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Abstract: In this paper, a coordination control algorithm based on hierarchical scheme is presented to 
coordinate several non-linear model predictive controllers (NMPC) working in parallel, with an upper 
layer, where a price-driven coordination technique is used to drive the controllers in such a way that 
some global constraints are satisfied. To coordinate the lower layers, it is used a price-adjustment 
algorithm based on Newton’s method, in which a reformulation of Fiacco’s work is used in order to 
obtain the sensitivity analysis for a nonlinear system no matter the set of active constraints. The 
efficiency of the scheme is evaluated using a simulation of a four-tank benchmark.  

Keywords: Dual composition control, Predictive control, Price-driven Coordination, Sensitivity analysis  

 

1. INTRODUCTION 
Distributed model predictive control (DMPC) has recently 
experienced a renewed interest because of the benefits that 
can be obtained when optimal decisions driven by economics 
or technical aims can be made in large scale or networked 
systems. Centralized solutions to these problems are quite 
often impossible to obtain and some kind of distribution in 
the computations of the control or optimization algorithm 
must be implemented taking into account, the interactions 
and dependencies among different parts of a process. An 
excellent review of these techniques can be seen in (Scattolini 
R., 2007). Essentially, the main goal of the DMPC is to 
overcome computational and communication limitations of 
centralized approaches, by splitting the control or 
optimization task among several controllers and coordinating 
their actions in such a way that the behaviour of the whole 
system approaches to the one that would be the same which 
has been obtained with a centralized approach. 
There are many approaches to solve this problem. In 
hierarchical control, this is addressed modifying the set 
points. On the other hand, distributed control acts in the 
interchange of information, while price coordination methods 
modify the objective function to ensure that global 
constraints are fulfilled. In particular, in price coordination, 
several controllers, acting each one on a subset of the 
process, arrive to a global optimum using a market-like 
mechanism for coordination: each controller modifies the 
cost function that defines its control or optimization aims 
according to a set of prices assigned from an upper layer to 
the common process resources that represents the process 
interactions, as in (Jose and Ungar, 1998).   
Several approaches based on price coordination methods 
have been proposed for optimization of large-scale and 
networked systems, being some of them based on price 
(Lagrangean) coordination methods or dual decomposition 

(Jose and Ungar, 1998) and (Cheng, R. et al, 2007). More 
recently (Marcos N. et al 2009) and (Negenborn et al, 2008), 
dual decomposition has been applied also in the distributed 
Model Predictive Control (MPC). Other approach is shown in 
(Marti et al, 2013): the assignment of prices is seen as a 
control problem using a non-iterative method, where the 
manipulated variables are the prices to be sent to the NMPC 
controllers. 
In this paper, dual decomposition is used to implement a 
distributed control scheme for a nonlinear dynamical system. 
Secondly, to estimate the update policy of the prices, it has 
been used the reformulation of Fiacco’s work presented by 
Biegler and co-workers (Ganesh and Biegler, 1987) in order 
to obtain the sensitivity of the optimal point with respect to 
the shadow prices without the need to take into account 
possible changes in the set of active constraints (this 
technique to calculate sensitivity has been used in RTO 
works). With this information the Lagrangean multipliers are 
updated using a full step Newton’s method. Therefore, the 
paper presents a procedure where a set of NMPC controllers 
act independently on different parts of a process and the 
assignment of prices is based on a sensitivity analysis in the 
coordination layer. The scheme used is shown in Figure 1. 

Subsystem 1 Subsystem 2 Subsystem N

NMPC 1 NMPC 2 NMPC N

State State MV’sMV’s MV’s State

COORDINATOR

MV’s MV’s MV’sprice price price

 
Figure 1. Price coordination method scheme. 
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The paper is organized as follows: in section 2 the price-
driven coordination decomposition is explained. Section 3 
describes the sensitivity method to estimate the derivative of 
the optimal point with respect to the prices. In section 4 the 
steps for a correct implementation of the proposed price-
coordinated NMPC are presented. Section 5 shows the results 
when the algorithm is applied on a four-tank benchmark, and 
finally, section 6 summarizes the conclusions. 

