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Abstract: This paper is concerned with integrated design and operation of energy systems
that are subject to significant uncertainties. The problem is cast as a two-stage stochastic
nonconvex mixed-integer nonlinear program, in which the first and second stages include design
decisions and operational decisions, respectively. By exploiting the separable and decomposable
structure of the problem, an efficient global optimization method, called nonconvex generalized
Benders decomposition (NGBD), is developed based on convex relaxation and generalized
Benders decomposition. The efficiency of NGBD can be further improved via the notion
of piecewise convex relaxations. The advantages of the proposed formulation and solution
method are demonstrated through case studies of two industrial energy systems, a natural gas
production network and a polygeneration plant. The first example shows that the stochastic
programming formulation can result in better expected economic performance than the
deterministic formulation, and that the NGBD solution method is dramatically more efficient
than a state-of-the-art global optimization solver, especially for large numbers of scenarios. The
second example further shows that the integration of piecewise convex relaxations can improve
the efficiency of NGBD by at least an order of magnitude.

Keywords: Keywords: Integrated design and operation; Energy systems; Uncertainty;
Stochastic mixed-integer nonlinear program; Global optimization.

1. INTRODUCTION

Global primary energy demand is projected to increase by
over one third from 2012 to 2035 (International Energy
Agency (2012)). This will result in increasing needs for
developing new and expanding existing energy systems,
especially clean and/or renewable energy systems (e.g.
natural gas production systems, biofuel plants), due to
concerns with energy and environmental sustainability.
The energy system development problem can be viewed
as an integrated design and operation problem, as both
design and operational decisions have to be involved in
finding an optimal solution. The design decisions are those
to be determined before and implemented during the de-
velopment of the system, such as the layout of the system
and the capacities of the units involved. The operational
decisions are those to be implemented after development
of the system, such as the physical conditions under which
the system is operated. In addition, uncertainty in the
energy resources and fluctuations in market conditions
need to be considered in the problem, as they usually have
significant impact on the optimality and even feasibility of
operating the system.

This paper focuses on the optimal design and operation of
energy systems under uncertainty through mathematical
programming. The mathematical programming formula-

tion to be considered can be expressed in the following
form:

min
x1,...,xs,y

s∑
h=1

wh
(
cTh y + fh(xh)

)
s.t. gh(xh) +Bhy ≤ 0, ∀h ∈ {1, ..., s},

xh ∈ Xh, ∀h ∈ {1, ..., s},
y ∈ Y,

(P)

where Xh = {xh ∈ Πh ⊂ Rnx : ph(xh) ≤ 0}, Y =
{y ∈ {0, 1}ny : Ay ≤ d}, Πh is convex, functions
fh : Πh → R, gh : Πh → Rm and ph : Πh →
Rmp are continuous, and it is assumed that at least one
function is nonconvex. The binary variables y represent
design decisions such as whether to develop a unit or
connection in the system. The discrete and/or continuous
variables xh represent operational decisions, such as the
throughput of the system, for scenario h. A scenario may
represent a possible realization of uncertain parameters
whose outcome is known only after development of the
system; in this case wh > 0 represents the probability
of occurrence of the scenario. Or a scenario may be
associated with a particular operating period in which
values of some parameters are different from those in
other operating periods; in this case wh represents the
frequency of occurrence of the operating period. In the
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objective function of Problem (P), cTh y represents the
cost associated with the design decisions for scenario
h and fh(xh) represents the cost associated with the
operational decisions for scenario h. Note that any equality
constraint in the problem can always be expressed as
paired inequalities. Obviously, the size of Problem (P)
depends on the number of scenarios addressed, s. As the
uncertainty usually needs to be characterized with a large
number of scenarios, Problem (P) is usually a large-scale
nonconvex mixed-integer nonlinear program (MINLP).

