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Abstract: In this work, two numerical solution methods are presented for discounted economic
nonlinear model predictive control on infinite horizons without terminal constraints. While the
first formulation simply replaces the infinite by a finite horizon, the second formulation uses a
time transformation function to project the infinite to a finite horizon. For the first formulation,
an algorithm is presented which heuristically determines a sufficiently long final time with the
help of the turnpike property in order to ensure good closed-loop control performance. For the
second formulation, a two-stage formulation is introduced to deal with large differences in the
dynamics of the objective function and the states. The solution accuracy is improved for both
formulations by using a control vector adaptation strategy such that an adequate number of
decision variables is obtained. Both solution methods are compared in a case study.
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1. INTRODUCTION

In recent years, the objective of process control changed
from the mere control task to economically optimal process
operation at any time. While Tvrzská de Gouvêa and
Odloak (1998) suggested to add an economic term to the
setpoint tracking objective, Helbig et al. (2000) were the
first to solve an economic optimal control problem using
nonlinear model predictive control (NMPC) with a pure
economic objective function. NMPC with an economic
objective function is nowadays simply called economic
NMPC or eNMPC (cf. Rawlings and Amrit (2009)). eN-
MPC can be applied for the control of batch processes
as well as continuously operated processes. Since no fixed
final time exists for continuously operated processes, it
is favorable to employ an infinite horizon formulation.
However, the eNMPC problem on an infinite horizon can-
not be solved directly by numerical solution methods.
Consequently, the infinite horizon eNMPC problem must
be reformulated to a finite horizon problem. In order to
achieve this, two methods can be employed which will be
presented next in detail: the finite horizon formulation and
the transformed infinite horizon formulation.

When applying the finite horizon (FH) formulation, the
infinite horizon is replaced by a finite horizon with a
heuristically determined final time in a moving horizon
setting. It was pointed out by Bitmead (1990) that the
finite horizon formulation might become unstable in closed
loop. Whereas a lot of stability proofs exist for regula-
tory NMPC (cf. Mayne et al. (2000)), just few stabil-
ity proofs are currently available for eNMPC which are
typically based on the results developed in mathematical
economics (cf. Carlson et al. (1991)). Diehl et al. (2011)
have been the first to proof stability for an arbitrary
economic objective function using Lyapunov arguments

and terminal constraints. Extensions of the proof can be
found in the works of Huang et al. (2011) and Angeli
et al. (2012). Just recently, Grüne (2013) proved stability
without using terminal constraints by employing the so-
called turnpike property of finite horizon economic optimal
control problems. Dorfman et al. (1958) stated that the
turnpike is the fastest route of travel between any two
points. It will pay off to get on to the turnpike and to
add a little mileage at either end, if the start and final
time of the horizon are far enough apart. We refer the
interested reader to Würth et al. (2009) and Hartwich
and Marquardt (2010) for an illustration of a turnpike.
With the help of the turnpike property, Grüne (2013)
also proved that the finite horizon solution converges to
the infinite horizon solution with growing horizon length.
As the finite horizon formulation is easy to implement,
it has been widely applied, for example, by Tvrzská de
Gouvêa and Odloak (1998), Engell (2007), Rawlings and
Amrit (2009), Diehl et al. (2011), Huang et al. (2011)
and Grüne (2013). However, in most works, the final time
of the finite horizon has been chosen arbitrarily and was
not (heuristically) determined such that the horizon is as
short as possible to limit computational effort but long
enough to guarantee good closed-loop performance as well
as stability (cf. Grüne (2013)).