2. PRICE-DRIVEN COORDINATION 
In this section, the generic formulation of the NMPC problem 
for large-scale systems with shared resources is shown. The 
optimization problem (1) can be summarized as an economic-
control objective function subject to nonlinear models hi(.) 
and gi(.), corresponding to the dynamics of each subsystem 
and local constraints and a set of shared resource constraints 
or global constraints linking all subsystems. In (1), n 
corresponds to the total number of subsystems, N represents 
the number of shared resources, RTj is the availability of the 
shared resource j, and Rji(uji) represents the consumption of 
the shared resource j in each subsystem i, which is a function 
of the corresponding manipulated variable uji. For simplicity, 
in (1) all manipulated variables become part of the global 
constraints. In addition, each subsystem can have its own, 
independent, manipulated variables vi. 

N,...,1jRT)u(R

n,..,1i0)t,u,...,u,v,x,x(g
n,..,1i0)t,u,...,u,v,x,x(h

:st

JJmin

n

1i
jjiji

Nii1iiii

Nii1iiii

n

1i
i,localv}{u,

=∀≤

=∀≤
=∀=

=

∑

∑

=

=




 (1) 

 
The solution of the problem using a centralized architecture is 
complex if the number of manipulated variables or 
subsystems is large, which sometimes implies that the 
solution cannot be applied in real time due to the excess of 
computational time. On the other hand, the decentralized 
architecture approach is the most commonly used technique 
in the industry because of its simplicity of development and 
maintenance. However, when common resources are limited 
the decentralized approach, which does not take into account 
the behaviour of the entire system, may lead non optimal and 
sometimes infeasible solutions. 

A compromise between centralized and decentralized 
architecture is therefore desired in order to improve the 
system performance. A hierarchical architecture based on 
price coordination provides a good compromise between 
performance and ease of implementation. 

2.1 Lagrangean decomposition 
 The principle of the price coordination method consists in 
assigning prices p to the resources consumed in each 
individual subsystem, in such a way that each subsystem tries 
to optimize its objective function by accepting an amount of 
the resources at certain prices such that the global constraints 
are satisfied (Findeisen et al., 1980). 

Supposing an optimization problem of the form (1) where a 
price coordination method is used, each subsystem i can be 
decomposed into n subproblems (2). 
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where pj represents the price or Lagrangean multipliers 
related to each share resource j. Provided the equations (3) 
are fulfilled, the outcomes of the decomposed problem (2) are 
equivalent to the ones from the initial global problem (1) 
(Jose and Ungar, 1998). That is to say, when the price meets 
(3), then the sum of the local optimal solutions is equal to the 
centralized optimal solution. 
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The role of the coordinator consists in updating the prices pj 
until equation (3) is satisfied. The system behaves in the same 
way as a market, where the prices p of goods are related to 
the behaviour of the consumers. As prices rise, supply will 
increase and demand will decrease. In the same way, as 
prices decrease, demand will increase. 
Notice that, one benefit of this implementation is that the 
coordination-based MPC will not provide worse plant 
operations than the completely decentralized MPC without 
any kind of coordination (Cheng, R. et al, 2007).   

2.2 Price updating policy 
The technique selected to update the price vector is the same 
one proposed in Cheng’s work (Cheng, R. et al, 2007). In this 
work, the authors presented an updating technique based on 
Newton’s method (4).  
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This technique is an iterative method, where the index k 
denotes the iteration step, α is the step size in Newton’s 
method and Q is the sensibility matrix with dimension N x N 
which can be calculated as: 
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In (5), information of sensitivity du/dp is needed to calculate 
Q.  In (Cheng, R. et al, 2007) a sensitivity analysis for an 
algebraic optimizations process and active set change 
identification was done. In our paper, it is used a 
reformulation of Fiacco work (Fiacco, 1983) as a QP problem 
(Ganesh and Biegler, 1987) in order to obtain the sensitivity 
analysis for a nonlinear system. This technique will be fully 
explained in the next point. 
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3. SENSITIVITY ANALYSIS 

Let us consider the nonlinear programming (NLP) problem 
(6) for sensitivity analysis. The objective function ϕ: 