Problem (P) needs to be solved to global optimality to
achieve the highest profits (or lowest costs), but solution of
this nonconvex MINLP is often computationally challeng-
ing. This is because the solution times of classical global
optimization methods, such as branch-and-reduce (Tawar-
malani and Sahinidis (2004)), SMIN-αBB and GMIN-αBB
(Adjiman et al. (2000)), and nonconvex outer approxima-
tion (Kesavan et al. (2004)), increase dramatically with
the the sizes of the problems to be solved. Recently, a
decomposition-based global optimization method, called
nonconvex generalized Benders decomposition (NGBD),
has been developed based on dual decomposition and
convex relaxation (Li et al. (2011b)). By exploitation of
the decomposable structure of Problem (P), NGBD can
solve Problem (P) to global optimality efficiently, and the
solution time for NGBD does not grow dramatically with
the number of scenarios involved in the problem. In ad-
dition, NGBD performs better with tighter convex relax-
ations that are used to bound the final solution. Therefore,
the performance of NGBD can be further improved by
integration of a piecewise convex relaxation framework,
which is known to enable tighter convex relaxations.

This paper is organized as follows: Section 2 gives an
introduction to NGBD, and Section 3 presents a piecewise
relaxation framework for factorable functions and the
integration of the framework in NGBD. The benefits of
explicit consideration of uncertainty and NGBD method
are demonstrated through two industrial case studies in
Section 4 and the paper concludes in Section 5.

2. NONCONVEX GENERALIZED BENDERS
DECOMPOSITION

2.1 Subproblems

NGBD solves Problem (P) by solving a sequence of sub-
problems, which generate a sequence of upper bounds and
a sequence of lower bounds that converge to a global
optimum of the problem. The subproblems are constructed
via restriction, relaxation, projection and dualization of
the original problem or the intermediate subproblems.

On the one hand, Problem (P) can be restricted through
fixing y = y(l) at the lth iteration, and the resulting
subproblem is called the Primal Problem (PP), whose
optimal objective value objPP(y(l)) is an upper bound
for Problem (P). The primal problem can naturally be
decomposed into s subproblems in the following form:

objPPh(y(l)) = min
xh

wh

(
cTh y

(l) + fh(xh)
)

s.t. gh(xh) +Bhy
(l) ≤ 0,

xh ∈ Xh.

(PPlh)

Obviously,
∑s
h=1 objPPh(y(l)) = objPP(y(l)). The size of

this nonconvex nonlinear programming (NLP) or MINLP
problem (PPlh) is independent of the number of scenarios
and the problem can be solved to ε-optimality in finite
time by state-of-the-art global optimization solvers, such
as BARON (Tawarmalani and Sahinidis (2004)). The
solution time can be significantly reduced by adding an
additional cut derived from the solution of the previously
solved subproblems (Li et al. (2011b)).

On the other hand, Problem (P) can be relaxed by
convex relaxation of the nonconvex functions therein, and
the resulting subproblem is called the lower bounding
problem whose optimal objective value is an lower bound
for Problem (P). The lower bounding problem can be
expressed in the following form:

min
x1,...,xs,
e1,...,es,y

s∑
h=1

wh
(
cTh y + uf,h(xh, eh)

)
s.t. ug,h(xh, eh) +Bhy ≤ 0, ∀h ∈ {1, ..., s},

(xh, eh) ∈ Dh, ∀h ∈ {1, ..., s},
y ∈ Y,

(LBP)

where Dh = {(xh, eh) ∈ Πh × Θh : up,h(xh, eh) ≤
0, uq,h(xh, eh) ≤ 0}, Θh is convex, and functions uf,h :
Πh×Θh → R, ug,h : Πh×Θh → Rm, up,h : Πh×Θh → Rmp
and ue,h : Πh × Θh → Rme are convex on Πh × Θh. So
Problem (LBP) is a convex MINLP or a mixed-integer
linear program (MILP). This problem involves auxiliary
variables eh and constraints ue,h(xh, eh) ≤ 0 that may
be required to construct smooth relaxations. Detailed
discussions on convex relaxations can be found in Gatzke
et al. (2002).

It is well known that the lower bounding problem (LBP)
can be solved efficiently using generalized Benders de-
composition (GBD) (Geoffrion (1972)). Here a similar
decomposition strategy is used to solve Problem (LBP)
and also provide integer realizations y(l) to construct the
primal subproblems (PPlh). Assume that Problem (LBP)
satisfies a constraint qualification (which implies strong
duality) for any y ∈ Y for which Problem (LBP) is feasible,
then the problem can be transformed into an equivalent
master problem via the principles of projection and dual-
ization (Li et al. (2011b)). Both Problem (LBP) and the
master problem are difficult to solve directly, so they are
solved via solving a sequence of Primal Bounding Prob-
lems (PBP), Feasibility Problems (FP) and Relaxed
Master Problems (RMP), which are much easier to
solve. The primal bounding problem is constructed at each
iteration k by restricting the binary variables to specific
values, say y = y(k), in the lower bounding problem, whose
solution yields a valid upper bound for the lower bounding
problem (and hence the master problem). Furthermore, it
can naturally be decomposed into s subproblems of the
following form:

objPBPh(y(k)) = min
xh,eh

wh

(
cTh y

(k) + uf,h(xh, eh)
)

s.t. ug,h(xh, eh) +Bhy
(k) ≤ 0,

(xh, eh) ∈ Dh.

