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Abstract: The paper presents an adaptive strategy to reject periodic disturbances with
unknown period based on a combination of model predictive control and repetitive control.
A novel period estimator is presented. For the integer period case, the estimator is designed
based on integer programming. For the non-integer period case, it is designed based on a two-step
optimization, namely integer programming followed by a constrained least square method. With
the estimated period, feedforward compensation is made to improve the tracking performance
asymptotically. Simulation results are given to show the effectiveness of the algorithm.
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1. INTRODUCTION

Disturbance rejection is an important aspect in control
theory. Periodic disturbance is rather common in indus-
trial processes due to periodic operations, such as con-
tinuous steel casting processes and fed-batch fermenta-
tion processes, shown in Manayathara et al. (1996) and
Valentinotti (2001). There are many ways to deal with
the periodic disturbance rejection problem as shown in
Bodson (2005). Most of them are based on repetitive con-
trol. Repetitive control was originally proposed to reject
periodic disturbance(Inoue et al. (1981b)) or track periodic
reference(Inoue et al. (1981a)) founded on Internal Model
Principle(Francis and Wonham (1976)). It is widely ac-
cepted by people in the field of robotics, servo mechanical
devices and so on, but seldom used in chemical processes
which are generally multi-variable constrained processes.
In Natarajan and Lee (2000), Lee combined repetitive
control with model predictive control based on an aug-
mented state space model and a periodic Kalman filter
and applied it on a simulated moving bed process with
periodic operations. In Lee et al. (2001), they extended
the method to deal with periodic continuous processes
with constraints. When combined with model predictive
control, repetitive control becomes more suitable to be
applied in chemical processes.
The benefits of combining model predictive control with
repetitive control or iterative learning control attracts
many people’s attention. In Gupta and Lee (2006), a
period-robust repetitive model predictive control was pro-
posed to deal with mismatch between actual period and
period used. In Shi et al. (2007), iterative learning control
was combined with generalized predictive control based on

?

a two dimensional model resulted in a more unified design
and the 2D-GPILC(Two Dimensional Generalized Pre-
dictive Iterative Learning Control) was applied on batch
processes with single and multi-cycle.
Most of the above work assumed the period is known.
In this paper, we consider the case that the period is
unknown. A period estimation problem is transferred into
the design problem of an adaptive filter based on the
analysis of the prediction error. The non-integer period
case is considered by using a two step optimization. Based
on the obtained filter, repetitive control is plugged into
GPC.
The paper is organized in the following way. In next
section, the basic formulation of the problem is given. In
the third section, methods of period identification for both
integer and non-integer case are introduced. The control
algorithm of the adaptive repetitive model predictive con-
trol is given. Then simulation results and conclusion are
followed.

2. PROBLEM FORMULATION

An industrial process is often modeled as an ARMAX
model as follows.

A(q−1)y(t) = B(q−1)u(t− 1) + ε(t) (1)

where

A(q−1) = 1 + a1q
−1 + a2q

−2 + ...+ anq
−n

and

B(q−1) = 1 + b1q
−1 + b2q

−2 + ...+ bmq
−m

n and m are the orders of the model, and ε(t) is white
noise. The parameters of A and B are identified based on
system identification test.
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Following a similar idea in Shi et al. (2007), a prediction
model can be derived for model predictive control at time
t.

(A1 A2 )

(
y(|t−n+1

t )
y(|t+1

t+N1
)

)
= (B1 B2 )

(
u(|t−m+1

t−1 )
u(|tt+N2−1)

)
(2)

N1 and N2 are denoted as prediction horizon and control
horizon respectively, N2 ≤ N1. y(|ab ) denotes [y(a) y(a +
1) ... y(b− 1) y(b)]T and

(A1 | A2 ) =


an an−1 an−2 . . . a1 | 1 0 . . . 0 0
0 an an−1 . . . a2 | a1 1 . . . 0 0
0 0 an . . . a3 | a2 a1 . . . 0 0
...

...
...

. . .
... |

...
...

. . .
...

...
0 0 0 . . . ∗ | ∗ ∗ . . . a1 1


(3)

(B1 | B2 ) =


bm bm−1 bm−2 . . . b2 | b1 0 . . . 0 0
0 bm bm−1 . . . b3 | b2 b1 . . . 0 0
0 0 bm . . . b4 | b3 b2 . . . 0 0
...

...
...

. . .
... |

...
...

. . .
...

