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Abstract: Recursive system identification is an important problem in many advanced control
techniques, such as adaptive control. This paper presents a new approach of two dimensional
recursive least squares identification method suitable for batch processes. In this way, system
identification is carried out not only using the information from time direction within the batch
but also from batch to batch direction. A constraint term is incorporated in the cost function
to reduce parameters varying. A guideline for selecting weight matrix in application is also
provided. Furthermore, simulation results based on the data obtained from a model of injection
moulding, a typical batch process, are illustrated to testify the superiority of the proposed
method over the conventional recursive leasts squares.
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1. INTRODUCTION

Batch process is getting more and more important nowa-
days in industries, due to its capability of manufactur-
ing high-value-added products with superior versatility.
The application of batch process includes, for example,
injection moulding, semi-conduct, pharmaceutical indus-
try, etc. Controller design is a pivotal problem in batch
processes to guarantee the final quality of products. Many
advanced control strategies have been proposed to improve
the control performances of batch process, in order to
ensure product quality. Many of them share a common
feature that the performance of control strategies highly
depends on the precision and reliability of process model.
How to obtain a suitable process model is a critical issue.
Owing to the nature of batch process, i.e. highly nonlin-
earity, complex mechanism small production volume, and
rapid changing market conditions, a black-box approach,
or called system identification, is an appropriate and de-
sirable way to achieve that goal rather than a white-box
approach which is based on the first principles. System
identification has been studied extensively for decades
by many researchers, e.g., Ljung (2009), Söderström and
Stoica (1989), Eykhoff and Pieter (1974) and references
therein, for application Zhu (2001), Mehra and Lainiotis
(1976) and references therein.

System identification is widely adopted for implementing
for the rapid development of modern computer system.

Quite a few successful applications to batch processes
have been reported. Based on RLS and second-order
autoregressive exogenous model (ARX) structure, Yang
and Gao (1998, 1999) applied self tuning control with
pole placement and generalised predictive control (GPC)
to both nozzle packing pressure and injection velocity
on injection moulding machine successfully with supreme
performances. Shi et al. (2005) designed a robust iterative
learning control integrated with feedback control achieving
a very good result on controlling injection velocity based
on an identified second-order ARX model. Shi et al. (2007)
further proposed a two dimensional GPC controller, and
also tested on an identified ARX model with an excellent
outcome.

Nevertheless, all the methods mentioned above were sim-
ply borrowing system identification approaches designed
for continuous processes ignoring the properties of batch
processes. There are very few publications on this aspect,
to the best of the authors knowledge. Ma and Braatz
(2003) developed an iterative way to identify a model
for batch processes and minimise the model uncertainty
in the mean time. However, all of these procedures were
conducted off-line and involves large computation. Tayebi
(2004) developed a two dimensional approach for some
unknown parameters of robot manipulator in a continuous
type, but did not provide results on the performance of
the estimator. Chi et al. (2008) designed a discrete-time
two dimensional system identification method integrated
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with adaptive iterative learning control (ILC), again with
no estimation performance results. The identified model
was applied with a PID-type adaptive controller and the
control performance was guaranteed. Sun and He (2007)
proposed a kind of two dimensional RLS for discrete time-
varying system without any simulation or experimental re-
sult.

This paper focuses on online system identification, partic-
ularly recursive updating algorithms, overcomes the large
parameters varying problem. It deals with the problem by
imposing a penalty term in cost function to avoid such kind
of parameter variation. Besides, a recursive identification
is proposed and a necessary condition for convergence is
given. Section 1 provides some background information
about this paper. Section 2 gives the problem setup
and derives the recursive identification. Section 3 gives
some guidelines for the application in practical senario.
In Section 4, a simulation result is provided. Section 5
discusses the result and draws conclusions.

2. PROBLEM FORMULATION

The main purpose of this paper is to solve the problem
of parameters estimation varying for the two dimensional
system identification. The basic idea is to impose a soft
constraint to prevent that kind of things from happening
and smooth the estimated parameters.