When applying the transformed infinite horizon (TIH)
formulation, the infinite horizon is transformed to a finite
horizon with the help of a time transformation function. As
pointed out by Würth et al. (2009), if disturbances do not
arise and model mismatch does not exist, the recurrent
solutions of the economic optimal control problem on a
(transformed) infinite horizon fulfill Bellmann’s optimality
principle (cf. Bellman (1957)). As the discrepancy between
the open-loop and the closed-loop solution is removed,
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nominal stability can be guaranteed, at least if perfect
numerical solutions are assumed. Würth et al. (2009) first
applied the TIH formulation in a receding horizon setting
using a transformation function suggested by Kunkel and
Hagen (2000) in the context of mathematical economics.
However, the solution quality obtained was not satisfac-
tory because the transformation function projected the
transient interval of the infinite horizon on to a very small
interval of the transformed infinite horizon.

In this work, we will suggest several algorithmic im-
provements for the numerical solution of eNMPC with
a discounted objective on infinite horizons based on the
FH as well as the TIH formulation. This work presents
and reinterprets the results on infinite horizons of Würth
(2013). For the FH formulation, a heuristic algorithm is
suggested to determine a sufficiently long final time. The
algorithm makes use of the turnpike property and is closely
related to the theoretical results of Grüne (2013) though
it was developed independently. For the TIH formulation,
we apply a transformation function as described by Würth
and Marquardt (2013) for which the projection can be
adapted in order to guarantee a good resolution of the
transient part of the control profiles on the transformed
infinite horizon. In this contribution, we introduce a multi-
stage formulation for the TIH formulation to deal with
the different dynamics of the system and the discounted
objective function.

The paper is organized as follows. In Section 2, we intro-
duce the open-loop economic optimal control problem on
an infinite horizon and consider the discounted objective
function in more detail. In Section 3, the solution strategy
for the open-loop economic optimal control problem is
presented. First, the infinite horizon is reformulated to a
finite horizon by either applying the FH formulation or
the TIH formulation using the novel two-stage formula-
tion. Hereafter, a single shooting strategy is outlined. In
Section 4, we introduce adaptation strategies to improve
the numerical solution presented in Section 3. A heuristic
algorithm is suggested to determine a sufficiently long final
time for the FH formulation. Furthermore, we introduce
an adaptation strategy for control vector parameterization
such that the numerical solution is close to the optimal
continuous-time solution with a well-tuned number of de-
grees of freedom for both formulations. In Section 5, the
closed-loop strategy is described. Finally, we compare both
formulations in a benchmark case study in Section 6.

2. PRELIMINARIES

2.1 Open-loop economic optimal control problem on infinite
horizon

The continuous-time open-loop economic optimal control
problem on an infinite horizon is given by

min
u(t)

∫ ∞
t0

Φ̂(x(t), z(t), u(t), t) dt, (1a)

s.t. ẋ(t) = f(x(t), z(t), u(t)), (1b)

0 = g(x(t), z(t), u(t)), (1c)

x(t0) = x0, (1d)

ĉ(x(t), z(t), u(t)) � 0, (1e)

t ∈ I := [t0,∞) , (1f)

where x : I → Rnx and z : I → Rnz represent the
trajectories of the differential and algebraic variables on
time horizon I, respectively. u : I → Rnu represents
the trajectories of the control variables. The economic
objective function in (1a) is subject to the differential-
algebraic equation (DAE) model of index one, (1b) and
(1c), with consistent initial conditions (1d) as well as
path constraints (1e). The symbol � denotes component-

wise inequality. Φ̂, f , g, ĉ are assumed to be at least
once continuously differentiable. We assume that a feasible
optimal solution to Eq. (1) exists which is not cyclic.