ℜ→ℜ×ℜ pz nn  and constraints g(·): gpz nnn ℜ→ℜ×ℜ . 
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The Lagrangean function of NLP problem (6) can be defined 

as ( ) ( ) ( )puλpuλpu ,g,φ,,L T−= , where gnℜ∈λ  is the vector 
of Lagrangean multipliers and u0, λ0 is the optimal solution of 
problem (6) at p0. At the optimal solution, the constraints g 
are divided into active constraints ga and the inactive ones 
gina of dimension ng and ng - ng

a, respectively. The 
corresponding Lagrange multipliers λ0 are divided into λ0

a 
and λ0

ina. Assuming that ϕ and g are at least twice 
continuously differentiable in u, the first order necessary 
conditions of optimally (NCO) of (6) are: 
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Assuming that the NCO holds at u0 and λ0 with strict 
complementarity (i.e., a

g
a

i,0 n...1i     ,0 =≠λ ), the sensitivity of 
the optimal point with respect of the parameter p (∂u/∂p) can 
be obtained deriving equation (7). Under the assumption that 
the set of active constraints remains constant for a change in 
the parameter p=p0+∆p, the derivative of the NCO is reduced 
to solve the linear system from equation (8) (Fiacco, 1983), 
provided the functions u = u(p) and λa = λa(p) are at least 
once differentiable in p.  
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3.1 Changing active set 
The equation (8) can be used when a perturbation Δp does 
not cause a changing active set. Therefore, to estimate the 
optimal solution of (6) at p from u0, a full Newton step (4) 
can be implemented, if and only if, there is no active set 
change in each subproblem is identified (Ganesh and Biegler, 
187) and (Cheng, R. et al, 2007).  
 
For a moderate perturbation Δp, the set of active constraints 
can change. This means that at the new optimal solution, 
some of the nominally active set constraints can become 
inactive and viceversa, implying that the estimate of u at p 
must be obtained using the sensitivity information that takes 
into account this change. Ganesh and Biegler reformulated 
equation (8) as a QP problem, to take into account the 
scenario of change in the active set. Equation (9) shows their 
generalization (Ganesh and Biegler, 1987). 
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Where all the functions are evaluated at u0, p0 and λ0. The 
solution of this QP problem (9) detects a new active set 
which is a better estimation of true active set. To use this 
method, the user has to provide as constant data Δp and as a 
result is obtained Δu. Therefore, ∂u/∂p is approximated as 
Δu/ Δp. 
 
If the active set does not change, the solution of problem (8) 
and (9) are the same. Therefore, this technique is used to 
determinate sensitivity matrix which is needed in equation (5) 
for updating the prices (4).  
 
4. IMPLEMENTATION PRICE-DRIVEN ALGORITHM 
Implementation of the DCMPC coordinator is carried out 
each sampling time according to the following steps and 
Figure 2: 

Initialization (p(k) = 0) 

Optimization 
Subsystem 1

Optimization 
Subsystem n

Parallel 
optimization

(ΣRji(uji)-RTj) < ε

YES

p(k+1) Information is sent to 
every subsystems

p(k)

Sensi-QP 
Subsystem 1

Sensi-QP 
Subsystem n

NO

Price update

p(k+1) = p(k)-(∂p/∂R)(ΣR(uji)-RT)

Δ u1/Δp Δ un/Δp

 
Figure 2. Price-driven coordination algorithm with 
sensitivity analysis. 
 
1. Initialization: The coordination sets up an initial price 
vector p[k] and sends that information to every subsystem. 
2. Optimization performed by each subsystem: Based on 
the price given by the coordinator, each subsystem solves its 
own optimization problem and calculates the resource Ri(uij). 
In addition, each subsystem solves its QP problem in order to 
determine Δu/Δp (9). This information is communicated back 
to the coordinator 
3. Price update: The coordinator gathers the information 
from each subsystem, it calculates ΣRi(uij)-RT and Q given by 
(5). Then, the coordinator updates the price vector pk using 
equation (4). The new price vector is informed to each 
subsystem. 
4. Iteration until convergence: Step (2)-(3) are repeated 
until convergence of the price-driven decomposition method. 
The convergence of the method is achieved when          
(ΣRji(uji)-RTj) < ε, being ε a tolerance error. 
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5.  CASE OF STUDIES 
In this section, two cases of studies are shown to illustrate the 
performance of the proposed coordination approach and QP 
reformulation (sensitivity analysis). The first example 
describes the computational efficiency and compares this one 
with the results that have been obtained using different 
approaches. On the other hand, the second case illustrates the 
efficacy of the technique in a benchmark. 
 
5.1 Case 1: Different numerical efficiency  
The proposed algorithm is compared with the Newton’s 
(Fiacco) price-update scheme discussed in Cheng’s work 
(Cheng et al, 2007) and with the P-control price-update 
described in Jose’s work (Jose et al, 1998) for a quadratic 
system with linear constraints (10).  
 