2.1 Problem Setup

Although majority of batch processes possess high non-
linearity, a lot of them can be approximated by a set of
linear models with finite dimensions. Injection velocity vs.
hydraulic valve opening is a vivid example to illustrate
that. According to Yang (2004) research, it can be well
approximated by a set of second-order ARX model along
time direction. So here we narrow our scope on how to
identify a time-varying ARX model as follows.

yk(t) + a1,0(t)yk(t− 1) + a2,0(t)yk(t− 2) + · · ·+ ana,0(t)

yk(t− na) = b1,0(t)uk(t− d) + b2,0(t)uk(t− d− 1) + . . .

+ bnb,0(t)uk(t− d− nb) + w(t, k)
(1)

where yk(t) and uk(t) are the system output and control
input at time t and batch k respectively. And ai,0(t) and
bi,0(t) are the system parameter on output and input at
time t respectively, the subscript 0 denoting that it is the
true parameter of the system. d represents the system
delay, and w(t, k) is zero-mean white noise with variance
Q. Besides, na and nb are respectively standing for the
order of output part and input part.

(1) can also be represented as

yk(t) = φTk (t)θ0(t) + w(k, t) (2)

where
φk(t) = [yk(t− 1) yk(t− 2) . . . yk(t− na)

uk(t− d) uk(t− d− 1) . . . uk(t− d− nb)]T
(3)

and
θ0(t) = [−a1,0(t) −a2,0(t) . . . −ana,0(t) b1,0(t) b2,0(t)

. . . bnb,0(t)]T

(4)
where T denotes the transpose.

Supposing that the system is running at time t and
batch k, the best prediction of output ŷk(t) is just the
expectation of yk(t), which is

ŷk(t) = E[yk(t)|D]
= E[φTk (t)θ0(t) + w(k, t)|D]
= E[φTk (t)θ0(t)|D] (w(k, t) is zero mean.)
= φTk (t)E[θ0(t)|D] (φk(t) is deterministic.)

= φTk (t)θ̂k(t)
(5)

where θ̂k(t) is the identified parameters of time t and batch
k. D represents the past input and output data.

Notice that the system parameter vector θ0(t) is only a
function of time t, which means that if only look at a
certain time spot, say it t, and from different batches, the
system is actually a linear batch invariant system similar
to the famous linear time invariant (LTI) system. In this
way, define a cost function as follows.

J(t, k) =

k∑
i=1

‖yi(t)− ŷi(t)‖22

=

k∑
i=1

‖yi(t)− φTi (t)θ̂k(t)‖22

(6)

In reality, properties of lots of chemical engineering pro-
cesses, which is associated with model, are slowly changing
with time not undergoing a large scale change within a
short period. So if the identified parameters vary inten-
sively, it does not satisfy reality in most cases. If the cost
function proposed above is simply applied, it may cause
such a kind of problem because it takes a blind eye to
the vary of identified parameters along time direction. On
the other hand, the vary of estimated parameters will also
cause large vary on the controller output, which influences
on the output of the system in return. Based on the reasons
above, it is necessary to impose a penalty term into (6).
And it turns out to be

J(t, k) =

k∑
i=1

‖yi(t)−φTi (t)θ̂k(t)‖22 +‖θ̂k(t)− θ̂k(t−1)‖2A(t)

(7)
where ‖x‖A = xTAx and x is a column vector and A is a
positive definite matrix.

Now, the system identification problem can be summarised
as an optimisation problem like

min
θ̂k(t)

J(t, k) (8)

2.2 Recursive Form Derivation

In this part, we try to solve the optimisation problem
above and turn the result into a recursive way so that
online application can be implemented.

Firstly, take derivatives of J(t, k) with respect to θ̂k(t), let
it be equal to zeros, and then we have

∂J(t, k)

∂θ̂k(t)
=− 2

k∑
i=1

φi(t)[yi(t)− φTi (t)θ̂k(t)] + 2A(t)[θ̂k(t)

− θ̂k(t− 1)] = 0
(9)
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Solve (9), and yield that

θ̂k(t) = [A(t)+

k∑
i=1

φi(t)φ
T
i (t)]−1[A(t)θ̂k(t−1)+

k∑
i=1

φi(t)yi(t)]

(10)

Observing (10), note that taking an inverse of a matrix
has the computational complexity of O(n3), if say Gauss-
Jordan elimination approach. Therefore, a less computa-
tional and convenient way should be figured out.