(PBPkh)

Obviously,
∑s
h=1 objPBPh(y(k)) = objPBP(y(k)) where

objPBP(y(k)) is the optimal objective value of the primal
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bounding problem for y = y(k). When the primal bounding
problem is infeasible for y = y(k), a corresponding feasibil-
ity problem is solved, which can also be decomposed into
s subproblems of the following form:

objFPh(y(k)) = min
xh,eh,zh

wh||zh||

s.t. ug,h(xh, eh) +Bhy
(k) ≤ zh,

(xh, eh) ∈ Dh, zh ∈ Zh,

(FPkh)

where
∑s
h=1 objFPh(y(k)) = objFP(y(k)) and objFP(y(k)) is

the optimal objective value of the feasibility problem. The
relaxed master problem is constructed at each iteration
k by relaxing the master problem with a finite number
of constraints that are derived according to the solution
information of all the previously solved primal bounding
and feasibility problems, as follows:

min
η,y

η

s.t. η ≥ objPBP(y
(j))

+

(
s∑

h=1

(
whc

T
h +

(
λ
(j)
h

)T

Bh

))(
y − y(j)

)
, ∀j ∈ Tk,

0 ≥ objFP(y
(i))

+

(
s∑

h=1

(
µ
(i)
h

)T

Bh

)(
y − y(i)

)
, ∀i ∈ Sk,∑

r∈R(t)
1

yr −
∑
r∈R(t)

0

yr ≤ |R1| − 1, ∀t ∈ Tk ∪ Sk,

y ∈ Y, η ∈ R,
(RMPk)

where the index sets

T k = {j ∈ {1, ..., k} : (LBP) is feasible for y = y(j)},
Sk = {i ∈ {1, ..., k} : (LBP) is infeasible for y = y(i)},
R

(t)
1 = {r ∈ {1, ..., ny} : y(t)r = 1},

R
(t)
0 = {r ∈ {1, ..., ny} : y(t)r = 0}.

The first group of constraints are called optimality cuts

and λ
(j)
h are the Lagrange multipliers for Problem (PBPjh).

The second group of constraints are called feasibility

cuts and µ
(i)
h are the Lagrange multipliers for Problem

(FPih). The last group of constraints is a set of canonical
integer cuts that prevent the previously examined integer
realizations from becoming a solution (Balas and Jeroslow
(1972)). The solution of Problem (RMPk) yields a lower
bound for the master problem (and therefore Problem (P))
augmented with the integer cuts. The size of Problem
(RMPk) is determined by the current iteration number
instead of the number of scenarios. In case T k = ∅, the
relaxed master problem is unbounded, then a feasibility
version of it is solved to allow the algorithm to proceed.

2.2 Algorithm

Figure 1 illustrates the NGBD algorithmic flowchart. The
inner loop of the algorithm is a GBD-like procedure to
solve the lower bounding problem (LBP) via solving primal
bounding subproblems (PBPkh) or feasibility subproblems
(FPkh) and relaxed master problems (RMPk) iteratively.
In addition, the solution of (RMPk) yields a sequence of

Update LB 
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LB ≥ 

PBUpper? 

No 

Yes 

Feasibility Cut 
Optimality 
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Yes 

No 
No 

UB, PBUpper, 

LB 
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Update 
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Subproblems 

(Convex NLP/LP) 

Fig. 1. NGBD Algorithmic Flowchart

integer realizations that will be used to construct primal
subproblems (PPlh) in the outer loop of the algorithm.
A sequence of lower bounds will be generated via the
solution of relaxed master problems (RMPk) in the inner
loop, and a sequence of upper bounds will be generated
via the solution of primal subproblems (PPlh) in the out
loop. Note that the sizes of all subproblems to be solved
are independent of the number of scenarios. The following
theorem states the finite termination of the algorithm.

