2 

Table 2. Input constraints of the PP splitter 

Input ∆umax umin umax 
u1 (ton/h) 0.15 220 350 
u2 (ton/h) 0.02 10 45 
u3 (ton/h) 0.13 200 320 

 

The following tuning parameters were adopted for the 
MPC controller: 

T = 1 min., m = 3, Qy = diag (6 25 2), R = diag (0.5 3 0.5),         
Qu = diag (0.1 10 1), Sy = 107*diag (1 10 1),                         
Su = 104*diag (0.1 100 1). 

In order to automate the reading and writing of data, from 
and to the dynamic simulation, we used the timer function 
of Matlab and we follow the sequence: First, the data from 
Dynsim is read every 5sec and sent to Matlab where the 
average of last 12 data points is computed. Next, the MPC 
algorithm is run with a sampling time equal to 1 minute 
and new values of the control inputs are computed. These 
inputs are set-points to the dynamic simulation regulatory 
PID controllers that are sent to Dynsim through the OPC 
interface mentioned in section 6. In addition, the transfer 
of data from ROMeo to Dynsim is done by using the 
export function of OPC EDI, in the same way as the 
reading of data was done using the import and download 
functions. 

Two simulation cases were considered. In the first 
experiment, IHMPC was implemented using model 1( )G s  
(Controller 1) while in the second experiment the same 
controller was implemented with model 2 ( )G s  (Controller 
2). In both cases, the closed loop simulation began at the 
normal operating point of the plant, which in terms of the 
manipulated inputs, corresponds to u0 = [302 30 268] and 
to the outputs y0 = [42 0.5 1]. The initial steady-state 
corresponds to feco = 14 800 $/h. Then with the assumed 
market scenario, ROMeo computes a new optimum 
operating point and defines the optimum targets to the 
MPC. These input targets are udes = [329.6 34 294.8] which 
corresponds to an increment of the feed flow rate while 
minimizing the heat pump flow rate and the reflux flow 
rate. For this point the value of the economic function is 
increased to feco = 16 400 $/h. 

The response of the closed loop system in the two cases 
can be seen in Figs. 2-4. In these figures, it is easy to 
realize that the two controllers are able to stabilize the 
plant and drive the system to optimum operating point, 
maintaining the controlled variables inside their respective 
zones while the manipulated variables are driven to their 
respective targets. This resulting is quite motivating in 
practical terms as it shows that the control strategy has 
robustness to significant change in the system model. 
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Fig. 2. Evolution of the outputs ( - - - Controller 1)      
(---- Controller 2), 

  

 
Fig. 3. Evolution of the inputs (- - - Controller 1) 

 (---- Controller 2), (---- RTO targets) 
 

 
Fig. 4. Economic function (- - - Controller 1) 

 (---- Controller 2) 

Fig. 2 shows the true system controlled outputs for the 
Controller 1 (blue line) and Controller 2 (red line), and the 
output zones (dashed line) for the complete simulation 

time (1800 min). When comparing these controller 
performances, it is easy to realize that Controller 1 has a 
slightly better performance than Controller 2, because it 
uses the model identified using the same dynamic 
simulation as the true plant. We can see that with 
Controller 1, the controlled outputs y2 and y3, return faster 
to their control zones. In Fig. 3, the evolution of the 
manipulated variables is shown. The inputs are driven to 
their respective targets as it was expected, but Controller 1 
is slightly faster than Controller 2. Fig. 4 shows the 
economic function of the process which can better stress 
the similarity in performance of these controllers.  

8. CONCLUSIONS 

In this work, we have presented a study on the 
implementation of the IHMPC on a Propylene production 
unit using commercial dynamic simulation software 
(Dynsim) associated with a real time optimizer (ROMeo). 
In the proposed approach, the controller implements zone 
control and optimizing targets for the inputs. Two linear 
models were considered to represent the Propylene splitter 
and the results show that the proposed strategy performs 
similarly in both cases and has some robustness to model 
uncertainty. This representative example shows that the 
proposed approach to design the advanced control 
implementations can be extended to other real applications.  
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