2.2 Objective function of open-loop problem

From an economic point of view, the time value of money
shall be accounted for in the objective function of an
economic optimal control problem on a long or infinite
time horizon. This can be accomplished by discounting
the future profit to the present value. In a discrete-time
formulation, the objective function then corresponds to the
net present value. An equivalent objective function with
continuous-time discounting is given by∫ ∞

t0

e−ρtφ(x(t), z(t), u(t)) dt, (2)

where ρ ∈ R+\{0} is the discount factor and can be chosen
to equal the annual market rate. The function φ reflects the
negative profit per time unit calculated, for example, based
on real costs of products and reactants. The function φ is
bounded by a minimum achievable negative profit value
φmin which is defined as the minimum of φ(x(t), z(t), u(t))
satisfying (1b)-(1f). Consequently, the objective function
(2) is also bounded:∫ ∞

t0

e−ρtφ(x(t), z(t), u(t)) dt ≥ φmin
ρ

e−ρt0 . (3)

A bounded objective function is a prerequisite to make
use of Lyapunov-based stability proofs and to apply nu-
merical solution methods such as single shooting, multiple
shooting or collocation for the TIH formulation. Though
other formulations with bounded objective functions exist
such as regulatory objective functions (cf. Würth and
Marquardt (2013) using a TIH formulation) and objective
functions reduced to finite rewards (cf. Carlson et al.
(1991) and Diehl et al. (2011)), we restrict ourselves to
economic objective functions with continuous discounting
due to the economic motivation presented above.

3. SOLUTION STRATEGY FOR OPEN-LOOP
ECONOMIC OPTIMAL CONTROL PROBLEM

3.1 Reformulation of infinite to finite horizon problem

We reformulate the infinite horizon problem (1) to a finite
horizon problem in order to facilitate numerical solution.
In the sequel, we will introduce the finite horizon (FH)
and the transformed infinite horizon (TIH) formulation in
detail.

Finite horizon formulation. For the FH formulation, the
infinite horizon I is simply replaced by the finite horizon
It := [t0, tf ] by introducing the final time tf ∈ R with
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Fig. 1. Trajectory x(t) of autonomous system ẋ(t) = −x(t)
with initial condition x0(0) = 1 on Iτ for different
values of α (cf. Würth and Marquardt (2013)).

tf > t0. The open-loop economic optimization problem on
a finite horizon is then given by

min
u(t)

∫ tf

t0

Φ̂(x(t), z(t), u(t), t) dt, (4a)

s.t. ẋ(t) = f(x(t), z(t), u(t)), (4b)

0 = g(x(t), z(t), u(t)), (4c)

x(t0) = x0, (4d)

ĉ(x(t), z(t), u(t)) � 0, (4e)

t ∈ It. (4f)

We assume that the turnpike property holds for the open-
loop economic optimal control problem (4). The choice
of a sufficiently long final time tf is crucial to reach the
neighborhood of the turnpike ensuring that the closed-
loop performance of the FH formulation approximates the
closed-loop performance of an ideal controller solving (1)
(cf. Grüne (2013)). In Section 4.1, we will introduce a
heuristic procedure which determines a sufficiently long
final time tf for the FH formulation.

Transformed infinite horizon formulation. For the TIH
formulation, the infinite time horizon I is converted into
a transformed infinite time horizon Iτ := [0, 1] with
the help of a transformation function. In this work, we
use the transformation function suggested by Würth and
Marquardt (2013),

τ = tanh(α(t− t0)), α ∈ R+ \ {0}, (5)

where limt→∞ τ = 1. It has the advantage that the
projection of the infinite time horizon to the transformed
infinite time horizon can be adapted with the help of the
parameter α. By adapting α, we can predefine the length
of the time interval on Iτ which represents the transient
part of the system’s trajectories as shown in Figure 1.
When choosing a sufficiently small α, it can be guaranteed
that the steady state is reached well before the end of Iτ
as it is the case for α = 0.5 and α = 0.05 in Figure 1.
Furthermore, a good resolution of the transient region can
be achieved, when α is chosen large enough, as it is the case
for α = 0.5. To this end, an equidistant control grid defined
on Iτ leads to more decision variables in the transient part
and an improved closed-loop performance (cf. Würth et al.
(2009) and Würth and Marquardt (2013)).