Define

P−1k (t) = A(t) +

k∑
i=1

φi(t)φ
T
i (t) (11)

and then we easily have

P−1k (t) = P−1k−1(t) + φk(t)φTk (t) (12)

Lemma 1. (Matrix inversion lemma). [Zhu (2001)] Let A,
B, C and D be matrices with compatible dimensions and
the inverses of A and C exist. Then

(A+BCD)−1 = A−1 −A−1B(C−1 +DA−1B)−1DA−1

(13)

Apply matrix inversion lemma to (12), and obtain that

Pk(t) =Pk−1(t)− Pk−1(t)φk(t)[1 + φTk Pk(t)φk(t)]−1φTk (t)

Pk−1(t)

=Pk−1(t)− Pk−1(t)φk(t)φTk (t)Pk−1(t)

1 + φTk (t)Pk−1(t)φk(t)

(Now 1 + φTk (t)Pk−1(t)φk(t) becomes a scalar.)
(14)

For (10), get that

θ̂k(t) =Pk(t)[A(t)θ̂k(t− 1)−A(t)θ̂k−1(t− 1) + φk(t)yk(t)

+A(t)θ̂k−1(t− 1) +

k−1∑
i=1

φi(t)yi(t)]

=Pk(t)[A(t)θ̂k(t− 1)−A(t)θ̂k−1(t− 1) + φk(t)yk(t)

+ P−1k−1(t)θ̂k−1(t)]

=Pk(t){[P−1k (t)− φk(t)φk(t)T (t)]θ̂k−1(t) +A(t)

θ̂k(t− 1)−A(t)θ̂k−1(t− 1) + φk(t)yk(t)}
(15)

The parameter identification update equation is

θ̂k(t) =θ̂k−1(t) +K1[yk(t)− φTk (t)θ̂k−1(t)] +K2[θ̂k(t− 1)

− θ̂k−1(t− 1)]
(16)

where
K1 = Pk(t)φk(t) (17)

K2 = Pk(t)A(t) (18)

Combining (14), (16), (17) and (18), we have the whole
algorithm.

Remark: Observing (16), with note that if let A(t) equal
to zero, it turns out to be a traditional recursive least
squares rotated vertically. The first and second terms on
RHS can be interpreted as updating parameters from
batch direction according to the novel perdition error.
And the third term on RHS is feedback information from
difference of identified parameters from last sampling time.

Fig. 1. Two dimensional information updating flow of
proposed algorithm

It is essentially a kind of information from time direction.
From (14), we know that it is solely updated along batch
direction. All the information updating flow is illustrated
as Fig. 1 shows.

3. ALGORITHM ANALYSIS

A necessary condition of convergence is presented in this
section. Furthermore, a guideline of algorithm application
is also provided.

3.1 Necessary Condition of Convergence

First, denote

θ̃k(t) = θ0(t)− θ̂k(t) (19)

Then (16) becomes

θ̃k(t) =θ̃k−1(t)− Pk(t)φk(t)[yk(t)− φTk (t)θ̂k−1(t)]

− Pk(t)A(t)[θ̂k(t− 1)− θ̂k−1(t− 1)]

=θ̃k−1(t)− Pk(t)φk(t)[φTk (t)θ0(t) + w(t, k)

− φTk (t)θ̂k−1(t)]− Pk(t)A(t)[θ̂k(t− 1)

− θ̂k−1(t− 1)]

(20)

Take expectation on both sides and get

E[θ̃k(t)] = [1−Pk(t)φk(t)φTk (t)]θ̃k−1(t)+Pk(t)A(t)δθ̃k(t−1)
(21)

where δ is batch-wise backward difference operator.

It is easy to see the sufficient condition for convergence is
that

ρ(1− Pk(t)φk(t)φTk (t)) < 1 (22)

and
∑∞
k=1 Pk(t)A(t)δθ̃k(t − 1) is bounded. Where ρ(X)

stands for the largest absolute value of eigenvalue of matrix
X.

3.2 Guideline for Algorithm Application

In the above derivation, A(t) is a constant across batches,
and it means that A(t) should be fixed before the start of
the whole identification process and not allowed to change.
It is not favourable in practice. Note that onlyK2 is related
to A(t) and the recursive form of Pk(t) is the same to

IFAC DYCOPS 2013
December 18-20, 2013. Mumbai, India

782



RLS’s except in different domains. Actually, A(t) can be a
dynamic matrix across batches and get tuned according to
the situations of different batches. In spite of the mismatch
between constant and dynamic weighting matrix, the
influence of assuming constant A(t) is negligible due to
two reasons. One is Ak(t) in most cases does not have
a large change between two consecutive batches and is
achievable. The other is that the main dynamics of P−1k (t)

and θ̂k(t) are dominant by the increment of φi(t)φ
T
i (t) and

prediction error. Thus, for the sake of flexibility, A(t) can
be replaced with Ak(t) in application.