In the Newton’s price-update scheme, the price is updated 
using equation (4), in which sensitivity analysis (8) and 
active set change identification techniques are employed. On 
the other hand, in the P-control approach, the price is updated 
using equation (4), but the term αQ-1 is taken as a constant Kc.  
In the proposed method, the price is updated using equation 
(4), in which sensitivity analysis is done using (9). 
The global QP problem which has been considered is the 
following one: 
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This example can be decomposed into two subproblems (11) 
and (12) with two linking constraints. By using the price-
driven coordination each subproblem has to be defined as 
follows: 
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Where, p1 and p2 are the prices which are manipulated by the 
coordinator. 
 
To use the expression (4) for updating the price vector, it is 
necessary to determinate dxi/dp. 
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Using Fiacco (8) is necessary to know if some change in 
active set exists, meanwhile using QP reformulation is not 
necessary. In this case for example (p0 = [-1 0]), if it is used 
Δp = [0.1 0] both methods give the same sensibility value 
(there are not change in active sets). On the other hand, if it is 
used Δp = [1.5 0], a change in active set occurs. Fiacco’s 
method cannot be applied because it is not known which 
active constraints form equation (8), initial active constraints 
(p0) or final active constraints (p0+Δp) (using p0 all 
constraints are inactive, but using p0+Δp two constraints are 
active), so an incorrect sensibility value will be obtained. 
Therefore, to calculate dxi/dp which is obtained from 
equation (9), two QP problems are defined which are 
represented in equations (13) and (14), to estimate dx1/dp and 
dx2/dp respectively. 

( )[

( )]

[ ]56
12
31

(·)

0(·),
12
31

(·)

p5p55)2(4

p3p22)1(2f

53
52

,

(·)(·)(·)
s.t

f
2
1min

1

211

211
1

T
1

T
xp1xx

1

1
1

T
1

1
T
xp

T
1xx

T
1

1

1

1

−







−=

=







=

−−−

−−−=
∂
∂









==

−∆−≥∆

∆
∂
∂

+∆∆+∆∆
∆

xg

gg

x

x
x

LQL

gpgxg

x
x

xLpxLx

px

px

x

        (13) 

( )[

( )]

[ ]612
12
45.1

(·)

0(·),
12
45.1

(·)

p4p38)2(8

p3p76)1(3f

43
37

,

(·)(·)(·)
s.t

f
2
1min

2

212

212
2

T
2

T
xp2xx

2

2
2

T
2

2
T
xp

T
2xx

T
2

2

2

2

−







−=

=







=

−−−

−−−=
∂
∂









==

−∆−≥∆

∆
∂
∂

+∆∆+∆∆
∆

xg

gg

x

x
x

LQL

gpgxg

x
x

xLpxLx

px

px

x

        (14) 

Table 1 shows the performance of these three algorithms. The 
comparison is based on the number of iterations and 
convergence rate. For all cases an initial guess p = 0 is used. 
The proposed sensitivity analysis provides the same number 
of iterations and convergence rate than Cheng’s approach, 
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moreover it is not necessary to determinate the Newton step 
size because the sensitivity analysis takes into account the 
active set change  and can be applied on nonlinear systmes. 

 Table 1.  Performance of price-update technique  

Methods Tuning Iterations Convergence 
Newton’s (QP) Δp = 0.1 2 Yes 
Newton’s (QP) Δp = 1 2 Yes 

Newton’s (Fiacco) NA 2 Yes 
P-control Kc = 0.02 400 Yes 
P-control Kc = 0.1 NA No 

 
5.2 Case 2: Coordination of Four-Tank Benchmark 
This plant is based on the one used by Alvarado in (Alvarado 
et al, 2011). It consists of four equal interconnected tanks as 
in Figure 3. Two pumps take water from a storage tank 
located under the four tanks. The first one sends a flow of 
water qA to tanks 1 and 4. The second pump takes a flow qB 
and sends it to the tanks 2 and 3. Finally, tank 3 empties its 
content into tank 1 and tank 4 does the same into tank 2. 

qA1 qB1

qB2 qA2

1 2

3 4

qA qB

h1

h3 h4

h2

Subsystem 1 Subsystem 2

 
Figure. 3.  The four-tank process diagram. 

 

A simulation model of the plant has been developed using 
EcoSimPro simulation software. The model is given by the 
following non-linear ODE set. 