If the system’s behavior comprises fast and slow dynamics,
it is not sufficient to adapt α, but a sequence of dif-
ferent transformation functions must be applied. This is
especially true if a discounted objective function is used,
since Φ̂(x(t), z(t), u(t), t) would usually decay very slowly
compared to the system’s state. For this case, we suggest

the formulation of an open-loop two-stage economic op-
timal control problem where the first stage corresponds
to the transient region of the system’s dynamics and the
second stage corresponds to the steady-state region of the
system’s dynamics. The two-stage problem allows defining
different values of αk ∈ R+ \ {0} on each stage k and is
given by

min
uk(τ)

∑
k

∫ τk

τk−1

Φ̂(xk(τ), zk(τ), uk(τ), artanh(τ)α−1
k )

αk(1− τ2)
dτ,

(6a)

s.t. ẋk(τ) =
fk(xk(τ), zk(τ), uk(τ))

αk(1− τ2)
, (6b)

0 = gk(xk(τ), zk(τ), uk(τ)), (6c)

xk(τk−1) = xk−1(τk−1), (6d)

ĉk(xk(τ), zk(τ), uk(τ)) � 0, (6e)

τ ∈ Iτ,k := [τk−1, τk] , (6f)

k = 1, 2, (6g)

where index k denotes the quantities of stage k and
{τ |τ ∈ Iτ,k, k = 1, 2} = Iτ . The multi-stage transforma-
tion function is thus defined as

τ = τk−1 + tanh(αk(t− tk−1)), k = 1, 2. (7)

In order to achieve a high resolution in the transient region,
α1 should be chosen relatively high. On the other hand,
in the second steady-state region, a small value for α2

should be chosen such that the system and the objective
function reach their steady states before the end of Iτ . The
choice of the switching time τ1 determines the weighting of
the transient region compared to the steady-state region.
Hence a late switching time puts more weight on the
transient part which improves closed-loop performance as
described above. The choice of the tuning parameters α1,
α2 and τ1 can be performed based on offline optimizations.

3.2 Single shooting strategy

We approximate the solution to (4) and (6) by a se-
quential strategy using control vector parametrization.
Consequently, the infinite number of decision variables is
reduced to a finite number. As pointed out by Würth and
Marquardt (2013), a sequential solution strategy can only
be applied if the open-loop system is asymptotically stable
for any u(t). If the system is open-loop unstable, another
solution strategy such as collocation may be used.

Each control ul,k, with l = 1, . . . , nu, is represented by
piecewise constant basis functions Ψ on each stage k. The
number of basis functions may differ for each control and
each stage. For the FH formulation, we have

ul,k(t) =

Kl,k∑
κ=1

ūκl,kΨκ
l,k(t), (8)

where t ∈ It, k = 1, Kl,k ∈ N and ūκl,k is a scalar control
parameter. For the TIH formulation, we get

ul,k(τ) =

Kl,k∑
κ=1

ūκl,kΨκ
l,k(τ), (9)

where τ ∈ Iτ,k and k = 1, 2. For both formulations, we can
summarize all decision variables in the vector of control
variables ζ ∈ Rnū with nū =

∑
k

∑
lKl,k.
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The optimal control problems (4) and (6) can then be
transcribed into the NLP

min
ζ

Φ(ζ)

s.t. c(ζ) � 0,
(10)

where the objective function Φ(ζ) corresponds to the
value of the objective function (4a) and (6a) at the end
of the time horizon It and Iτ , respectively. c are the
functions entering the inequality constraints which result
from control vector parametrization of (1e).

The objective function, the constraints and their first-
order derivatives with respect to ζ are computed by simul-
taneous integration of the (transformed) nonlinear DAE
model and the associated DAE sensitivity equation system
by some efficient tailored algorithm such as SLIMEX (cf.
Schlegel et al. (2005)). Since the discontinuity occurring
at τ1 for the TIH formulation is explicit, the first-order
sensitivities of the objective function Φ and the constraints
c with respect to ζ are continuous (cf. Özyurt and Barton
(2005)). Consequently, the NLP (10) can be solved by a
standard gradient-based method such as SNOPT (cf. Gill
et al. (1998)) for both formulations.

