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Abstract: One significant challenge in nonlinear system identification development for industrial 
processes is that the modeling samples often contain outliers and unknown noise. In this paper, a novel 
Correntropy-based Kernel Learning (CKL) method is proposed for identification of nonlinear systems with 
such uncertainty. Without resort to unnecessary efforts, the CKL identification method can reduce the 
effects of outliers by the use of a robust nonlinear estimator that maximizes correntropy. The superiority of 
the proposed CKL method is demonstrated through identification of an industrial process in Taiwan. The 
benefit of its more accurate and reliable performance indicates that CKL is promising in practice for 
identification of nonlinear systems with unknown noise.  

 

1. INTRODUCTION  

In the past two decades, considerable interest in both the 
theory and practice for nonlinear system identification has 
arisen. The popular nonlinear system identification methods 
include neural networks, support vector machines (SVM), 
fuzzy systems and other data/rule-based empirical methods 
(Ljung et al., 2011; Söderström, 2012). Among them, SVM, 
least-squares SVM (LS-SVM) and a number of kernel 
learning (KL) modeling methods have found increasing 
reports recently. Generally, the structure determination of 
SVM can be implemented in a straightforward manner. 
Furthermore, SVM and other KL methods can obtain 
relatively good identification performance when the training 
data are insufficient. This characteristic is attractive in 
practice (Liu et al., 2010, 2012; Schölkopf and Smola, 2002; 
Suykens et al., 2002a, b). 

As for industrial processes, one significant challenge is that 
the identification samples often contain different kinds of 
outliers and noise. Outliers are observations which appear to 
deviate markedly from the typical ranges of other 
observations. The presence of outliers in the variables affects 
the quality and reliability of the data, which can result in 
erroneous interpretations concerning the output variable of 
interest (Chiang et al., 2003; Khatibisepehr and Huang, 2008; 
Liu et al., 2004; Pearson, 2002; Söderström, 2012). Without 
awareness, learning samples with outliers may lead to biased 
parameter estimation and the overfitting problem because the 
identification model is corrupted by fitting those unwanted 
data. Therefore, it becomes very important to remove the 
effect of outliers. 
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There are many outlier detection methods shown to be able to 
detect obvious outliers (Chiang et al., 2003; Khatibisepehr 
and Huang, 2008; Liu et al., 2004; Pearson, 2002). However, 
this issue is currently solved in a rather ad hoc manner, which 
leads to unnecessarily high costs (Kadlec et al., 2009). 
Furthermore, none of these methods could detect all the 
inconspicuous outliers as they are masked by their adjacent 
outliers. In practice, it is very likely that the refined data set 
still contains some outliers after an outlier detection method 
is performed. From a practical viewpoint, it should be more 
attractive to develop general methods directly from existing 
nonlinear identification models without resort to unnecessary 
efforts. 

Despite of the good nonlinear modeling ability, traditional 
SVM-based identification methods are not robust for outliers. 
Recent studies have shown that improved performance can be 
obtained using weighted SVM methods (Chuang et al., 2002; 
Suykens et al., 2002; Wen et al., 2008). However, most of 
these methods are heuristic as they use some user-defined 
parameters. They might be difficult to implement for 
nonlinear identification problems with uncertainty. In this 
paper, correntropy (Liu et al., 2007) is introduced into the 
area of nonlinear system identification. As a novel statistical 
measure, correntropy can deal with non-Gaussian noise and 
impulsive noise (Liu et al., 2007). However, to our best 
knowledge, little work has been reported on the application 
of correntropy in the field of nonlinear system identification. 
To this end, a correntropy kernel learning (CKL) method is 
proposed in this work. The CKL method can reduce the 
effects of outliers by the use of a robust nonlinear estimator 
that maximizes correntropy.  

The remainder of this paper is structured as follows. 
Correntropy and the maximum correntropy (MC) criterion 
are introduced in Section 2. The CKL identification method 
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for nonlinear systems is proposed in Section 3. In Section 4, 
the method is evaluated in an industrial process in Taiwan. 
Comparison studies with other methods are also investigated. 
Finally, concluding remarks are made in Section 5. 