...
0 0 0 . . . ∗ | ∗ ∗ . . . b2 b1


(4)

Based on this, the predicted output could be obtained by
simple manipulation.

yp(|t+1
t+N1

) =A−12 B1u(|t−m+1
t−1 ) +A−12 B2u(|tt+N2−1)

−A−12 A1y(|t−n+1
t )

(5)

Denote yr as the reference, diagonal and positive definite
matrix Q and R as the weight matrix, then the uncon-
strained GPC can be formulated as

min
u(|t

t+N2−1
)
[yr(|t+1

t+N1
)− yp(|t+1

t+N1
)]TQ[yr(|t+1

t+N1
)− yp(|t+1

t+N1
)]

+ u(|tt+N2−1)TRu(|tt+N2−1)

which is a basic GPC structure(Clarke et al. (1987)). When
there are measurable disturbances dm(t), a feedforward
GPC can be formulated as follows.

min
u(|t

t+N2−1
)
[yr(|t+1

t+N1
)−Gddm(|t+1

t+N1
)− yp(|t+1

t+N1
)]TQ

× [yr(|t+1
t+N1

)−Gddm(|t+1
t+N1

)− yp(|t+1
t+N1

)]

+ u(|tt+N2−1)TRu(|tt+N2−1)

where Gd is the transfer function from the measurable
disturbance to the output of the plant. That’s the basic
structure for feedforward MPC(Rawlings (1999)).
However, generally disturbances are not measurable. For
processes with repetitive nature, such as periodic processes
and batch processes, the feedforward part can be estimated
based on input and output information of last cycle or
batch, as shown in Shi et al. (2007) and Lee et al. (2001).
This motivation induces a MPC combined with iterative
learning control or repetitive control. The formulation of
GPC for periodic disturbances rejection can follow this
framework. Denote T as the period of disturbance. The
new prediction model is given in equation (6)

yp(|t+1
t+N1

) =A−12 B1u(|t−m+1
t−1 ) +A−12 B2u(|tt+N2−1)

−A−12 A1y(|t−n+1
t ) + Correction (6)

Correction =y(|t+1−T
t+N1−T )−A−12 B1u(|t−m+1−T

t−1−T )

+A−12 B2u(|t−Tt+N2−1−T )−A−12 A1y(|t−n+1−T
t−T )

The correction is actually the prediction error from time
t+ 1− T to t+N1 − T . Further, denote

∆u(|tt+N2−1) = u(|tt+N2−1)− u(|t−Tt+N2−1−T )

the optimization part can be given as

min
u(|t

t+N2−1
)
[yr(|t+1

t+N1
)− yp(|t+1

t+N1
)]TQ[yr(|t+1

t+N1
)− yp(|t+1

t+N1
)]

+ ∆u(|tt+N2−1)TR∆u(|tt+N2−1) (7)

Based on equation (6) and equation (7), the control law
for this unconstrained repetitive GPC is induced as follows
by taking first derivative.
Denote

G = A−12 B2

Then

u(|tt+N2−1) = u(|t−Tt+N2−1−T ) + (R+GTQG)−1GTQ

× {yr(|t+1
t+N1

)− y(|t+1−T
t+N1−T )−A−12 B1[u(|t−m+1

t−1 )

− u(|t−m+1−T
t−1−T )] +A−12 A1[y(|t−n+1

t )− y(|t−n+1−T
t−T )]} (8)

Here considering the case of T < N1, y(t+N1 − 1− T ) is
not available at time t. Compensation can still be done by
using y(t+N1 − αT ) and u(t+N2 − αT ), where

α = dN1

T
e (9)

d∗e means to round up to the nearest integer. In order to
have a unified expression, we can also keep all the value of
u(|tt+N2−1) and manually assign

y(|t+1
t+N1+1) = A−12 B1u(|t−m+1

t−1 ) +A−12 B2u(|tt+N2−1)−
A−12 A1y(|t−n+1

t ) + y(|t+1−T
t+N1−T )−A−12 B1u(|t−m+1−T

t−1−T )

+A−12 B2u(|t−Tt+N2−1−T )−A−12 A1y(|t−n+1−T
t−T ) (10)

Then Equ.(8) is always established and the effect is the
same as method shown in Equ.(9). As MPC usually does,
only the value of u(t) is sent to the plant and the value of
y(t + 1) is updated as the measured output of the plant.
Next, the key problem is how to identify the period T
on-line.

3. PERIOD IDENTIFICATION OF THE PERIODIC
DISTURBANCES

3.1 Integer period case

The estimation of the period is mainly based on an
analysis of the prediction error. As prediction error is
caused by model mismatch and disturbances, when model
mismatch is not significant compared to the magnitude of
disturbances, the prediction error is also of periodic form.
Denote ep(t) as the prediction error, then

ep(t) = A(q−1)y(t)−B(q−1)u(t) (11)

Next, we will show how to transfer a period estimation
problem into a coefficient identification problem of an
adaptive filter. Furthermore, this filter will be used in MPC
directly. Firstly, we only consider the case when the period
is an integer.
Denote N as as the order of the filter w, and

w = [w1, w2, ..., wN ]T ∈ ZN×1

Assume N > T , and denote H as the estimation horizon,
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Fig. 1. Block diagram of adaptive repetitive MPC

C(t) =


ep(t−H + 1)

.