4. ADAPTATION STRATEGIES FOR OPEN-LOOP
ECONOMIC OPTIMAL CONTROL PROBLEM

In order to obtain a numerical solution of high accuracy,
a two-step procedure is suggested for the FH formulation.
First, a sufficiently long time horizon is determined for
the finite horizon formulation. Second, the control vector
discretization is adapted by the signal-based adaptation
strategy presented by Schlegel et al. (2005). For the TIH
formulation, the signal-based adaptation strategy is also
applied to allow for a good numerical solution.

4.1 Horizon length adaptation for finite horizon formulation

The horizon length tf should be chosen sufficiently long
in order to guarantee good closed-loop performance and
stability. In contrast to most works, where tf is chosen
arbitrarily, we suggest the heuristic Algorithm 1 to deter-
mine tf by running offline optimizations with different sets
of initial conditions such that the turnpike is reached.

Algorithm 1

(1) Generate a grid t0, ..., tI , where ti are the grid points
with i = 0, ..., I and I ∈ N. tf,1 := tI is an initial
guess for the horizon length.

(2) for n = 1, ..., NIC do
(a) for j = 1, ..., Nsteps do

(i) Solve open-loop problem (4) for the set of
initial values x0,n on horizon [t0, tf,j ].

(ii) Select the set T of gridpoints ti for which

T =

{
ti ∈ (t0, tf,j)|

∑
l

(ūi
l,1−ū

i−1
l,1 )

|ti−ti−1| < ε

}
(iii) if |T | ≤ 1 then

Set tf,j := 1.5 · tf,j .
else break
end if

end for
(b) Set the horizon length tf,n to tf,j .
end for

(3) Set the horizon length tf to tf,NIC
.

The different sets of initial conditions are chosen by ran-
dom sampling, where NIC is the number of sets. T denotes
the set of grid points where the turnpike is reached. If
the set contains less than two elements, the finite horizon
length is doubled. Nstep is the maximal number of itera-
tions of the algorithm, which are performed, until a finite
horizon length may be found.

4.2 Signal-based adaptation strategy

A signal-based adaptation strategy has been applied by
Würth et al. (2009). It performs a wavelet transformation
of the input profile and introduces or deletes grid points
by analyzing the magnitude of the wavelet coefficients (cf.
Schlegel et al. (2005)). In each iteration of the signal-
based adaptation algorithm, the regions of the control
profile with relatively high wavelet coefficients are refined,
whereas the regions of the control profile wih relatively low
wavelet coefficients are merged. In this way, we receive a
numerical solution of high accuracy without introducing
too many decision variables ζ along the time horizon.

5. CLOSED-LOOP STRATEGY

For simplicity, we consider state feedback and assume that
model-mismatch and measurement noise does not exist.
At each sampling instant t0,h, the current state x(t0,h)
is measured and sent to the eNMPC. The eNMPC then
computes an (approximated) optimal solution to the open-
loop problem (1) for the current state x(t0,h) using either
the FH or the TIH formulation. The optimal controls
uh(t) are immediately sent to the process, where they
are implemented for the current sampling interval ∆t.
Hereafter, the horizon is shifted by the sampling time ∆t,
i.e.,

t0,h := t0,h−1 + ∆t, (11)

such that an initial guess for the decision variables ζh based
on the optimal solution of horizon h−1 becomes available.

Finite horizon formulation. As also pointed out by
Grüne (2013), uh(t) should not be prolonged at the end
of the finite horizon in a moving horizon setting because
the trajectory might be far away from the turnpike. The
time horizon is rather prolonged in the time interval of the
finite time horizon which is within a small neighborhood
around the turnpike. The control algorithm for the FH
formulation is summarized in Algorithm 2.