From the aspect of easy implementation, although A(t)
is a positive definite matrix, it can even be selected as a
diagonal matrix for simplicity. For this case, according to
authors’ experience, every entry along diagonal is selected
from the range between 0 and 1, otherwise it may degrade
identification performance. It is also noticed from simu-
lation that input parameter estimations are much more
sensitive to noise than that of output. Thus, larger weights
on input parameters are recommended.

Another thing worth mentioning is how to give initial
values for the second batch. Note that (11) is unrelated to
the weighting matrix A(t), and actually A(t) just provides
a initial value for Pk(t). Of course, it is also allowed to pick
up other suitable initial values for Pk(t), but inherited from
the first batch with conventional RLS is prohibited, owing
to the fact that usually the initial value of Pk(t) in the
first several time spots is large and it will lead to a large
updating gain leading to a bad transient process. It also
reminds us to pick up a relatively small initial value for
Pk(t) to prevent a large updating gain.

4. SIMULATION

Injective moulding, a typical batch process, is a important
polymer process technique with complicated mechanism
involving a set of process variables to determine the final
quality of products. Among all the process variables,
injection velocity is a pivotal one, and self tuning regulator
(STR) is proved to be a good candidate to control injection
velocity, see Yang (2004). System identification is a core
part of STR. Thus, a simulation based on injection velocity
vs. hydraulic valve opening is presented in this section.

Consider the model as follows (Yang (2004)).

G(z) =
1.69z−1 + 1.419z−2

1− 1.582z−1 + 0.5916z−2
(23)

A time-varying model modified is

G(z) =



1.69z−1 + 1.419z−2

1− 1.582z−1 + 0.5916z−2

(t ∈ [0, 150) ∪ (300, 400])

(1.69− 0.2 ∗ t−150150 ) ∗ z−1 + 1.419z−2

1 + (−1.58 + 0.2 ∗ t−150150 )z−1 + 0.5916z−2

(t ∈ [150, 300])

(24)

The control input is designed as Pseudo-Random-Binary-
Sequence (PRBS) to assure enough innovations. And the
noise is taken as zero mean with variance 0.01 white noise.
The signal-to-noise (SNR) of the system is 20dB.

Comparison of RLS and constrained 2DRLS
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Fig. 2. Comparison of RLS and constrained 2DRLS on
prediction error
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Fig. 3. Parameter a(1) in different batches

The system identification algorithm applied on the first
batch is conventional RLS with a forgetting factor of 0.99.
And the weight matrix A(t) selected for simulation is

A(t) =

 0.6
0.6

0.99
0.99

 (25)

From Fig. (2), we can see that the performance of conven-
tional RLS maintains a certain level as batches run, while
the perdition error of constrained 2DRLS first decreases
very fast which is a kind of over-fitting, and then gradually
increases and reaches and maintains at that level which is
the noise level and also should be the limit of all system
identification algorithms based on ARX model.

a(1) and a(2) are two coefficients inG(z)’s numerator. And
b(1) and b(2) are two coefficients in G(z)’s denominator.
From Fig. (3) to Fig. (6), it is obvious that the identified
parameters track the true parameters gradually as batches
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Parameter a(2) in different batches
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Fig. 4. Parameter a(2) in different batches
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Fig. 5. Parameter b(1) in different batches
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Fig. 6. Parameter b(2) in different batches

go on, al- though during the process, in some batches, the
identified parameter suffers high-frequency variants.

5. CONCLUSION

This paper addresses a constrained two dimensional RLS
system identification approach, which can track true pa-
rameters gradually as batches go on, meanwhile, also limit
the identified parameters vary along time. A necessary
condition of algorithm convergence is provided as well. The
paper also sheds some light on how to apply the algorithm
into practical scenario. A simulation on injection veloc-
ity model also illustrated the advantage of the proposed
approach over the conventional ones.
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