 

q
S

gh2
S
agh2

S
a

dt
dh a

3
3

1
11 γ

++−=  (15.1) 

b
b

4
4

2
22 q

S
gh2

S
agh2

S
a

dt
dh γ

++−=  (15.2)  
( )

b
b

3
33 q

S
1gh2

S
a

dt
dh γ−

+−=  (15.3) 

( )
a

a
4

44 q
S

1gh2
S
a

dt
dh γ−

+−=  (15.4) 

Here hi (i ∈{1, 2, 3, and 4}) refers to the water level of tank i, 
ai is discharge parameters and S is the cross section of the 
tanks. On the other hand, qj and γj (j ∈ {A, B}) denote the 
flow and the ratio of the three-way valve of pump j and g is 
the gravitational acceleration.  
In the plant, the goal of the control system is to maintain 
levels h1 and h2 close to specified set-points, Refh1 and Refh2, 
manipulating the flows qA and qB. 
In order to test price-driven coordination strategies, the plant 
was split in two subsystems: Subsystem 1 includes tank 1 and 
3, while subsystem 2 comprises tanks 2 and 4, as indicated in 
Figure 3. In the benchmark, one NMPC controller was 
assigned to each subsystem, but both of them were able to 
manipulate flows qA and qB. Denoting as qA1, qB1 or qA2, qB2 

the ones seen by each controller, this means that two global 
constraints have to be satisfied: 

2A1A qq =             (16.1) 

2B1B qq =            (16.2) 
The centralized NMPC architecture implies solving the 
optimization problem (17) each sampling time (Ts=90 
seconds), taking into account the complete nonlinear model 
of the process (15) and the constraints. A sequential approach 
using a control vector parameterization on the manipulated 
variables qA and qB and a SQP algorithm have been used to 
solve this dynamic optimization problem on-line. This 
controller has been successfully tested on the simulated plant 
and the results of the controlled variables for several step 
changes in references are shown in blue in Fig 4. 
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The coordinated NMPC based on price-driven coordination 
scheme was also tested and results of the controlled variables 
for the same step changes in references are shown in black in 
Figure 3. This scheme achieves a similar behaviour of 
centralized one.  
The price coordinated optimization problem is composed of 
two layers: In the lower one, two separated NMPCi ∀i∈{1, 
2} (18) and (19), performs the level control of the 
corresponding subsystem. The cost function on theses 
NMPCs include a first term corresponding to control 
objective, a second and a third term corresponding to 
Lagrangean decomposition in order to achieve fulfil global 
constraints (16.1) and (16.2).   The first NMPC1, manipulates 
the variables qA1 and qB1 and the second NMPC2, manipulates 
qA2 and qB2. In the upper coordinating layer, two QP problems 
are used to obtain sensitivity analysis and Newton’s method 
is implied to assign prices p1 and p2 to the NMPCs in order to 
fulfil global constraints (16). 

 

 
Figure 4. Controlled variables (levels h1 and h2) using a 
centralized and price-driven coordination schemes. 
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Figure 5 shows the manipulated variable obtained by the 
centralized and price-driven coordination schemes (the 
dashed blue lines are the MV’s using centralized scheme, 
meanwhile the dotted red lines are the MV’s using price-
driven coordination scheme).  As it is shown, approximately 
10 sampling time are spent to achieve the centralized 
solution. 

 

 
Figure 5. Manipulated variable calculated with centralized 
and price-driven coordination schemes. 

Figure 6 shows the number of iterations in each sampling 
time needed to find the optimal price, it means, to fulfil with 
the global constraints.  
As it is shown in Figure 6, the QP formulation method used 
to obtain the sensitivity analysis, provides a fast convergence 
of Newton’s method (price-update technique). Each sampling 
time, the coordinator converges in a feasible solution, which 
qA1

*
 = qA2

*
 and qB1

*
 = qB2

* is achieved. With this method each 
subsystem can manipulate its own coupled manipulated 
variables.  

 
Figure 6.  Number of iterations using Newton’s method for 
updating the prices. 

6. CONCLUSIONS 

In this paper, a sensitivity analysis for nonlinear systems has 
been presented using a sensitivity analysis that take into 
account possible changes in the set of active constraints. This 
algorithm allows using price-driven coordination scheme to 
coordinate different NMPCs. One advantage of this scheme is 
that does require a new reconfiguration of the decentralized 
MPC controllers, just an extra term to modify the control 
formulation is needed. Second, it was shown with a four-tank 
benchmark that the QP sensitivity analysis and Newton’s 
method provide a fast convergence towards the plat optimal 
performance, allowing calculating the sensitivity matrix for 
nonlinear systems and avoiding the problem of changes in 
active set of constraints. 
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