Algorithm 2

(1) Solve the open-loop problem (4) and determine a
suitable final time tf,1 with the help of Algorithm
1 described in Section 4.1.

(2) for h = 1, ..., Nh do
(a) Measure current state x(t0,h).
(b) Solve the open-loop problem (4) to obtain the

optimal solution. Adapt the grid on finite horizon
[t0,h, tf,h] with the signal-based adaptation strat-
egy presented in Section 4.2. Solve (4) again, if
the grid was refined.

(c) Set the optimal solution to uh(t).
(d) Implement uh(t) for the current ∆t.
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(e) Reduce the time horizon by one sampling time,
i.e. set t0,h := t0,h−1+∆t. For the moving horizon
setting, prolong uh(t) in the neighborhood of the
turnpike by one sampling time and set tf,h :=
tf,h−1 + ∆t.

(f) Use the shifted solution uh(t) as initial guess for
the optimization of the next open-loop problem.

end for

Note that the number of iterations for the signal-based
adaptation strategy is restricted to one for each horizon in
order to reduce computational time online. This is also
valid for the control algorithm of the TIH formulation
presented next.

Transformed infinite horizon formulation. Algorithm 3
represents the control algorithm for the TIH formulation
which is taken from Würth and Marquardt (2013).

Algorithm 3

(1) Solve the open-loop problem (6) and determine suit-
able values for α1, α2 and τ1 by numerical experi-
ments.

(2) for h = 1, ..., Nh do
(a) Measure current state x(t0,h).
(b) Transform uh(t) to uh(τ) with τ ∈ [0, 1] by

performing the time transformation (7).
(c) Solve the open-loop problem (6) to obtain the

optimal solution. Adapt the grid on transformed
infinite horizon [0, 1] with the signal-based adap-
tation strategy. Solve (6) again, if the grid was
refined.

(d) Set the optimal solution to uh(τ).
(e) Transform uh(τ) to the original time representa-

tion uh(t).
(f) Implement uh(t) for the current sampling interval

∆t.
(g) Reduce the time horizon by one sampling time,

i.e. set t0,h := t0,h−1 + ∆t.
(h) Use the shifted solution as initial guess uh(t) for

the optimization of the next open-loop problem.
end for

6. CASE STUDIES

As a case study, we consider the control of the Williams-
Otto continuous stirred-tank reactor (WO CSTR) intro-
duced by Forbes (1994). The exothermic reactions taking
place in the reactor are A + B → C, C + B → P + E
and P +C → G. The manipulated control variables of this
process are the reactor temperature Tr and the inlet mass
flowrate FB,in of reactant B. The open-loop economic
optimal control problem on an infinite horizon is given
by

min
Tr,FB,in

∫ ∞
0

e−ρt(−1143.38 FP,out(t)− 25.92 FE,out(t)

+ 143.34 FB,in(t) + 23 FA,in(t))$/m3 dt,

s.t. process model

0 m3/s ≤ FB,in(t) ≤ 10 m3/s,

0 ◦C ≤ Tr(t) ≤ 150 ◦C,

where t ∈ I := [0,∞). FP,out and FE,out are the outlet
flowrates of the product P and the side product E. FA,in
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Fig. 2. Closed-loop trajectories for the WO CSTR.

is the inlet flowrate of reactant A. The discount factor ρ is
set to 1.58 · 10−9 which approximately corresponds to an
annual market rate of 5 %.

6.1 Offline optimization and adaptation

Finite horizon formulation. For the FH formulation, the
length of the finite horizon is determined as 4556 s using
the algorithm proposed in Section 4.1 with ε = 1 · 10−5

starting from an initial final time horizon of 400 s.

Transformed infinite horizon formulation. For the TIH
formulation, α1 is set to 0.0005 in the first stage, which is
determined in offline optimization runs to ensure a suitable
discretization of the first stage. α2 is set to a very small
number of 1.5 · 10−10 in the second stage such that the
objective function converges to the steady state before the
end of Iτ . In order to achieve an accurate solution in closed
loop, the major weight in the optimization is put on the
transient region and the switching time between stage 1
and 2 is set to τ1 = 0.999.