 

2. MAXIMUM CORRENTROPY CRITERION 

2.1  Correntropy as a Novel Similarity 

Generally, the concept of correntropy is a generalized 
similarity measure between two arbitrary random variables W 
and Y with the same dimensions, defined by (Liu et al., 
2007): 

( ) ( ) ( ) ( ), , , ,WYV W Y E W Y w y dF w yκ κ= =   ∫  (1) 

where V is correntropy; E[∙] denotes the mathematic 
expectation; ( ),WYF w y  denotes the joint distribution 

function of ( ),W Y ; and ( ),κ ⋅ ⋅  is a shift-invariant Mercer 
kernel (Liu et al., 2007; Príncipe, 2010). The most popular 
kernel used in correntropy is the Gaussian kernel with its 
kernel width 0σ > , as defined below. 
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correntropy estimator of samples ( )ˆ ,NV W Y  can be defined 
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Intuitively, correntropy is closely related to the similarity 
between W and Y. That is, if W is similar to Y, then the 
difference between W and Y should have a large value of 
correntropy (Liu et al., 2007). 

2.2  Maximum Correntropy Criterion for Model Estimation 

Now the concept of correntropy can be extended for the 
model estimation issue. The variable W can be considered as 
a mathematical expression of the unknown function 

( );f X θ  with an input set { }
1, ,

m
i i N

R
=

= ∈X x
L

 and the 

model parameters [ ]1, , T
Mθ θ=θ L , which approximates the 

dependence of an output set { } 1, ,i i N
y R

=
= ∈Y

L
. As a new 

measure, correntropy can be used to describe how well 
( );f X θ  fits the data set Y. Consequently, the maximum of 

correntropy of the difference between ( );f X θ  and Y is 
called the maximum correntropy (MC) criterion for model 

estimation (Liu et al., 2007). That is, for a modeling set of 
{ },=S X Y , the MC criterion can be formulated as  
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where the difference is the fitting error, i.e., 
( ); , 1, ,i i ie f y i N= − =x θ L , produced by the model during 

supervised learning. Note that the following properties 
always exist in Eq. (4), 
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This means a larger value of correntropy can lead to a smaller 
fitting error of the model, and vice versa. And the value of 
correntropy is in the range of [0, 1]. In the above Eq. (4), 

[ ]1, , T
Mθ θ=θ L  is a set of M adjustable model parameters to 

get the maximum correntropy. Consequently, as for model 
identification, this general estimation is also equivalent to an 
optimization problem as follows: 

2

max correntropy 2
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1arg min  1 exp
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e
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Then, Eq. (6) is differentiated with respect to 
[ ]1, , T

Mθ θ=θ L . The derivatives are set to zero and a system 
of M equations can be obtained, 

( )
1

0, 1, ,
N

i
i i

i j

e
e e j Mρ

θ=

∂
= =

∂∑ L  (7) 

where ( )

2

2

3

exp
2

, 1, ,
2

i

i

e

e i N
σ

ρ
σ π

 
− 

 = = L  can be regarded as 

the weighted terms (Liu et al., 2007). The kernel width σ 
plays an important role in the smoothing process. As recently 
proved by Chen and Príncipe (2012), the MC estimation is 
essentially used to smooth and maximize posteriori 
estimation. Some approaches can be utilized to determine the 
kernel width σ for ( )ieρ  (Liu et al., 2007; Munoz and Chen, 
2012; Príncipe, 2010). Here, the kernel width can be simply 
computed as (Munoz and Chen, 2012) 

max
, 1, ,

2 2
ie

i Nσ = = L  (8) 

Therefore, the optimal estimation problem in Eq. (6) is 
equivalent to a weighted least squares problem as: 
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max correntropy
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e eρ
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θ
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 (9) 

This problem was first proposed for signal processing by Liu 
et al. (2007) (See Eq. (50) in Liu et al. (2007)). The weighted 
terms ( )ieρ  mean that large errors get larger attenuation, so 
the estimation is resistant to outliers (Liu et al., 2007; 
Príncipe, 2010). Recently, Munoz and Chen (2012) applied 
MC-based wavelet modeling method to fitting batch data 
according to the time, that is, ( ); , 1, ,i i ie f t y i N= − =θ L , 
where it  denotes the ith time instance. Compared with the 
traditional criteria adopted for data-driven process modeling, 
such as the well-known minimum MSE, the MC criterion has 
several advantages: (1) it is always bounded for any 
distribution; (2) it contains all even-order moments and is 
useful for nonlinear and non-Gaussian signal processing; (3) 
it is a local similarity measure and is robust to outlier samples 
(Chen and Príncipe, 2012; Liu et al., 2007; Príncipe, 2010). 