.

.
ep(t− 1)
ep(t)


D(t) =
ep(t−N −H + 1) ... ep(t− 1−H) ep(t−H)
ep(t−N −H + 2) ... .. ep(t−H + 1)

. . . .

. . . .

. . . .
ep(t−N) ... ep(t− 2) ep(t− 1)


(12)

Then the optimization part can be formulated as

min
[w1, w2,..., wN ]

[C(t)−D(t)w]T [C(t)−D(t)w]

st.
∑

wi = 1

wi = {0, 1} i = 1, ..., N (13)

To ∀i ∈ [0, H],(ep(t − N − H + i), . . . , ep(t − H + i))w
can be interpreted as the prediction of ep(t − H + i + 1)
based on identified w. So with the above constraints, by
minimizing ‖ep(t−H + i)− [ep(t−H −N + i), ep(t−H −
N + i+ 1), . . . , ep(t−H + i− 1)]w‖22 for H steps,which is
a moving horizon estimation, we can get w as

w = [0, ..0, 1, 0, ...0︸ ︷︷ ︸
T

]T (14)

With the filter obtained, the prediction model can be
revised as

yp(|t+1
t+N1

) =A−12 B1u(|t−m+1
t−1 ) +A−12 B2u(|tt+N2−1)

−A−12 A1y(|t−n+1
t ) +A−12 f(|t+1

t+N1
)

(15)

f(t) = [ep(t−N), ep(t−N + 1), . . . , ep(t− 1)]w

So the filter here is actually used to pick up a proper
compensation from [ep(t−N), ep(t−N+1), . . . , ep(t−1)],
f(t) can be considered as a compensation item which is
similar to the correction term in Equ.(6). Further, denote

U(t) =[u(t−N), u(t−N + 1), . . . , u(t− 1)]

Y (t) =[y(t−N), y(t−N + 1), . . . , y(t− 1)]

and

∆wu(|tt+N2−1) = u(|tt+N2−1)− U(|t−1t+N2−2)w (16)

the optimization part could be formulated as

min
u(|t

t+N2−1
)
[yr(|t+1

t+N1
)− yp(|t+1

t+N1
)]TQ[yr(|t+1

t+N1
)− yp(|t+1

t+N1
)]

+ ∆wu(|tt+N2−1)TR∆wu(|tt+N2−1) (17)

The induced control law is as follows
u(|tt+N2−1) = U(|t−1t+N2−2)w + (R+GTQG)−1GTQ

× {yr(|t+1
t+N1

)− Y (|tt+N1−1)w −A−12 B1[u(|t−m+1
t−1 )

− U(|t−mt−2 )]w +A−12 A1[y(|t−n+1
t )− Y (|t−nt−1 )w]}

(18)

Considering the period may vary, and the past information
may not be as efficient as the newest one, we can further
improve the optimization as follows

min
[w1,w2,...,wN ]

[C(t)−D(t)w]TPw[C(t)−D(t)w] + wTQww

st.
∑

wi = 1

wi = {0, 1} i = 1, ..., N (19)

where Pw and Qw are defined as

Pw =


αH−1 0 ... 0

0 αH−2 ... 0
. . . .
. . . .
. . . .
0 0 ... α0

 (20)

Qw = θ


β0 0 ... 0
0 β1 ... 0
. . . .
. . . .
. . . .
0 0 ... βN−1

 (21)

α ∈ (0, 1], β ∈ [0, 1] and θ ≥ 0, so Pw and Qw are both
positive semi-definite. α is taken as a forgetting factor to
give priority to the latest information, which may improve
the ability to adapt to any period variation of ep(t). Qw
is the weight matrix of the coefficients. Based on this
structure, when H > mT and m ∈ Z+, by properly assign
the value of β, w can be forced to converge to

w = [0, ..0, 1, 0, ...0︸ ︷︷ ︸
T

]T

instead of jumping among different mT . The parameter
θ is used to balance the weight of the two parts in the
objective function.
Next, we will consider the non-integer case, which is also
very common when T can not be divided by the sample
rate of the control system.

3.2 Non-integer period case

Considering the non-integer period case, here a two-step
optimization will be adopted. Firstly, it will be treated in
the same way as the integer period case and a group of w
can be obtained as

w = [0, ..0, 1, 0, ...0︸ ︷︷ ︸
Ta

]T

Ta is the approximation of the real period T , since T is
not an integer. Then do a relaxation around the ’1’ as

ŵ = [0, . . . , ŵ1, ŵ2, ŵ3, . . . , 0︸ ︷︷ ︸
Ta

]T

This relaxation actually helps us to turn a non-integer
period into a combination of three integer period with opti-
mized weights. Since a non-integer can always interpreted
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by two neighbor integer, here we only need to relax it into
three free variables.
Then the second step optimization can follow this as

min
[ŵ1, ŵ2, ŵ1]

[C(t)−D(t)ŵ]T [C(t)−D(t)ŵ]

st.
∑

ŵi = 1

ŵi ≥ 0 i = 1, ..., N (22)

Based on this convex optimization, the compensation can
be made not solely rely on one point, so the performance
can be improved for the non-integer case.