Theorem 1. If all the subproblems can be solved to ε-
optimality in a finite number of steps, then the NGBD
algorithm terminates in a finite number of steps with an
ε-optimal solution of Problem (P) or an indication that
Problem (P) is infeasible.

Proof. Proof can be found in Li et al. (2011b).

3. PIECEWISE CONVEX RELAXATION OF
FACTORABLE FUNCTIONS

In NGBD, the lower bounding problem constructed via
convex relaxation serves as a surrogate for Problem (P)
for the purpose of valid decomposition. The tightness
of the convex relaxation determines the quality of the
lower bounding problem and the convergence rate of
NGBD. As it is well known that piecewise linear relaxation
yields tighter relaxations of bilinear programs than linear
relaxation does (e.g. Gounaris et al. (2009)), a piecewise
convex relaxation framework is presented in this section
for tighter relaxations of functions that are factorable.

3.1 Factorable Functions

A function f : S ⊂ Rnx → R is called factorable if
there exist factors q1, ..., qL such that the function can be
represented by a finite sequence of addition, multiplication
and univariate functions in the following form:
(1) ql = xl, l ∈ {1, ..., nx},
(2) ql = qi + qj , ∀(l, i, j) ∈ ΩA,
(3) ql = qiqj , ∀(l, i, j) ∈ ΩM ,
(4) ql = Ul(qi), ∀(l, i) ∈ ΩU ,
(5) f(x) = qL(x).
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Here ΩA, ΩM and ΩU are index sets that contain indices
of the factors associated with additions, multiplications
and univariate functions, respectively. Note that most
engineering problems can be modelled with factorable
functions.

With the factorable representation and the bounds on the
factors, a convex underestimator and a concave overes-
timator of function f can be generated by performing
McCormick relaxation (McCormick (1976)) for each mul-
tiplication and non-affine univariate function. The next
two subsections extend classical McCormick relaxation to
piecewise McCormick relaxation for multiplications and
univariate functions.

3.2 Relaxation of Multiplications

Consider multiplication z = xy and the known upper
and lower bounds on x and y, say, xlo, xup, ylo, yup.
Let’s partition the x domain, [xlo, xup], into K subdomains
(pieces), i.e., picking K + 1 points x1 < x2 < ... < xK+1

such that x1 = xlo, xK+1 = xup. Then the piecewise
McCormick relaxation can be expressed as:

zr =

K∑
k=1

zrk, x =

K∑
k=1

xk, y =

K∑
k=1

yk,

zrk ≥ xk+1yk + xky
up − xk+1yupδk,

zrk ≥ xkyk + xky
lo − xkyloδk,

zrk ≤ xk+1yk + xky
lo − xk+1yloδk,

zrk ≤ xkyk + xky
up − xkyupδk,

δkx
k ≤ xk ≤ δkxk+1,

δky
lo ≤ yk ≤ δkyup,

K∑
k=1

δk = 1,

k = 1, ...,K.

(1)

This piecewise relaxation involves classical McCormick
relaxations for the K subdomains, and binary variable
δk is to indicate whether the McCormick relaxation on
subdomain k is activated or not. Note that when K = 1
(i.e., when the x domain is not partitioned), the piecewise
McCormick relaxation reduces to the classical McCormick
relaxation.

3.3 Relaxation of Univariate Functions

Consider a (nonaffine) univariate function z = U(x) that
is defined on [xlo, xup]. Again, partition the x domain into
K subdomains, then the piecewise McCormick relaxation
can be expressed as:

zr =

K∑
k=1

zrk, x =

K∑
k=1

xk,

zrk ≤ U conc,k(xk, δk, x
k, xk+1),

zrk ≥ U conv,k(xk, δk, x
k, xk+1),

δkx
k ≤ xk ≤ δkxk+1,

K∑
k=1

δk = 1,

k = 1, ...,K.

(2)

The binary variables and the partitioning points are as
defined in the preceding subsection. U conc,k(x, 1, xk, xk+1)
and U conv,k(x, 1, xk, xk+1) denote a concave relaxation and
a convex relaxation of U(x) on [xk, xk+1], respectively, and
the following condition,

U conc,k(0, 0, xk, xk+1) = 0,

U conv,k(0, 0, xk, xk+1) = 0,

k = 1, ...,K,

(3)

is enforced such that zrk = 0 if δk = 0 (i.e., the convex
relaxation on subdomain k is deactivated). When K =
1, the piecewise McCormick relaxation reduces to the
classical McCormick relaxation.