 

3. CORRENTROPY KERNEL LEARNING (CKL) FOR 
NONLINEAR SYSTEM IDENTIFICATION 

The main objective of this work is to develop a simple and 
general KL framework for robust identification of nonlinear 
processes. The central idea of the proposed CKL method is to 
integrate the MC criterion and KL into a unified framework. 
Without resort to unnecessary efforts, the effects of outliers 
can be reduced once the CKL model is obtained. 

For simplicity, consider single-input−single-output (SISO) 
nonlinear systems using the nonlinear autoregressive with 
exogenous input (NARX) form governed by the following 
relationship (Ljung et al., 2011; Söderström, 2012): 

( )
( )

1 1, , , , ,

; , 1, ,
y ui i i n i i n i

i i

y f y y u u e

f e i N
− − − −= +

= + =x θ

L L

L
 (13) 

where f(·) is the wanted nonlinear model; i is the time 
instance; yi, ui, and ei are the system output, the system input 
and the noise vector at instance i (ny and nu are the 
corresponding lags of the output and the input), respectively. 
Correspondingly, xi is a general input vector that is usually 
composed of yi and ui combined with their corresponding 
delayed forms at time i. 

A general form of the kernelized nonlinear model for process 
modeling can be formulated as (Liu et al., 2010, 2012): 

( ) ( )
( )
; ; ,

, 1, ,
i i i i i

T
i i

y f e f b e

b e i Nφ

= + +

+ + =

x θ x w

w x L

=

=
 (14) 

where φ  is the mapping and ,
TT b =  θ w ; that is, the 

symbols w and b are the model parameter vector and the bias 
term, respectively. When the MC criterion (Liu et al., 2007) 
and the KL framework with regularization (Schölkopf and 
Smola, 2002; Suykens et al., 2002a) are applied to Eq. (14), 
the proposed method seeks the nonlinear identification model 
by solving the following optimization problem: 

( ) ( )
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1min , ,
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N

i i
i

T
i i i

J b e e
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∑w w
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 (15) 

where the user-defined regularization parameter γ (γ > 0) 
determines the trade-off between the model’s complexity and 
approximation accuracy. Here, the same regularization term 

2w  in LS-SVM (Suykens et al., 2002a) is adopted because 
it is used to further compare Eq. (15) with LS-SVM later in 
this paper. With a similar introduction of the MC criterion 
(Liu et al., 2007), formulation of other optimization problems 
(Liu et al., 2010, 2012; Schölkopf and Smola, 2002) can also 
be straightforward. 

The above problem cannot be solved directly because the 
weighted terms ( )ieρ  depend on the model coefficients 

,
TT b =  θ w . Here, a two-level iterative procedure is 

suggested as follows. In the first level, the weighted terms 
( )ieρ  can be fixed, which indicates that a weighted KL 

problem is formulated. In the second level, the weighted 
terms ( )ieρ  can be updated using the obtained model 

coefficients ,
TT b =  θ w . A detailed training algorithm of 

the proposed CKL method is described below. 

Level 1. Initialization and update of the CKL model 

First, the weighted terms ( )ieρ  is set to be fixed but not 

considered as the function of ei. The initial value of ( )ieρ  

can be set as 1; i.e., ( ) 1, 1, ,ie i Nρ = = L , which means all 
training samples are weighted equally. To solve the 
optimization problem, the Lagrangian method can be 
constructed below: 
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where [ ]1, , T
Nα α=α L  are Lagrange multipliers. The 

optimality conditions are shown as follows: 
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After elimination of the variables, w and ei, the following 
solution can be obtained: 
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where [ ]1, , T
Ny y=y L  and 1NR ×∈1  is a vector of ones; 

N NR ×∈K  is a kernel matrix whose element is denoted as 

( ) ( ), , , 1, ,ij i jK i j Nφ φ= ∀ =x x L  using the kernel trick 

(Schölkopf and Smola, 2002; Suykens et al., 2002a); Ω  is a 
diagonal matrix whose diagonal element 