3.3 stablity analysis

The stability analysis of repetitive MPC is always a tough
problem. This is partly because of the difficulty in stability
analysis of MPC itself. In the proposed adaptive algorithm,
by restricting the coefficients of the estimator wi satisfying
the following two constraints, the estimation error of the
disturbances can be proved to be bounded.

i=N∑
i=1

wi = 1 (23)

wi ∈ [0, 1] i = 1, 2, . . . , N (24)

With the bounded estimation error, some robust MPC
can be adopted to guarantee the stability. When the
disturbance and model error is not too large, in practice,
a well-tuned regular MPC can also be considered to be
stable.
In this periodic disturbance case, we may further seek a
way to explore the period-wise convergence, which is more
important, and this will be the follow-up work. Here due
to the limited space, only a brief analysis is given.

4. SIMULATION

The simulation is based on a true process model (25) and
its model (26) used in GPC. Disturbances are treated as
output disturbances.

y(t+ 1) =
2.651 + 5.298q−1 + 0.5805q−2

1− 1.454q−1 + 0.5285q−2 − 0.04736q−3
u(t)

(25)

y(t+ 1) =
13.81q−1

1− 0.9524q−1
u(t) (26)

• Case 1: integer unknown period

dis(t) = sin(0.2πt) +N(0, 0.01) (27)

As shown in the formula, the period is 10s. Here take the
forgetting factor α = 0.95 and the weight of coefficients
β = 0.95, θ = 1 the order of the filter N = 50,
the estimation horizon H = 100. Figure. 2 shows the
estimated period T , Figure 3 gives the absolute value
of the output error. Before t = 50s, it is the output of
conventional GPC without any feedforward compensation,
and after t = 50s, it shows the result of the proposed
adaptive repetitive GPC. We can see that the output error
is significantly reduced by the proposed method and an
accurate estimation of the period can be quickly obtained.

0 20 40 60 80 100
0

2

4

6

8

10

time

T

Fig. 2. Estimated period for case 1
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t e

rr
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|

Fig. 3. Output error for case 1

• Case 2: integer unknown and varying period

t < 800 dis(t) = sin(0.2πt) +N(0, 0.01) (28)

t ≥ 800 dis(t) = sin(0.25πt) +N(0, 0.01) (29)

Keep the settings for each parameter as in the last case.
From Fig. 4 we can see when the period of disturbances
changes, the estimated value quickly track the changes.
Fig 5 shows the output error. Next consider the effect of
forgetting factor. Fig.6 and 7 show the comparison results
of the case that α = 0.95 and α = 0.35. We can conclude
that smaller forgetting factor gives us better transient
performance with faster response, but the resulted T is
not quite stable. The stability is worse. We can further see
the effect of the penalty term with Fig. 8. The comparison
is between θ = 0, which means there is no penalty term,
and θ = 1. We can see that when there is no penalty
term, the estimated T may jump among different mT as
illustrated in the former section. With a small penalty
term, the estimation has better stability.
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Fig. 4. Estimated period for case 2
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Fig. 5. Output error for case 2

• Case 3: non-integer unknown period

dis(t) = sin(2π/26.8t) +N(0, 0.01) (30)

It is clear with this example the period T = 26.8. Fig.10
shows the coefficient for case 3 based on double optimiza-
tion. This result indicates the feedforward compensation
relies on multi-former information, which is similar to
high order iterative learning control. Fig. 11 shows that
the output error of this two step double optimization can
be much smaller than the integer programming when the
period is not an integer.

5. CONCLUSION

An adaptive repetitive control based on Generalized Pre-
dictive Control with a period estimator is proposed for
disturbance with unknown and varying period. The non-
integer case is discussed together with a period estimator
based on a two step double optimization. Simulation re-
sults show the effectiveness of both the period estimator

780 800 820 840
6

7

8

9

10

11

time

T

 

 

0.35
0.95

Fig. 6. Comparison between different fogetting factor: es-
timated T for case 2
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5

time

ou
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ut
 e

rr
or

 

 

0.95
0.35

Fig. 7. Comparison between different forgetting fac-
tor: Output error for case 2

and the adaptive repetitive control algorithm. In addition,
the method can be further extended to constrained case.
The tuning method for the parameters of the period es-
timator and stability analysis of the algorithm is worth
further consideration.
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