3.4 NGBD With Piecewise Convex Relaxations

With the proposed piecewise McCormick relaxations, fac-
torable functions in Problem (P) can be relaxed by piece-
wise relaxation of the multiplications and univariate func-
tions in their factorable representations. Then a new lower
bounding problem that is tighter than Problem (LBP) can
be constructed in the following form:

min
x1,...,xs,
ẽ1,...,ẽs,
δ1,...,δs,y

s∑
h=1

wh

(
cTh y + upwf,h(xh, ẽh, δh)

)
s.t. upwg,h(xh, ẽh, δh) +Bhy ≤ 0, ∀h ∈ {1, ..., s},

(xh, ẽh, δh) ∈ Dpw
h × {0, 1}

nδ , ∀h ∈ {1, ..., s},
y ∈ Y,

(LBP-PCR)

where δh denotes binary variables introduced for the
piecewise McCormick relaxation. This new lower bounding
problem (LBP-PCR) is a convex MINLP or a MILP, which
cannot be decomposed via GBD in general. However,
Problem (LBP-PCR) can be used to generate tighter
optimality cuts for the relaxed master problem (RMPk)
to yield tighter lower bounds for Problem (P). The details
of enhancing the relaxed master problem with tighter
optimality cuts are not given here due to the space limit
of the paper, and interested readers can find them in Li
et al. (2012).

4. CASE STUDIES

4.1 Case Study 1

This case study is inspired by a real industrial system,
the Sarawak Gas Production System (SGPS) (Selot et al.
(2008)). The superstructure and parameters of the SGPS
are illustrated in Figures 2(a) and 2(b). In this system,
natural gas is acquired from a set of gas fields (denoted by
circles in the figures) and transported to three liquefied
natural gas (LNG) plants (denoted by squares in the
figures) through a pipeline network. Several gas platforms
(denoted by ellipses in the figures) are involved in the
system, at which gas flows are mixed and split. The
solid lines in the figures indicate the existing part of
the system. To meet the increasing customer demands,
the system needs to be expanded to produce more LNG,
and the superstructure of the new part of the system is
indicated by the dashed lines in the figures. More detailed
description of the system can be found in Li et al. (2011a).
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(a) Superstructure and economic information 
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Fig. 2. Case Study 1 superstructure, parameters, and design results

The objective of the system expansion problem is to choose
from the superstructure the gas fields, platforms, pipelines,
and LNG plants to be developed, such that the expected
net present value of the expansion is maximized while
the specifications on gas qualities at the LNG plants are
satisfied. The uncertainty in the system may come from
the qualities of the gas fields and demands at the different
LNG plants. The problem can be cast as a MINLP problem
in form of Problem (P). We call the MINLP formulation
a deterministic formulation if no uncertainty is explicitly
considered (i.e., Problem (P) only involves one scenario),
and a stochastic formulation if several realizations of
uncertainty parameters are considered in the problem (i.e.,
Problem (P) involves more than one scenario). Details of
the deterministic and the stochastic formulations can be
found in Li et al. (2011a).

The MINLP problems are solved with BARON 8.1.5 and
the NGBD method on GAMS 22.8.1. The computer used
has a 2.83 GHz CPU and runs a Linux system. The NGBD
method employs BARON 8.1.5 for solving nonconvex NLP
subproblems and CPLEX 11.1.1 for solving LP and MILP
subproblems. The relative termination tolerance for global
optimization is 10−2.

The advantage of using the stochastic formulation is
demonstrated via a simple case in which the uncertainty
only comes from the quality of gas field M1 (i.e., CO2

mole percentage of gas from the field). Specifically, The
CO2 mole percentage obeys a normal distribution with a
mean of 3.34 and a standard deviation of 0.6. five sampled
realizations of the uncertain CO2 mole percentage are con-

sidered in the stochastic formulation. Figures 2(c) and 2(d)
show the SGPS network designed with the deterministic
and the stochastic formulations, respectively. The deter-
ministic formulation suggests a design involving fewer gas
fields, which requires an infrastructure investment costs of
21.1 billion dollars and can achieve an expected net present
value of 29.0 billion dollars. The drawback of this design
is that the quality of M1 may be so bad that M1 can-
not supply as much gas as expected by the deterministic
formulation. When considering the uncertainty with the
stochastic formulation, more gas fields are to be developed
to make sure that the SGPS can consistently supply on-
specification gas flows in spite of the quality of gas field
M1. The resulting design requires a higher infrastructure
investment cost of 21.6 billion dollars but can also achieve
a higher expected net present value of 32.2 billion dollars.