6.2 Closed-loop results and discussion

Figure 2 shows the closed-loop response for a sampling
time of ∆t = 100 s for three different formulations: a FH
formulation with a short horizon of 400s (short FH), a FH
formulation with a sufficiently long horizon of 4556 s (long
FH) and the TIH formulation (TIH). As discussed above,
it can be seen that the length of the horizon influences the
closed-loop FH solutions. If a significantly shorter horizon
than the sufficiently long horizon is employed, the turnpike
is not reached. This can be observed, for example, in the
reactor temperature profile: the long FH and the TIH
formulation reach the turnpike, a constant path around
92 ◦C, whereas the short FH formulation approaches a
value of approximately 95 ◦C.

Table 1. Profit −Φ [$] at sampling instant t0,h

t0,h (s) 2000 4000 6000 10000

short FH 4.020 · 105 9.88 · 105 1.58 · 106 2.747 · 106
long FH 3.951 · 105 9.941 · 105 1.593 · 106 2.791 · 106
TIH 4.005 · 105 9.993 · 105 1.598 · 106 2.796 · 106

Table 1 shows that, if a shorter horizon is employed,
the profit −Φ is lower compared to the profit obtained
with the longer horizon. However, the profit of the short
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FH formulation is higher at the beginning, since the
discretization is finer at the beginning of the horizon
compared to the long FH formulation. Hence, the results
show that on one hand the discretization influences the
profit in the transient phase, whereas the length of the
horizon determines the profit achieved in the long run,
when the state variables are close to the steady state.
The profit of the long FH and the TIH formulation is
similar. The results show that the TIH and especially
the long FH solution should be further refined in the
transient region to achieve the same accuracy as the short
FH solution at the beginning of the simulation, though
a signal based adaption strategy has been applied. This
means that a high number of grid refinement iterations
and discretization parameters would be required to get the
desired accuracy and grid size. The computational time
required for the TIH and the long FH formulation is of
the same order of magnitude (20− 40 s).

7. CONCLUSIONS

In this contribution, two strategies for the numerical so-
lution of discounted economic NMPC on infinite hori-
zons have been presented. The first formulation replaces
the infinite horizon by a finite one in a moving horizon
setting. We suggested an algorithm which automatically
determines a sufficiently long horizon length based on the
turnpike property in order to improve control performance.
In the second formulation, the infinite horizon is trans-
formed to a finite horizon with the help of an adaptable
transformation function. We suggested a two-stage prob-
lem formulation such that the transient time intervals are
not compressed on the transformed infinite horizon. For
both formulations, we further improved solution accuracy
by applying a control grid adaptation strategy online.

In future work, we will develop an improved control grid
adaptation strategy because the analysis of the wavelet
coefficients just heuristically determines regions, where ad-
ditional grid points are required or should be removed, and
does not reflect the influence of a finer grid on the optimal
solution (cf. Würth and Marquardt (2013)). In this way,
we will further enhance solution accuracy. Furthermore,
the adaptation procedure for the transformation function
of the second strategy will be automated by developing
an algorithm similar to the algorithm suggested by Würth
and Marquardt (2013).
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Birkhäuser Verlag.

Huang, R., Harinath, E., and Biegler, L.T. (2011). Lya-
punov stability of economically oriented NMPC for
cyclic processes. J. Process Control, 21, 501–509.

Kunkel, P. and Hagen, O.V.D. (2000). Numerical solution
of infinite-horizon optimal control problems. Computa-
tional Economics, 16(3), 189–205.

Mayne, D., Rawlings, J., Rao, C., and Scokaert, P. (2000).
Constrained model predictive control: Stability and op-
timality. Automatica, 36, 789–814.
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