The computational advantage of the NGBD method is
demonstrated here with another case in which the uncer-
tainty comes from the CO2 mole percentages of gas from
fields M1, JN and the maximum demands at LNG plants
2 and 3. The four uncertain parameters independently
obey normal distributions with means 5.04, 2.63, 1736
Mmol/day and 2275 Mmol/day, and standard deviations
1, 0.4, 144 Mmol/day and 239 Mmol/day, respectively. 1,
2, 3, 4 and 5 realizations are generated for each uncertain
parameter, leading to problems involving 1, 16, 81, 256
and 625 scenarios. The computational results are summa-
rized in Table 1. Although NGBD is slower than BARON
when the number of scenarios is 1, it is much faster when
more scenarios are addressed, and the solver time with
the decomposition method increases moderately with the
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Table 1. Case Study 1 Computational Results

Num. of Scenarios 1 16 81 256 625

Num. of binary var. 38 38 38 38 38
Num. of cont. var. 59 929 4699 14849 36251
BARON Time (s) 1.6 3894.1 – ∗ – –
NGBD Time (s) 4.4 19.5 98.4 376.4 792.6

∗ No solution is returned within 105 seconds.

Table 2. Case Study 2 Computational Results

BARON NGBD NGBD-PCR

Time for 8 scenarios (s) - ∗ 65915 6104
Time for 24 scenarios (s) – ∗∗ 217855 23525

∗ No global solution is returned within 106 seconds.
∗∗ No global solution is returned within 30 days.

number of scenarios. In addition, BARON cannot obtain
a solution for the problem within 105 seconds when 81 or
more scenarios are involved in the problem.

4.2 Case Study 2

This problem is the synthesis of a flexible energy poly-
generation plant co-producing power, liquid fuels (naph-
tha and diesel) and chemicals (methanol) from coal and
biomass as feedstocks. The goal of the optimization is
to determine the equipment capacities in the plant to
achieve the best net present value over the plant lifetime
while satisfying the design and operational constraints.
This problem can be cast as a MINLP in the form of
Problem (P). Two problem instances are considered here.
One involves 8 scenarios, 70 binary variables and 4904
continuous variables, and the other involves 24 scenarios,
70 binary variables and 14712 continuous variables. Details
of the MINLP models can be found in Chen et al. (2011).

The case study compares the performance of BARON
9.0.6, NGBD, and NGBD-PCR (i.e., the NGBD with
piecewise relaxations). The problems are solved on GAMS
23.5.2 with a computer allocated a 2.66 GHz CPU and
running a Linux system. The NGBD methods employs
BARON 9.0.6 for solving nonconvex NLP subproblems
and CPLEX 12.2.2 for solving LP and MILP subprob-
lems. The NGBD-PCR method partitions the domain of
each variable uniformly into 15 subdomains. The relative
termination tolerance for global optimization is 10−2.

Tables 2 summarizes the computational results. It can be
seen that BARON cannot return an ε-optimal solution
within 106 seconds and 30 days for the two problem in-
stances, respectively, while NGBD can within 105 seconds
and 3 days, respectively. This indicates that NGBD can
reduce the solution time (with BARON) by at least an
order of magnitude for both problem instances. It can
also be seen that NGBD-PCR can further reduce the
solution time by about another order of magnitude for
both problem instances.

5. CONCLUSION

A MINLP problem (P) is considered for the integrated
design and operation of energy systems under uncertainty.
This MINLP problem is usually computationally chal-
lenging due to the large number of scenarios required
to characterize the uncertainty. By exploitation of the

decomposable structure of the problem, a NGBD method
can solve Problem (P) to global optimality efficiently. Case
study results show that NGBD is faster than a state-
of-art global optimization solver by at least an order of
magnitude, and with the integration of a piecewise convex
relaxation framework, the NGBD solution procedure can
be expedited by another order of magnitude.
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