( )
1 , 1, ,i

i

i N
eγρ

Ω = = L . Note that +K Ω  is symmetric 

positive-definite, so it is invertible. For simplicity, the 
quantity is defined as = +H K Ω  and then its inverse can 
be computed as 

( ) 11 −−= = +P H K Ω  (19) 

As shown in Eq. (17), the solution of model coefficients 

,
TT b =  θ w  can be transformed to ,

TT b =  θ α  and then 
can be expressed as 

T
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Level 2. Iterative weighting 

Correspondingly, the predicted values and a new set of values 
for the weighted terms can be obtained, respectively 
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where [ ] 1
1, , T N

i i iNk k R ×= ∈k L  is a kernel vector. 

After the weighted terms ( )ieρ  are updated, Ω  can also 
be updated with its diagonal element 

( )
1 , 1, ,i

i

i N
eγρ

Ω = = L . Then, the new values of the 

coefficient ,
TT b =  θ α  can be obtained using Eqs. (19) and 

(20). The iterative procedure can be implemented until the 

weighted terms ( )ieρ  are almost unchanged. Thus, the 
predicted model is 

( ) ( )
1

ˆ ( , ; ) ,
N

T
t t i i t t

i
y f b b bα φ φ

=

= = + = +∑w x x x α k  (23) 

where [ ] 1
1, , T N

t t tNk k R ×= ∈k L  is a kernel vector with its 

element ( ) ( ), , 1, ,ti i tk i Nφ φ= ∀ =x x L . 

After a CKL identification model is trained, the outlier 
samples can be detected simultaneously, because the outlier 
samples have relatively small weights ( )ieρ , which can be 
shown in Eq. (22). Due to the advantage, the outliers can be 
removed by this post-identified method (Munoz and Chen, 
2012). Although these outliers are kept in the identification 
model, they cannot affect the performance of the model 
because of their small weights. Therefore, despite the outlier 
samples, a robust CKL identification model can be obtained. 

Generally, traditional identification methods, e.g., LS-SVM, 
are sensitive to outliers because they are based on the mean 
squared error (MSE) loss function which is only optimal 
when the underlying noises obey Gaussian distribution 
(Suykens et al., 2002a; Wen et al., 2008). Different from the 
MSE criterion, the non-Gaussian noise and outliers in the 
process can be suitably treated by the MC criterion (Chen and 
Príncipe, 2012; Liu et al., 2007; Príncipe, 2010). Additionally, 
the nonlinear relationship between the process input and 
output can be identified using the kernel trick and the 
regularization technique. Consequently, as expected, the 
proposed CKL method can achieve better identification 
performance for industrial systems because the quality of 
modeling samples is not always good. 

In essence, the proposed CKL method can be considered as a 
nonlinear robust estimator. At the first glance, CKL is 
somewhat similar to the weighted LS-SVM approaches 
(Suykens et al., 2002b; Wen et al., 2008). However, most of 
the traditional weighted methods adopt different heuristic 
weighting strategies to reduce the effect of outlier samples. 
Actually, it is difficult to check whether these weighting 
schemes are suitable to the complicated industrial data set 
beforehand. Because of the correntropy-based weighting 
strategy, CKL has one main advantage in its adaptive scheme 
for more general identification problems with outliers and 
unknown noise rather than heuristic schemes for special 
problems. 

 

4. AN INDUSTRIAL CASE IN TAIWAN 

In this section, an industrial example in Taiwan is explored to 
validate the effect of the CKL identification method. A 
simplified flowchart of the process is shown in Fig. 1. The 
main purpose of this reboiler is to produce pure ethylene 
chloride. Based on the fundamental knowledge and the past 
experience in this production line, one important control loop 
for the final product is manipulation of the liquid level of 
NC-103B as shown in Fig. 1. Advanced control strategies can 
be designed once a suitable identification model for this loop 
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is obtained. Therefore, the proposed CKL identification 
method is validated using industrial data in Dec., 2011. 

  
Fig. 1. A simplified flowchart of the reboiler in the 
production of ethylene chloride 

In this process, the sampling time is 30 seconds. All of the 
training and test data are not pre-processing. Samples 
collected in the first 100 minutes are for training and in the 
rest 100 minutes are for testing, respectively. Without any 
prior knowledge, the general input vector of the CKL model 
consists of uk and yk, as well as their one step delayed terms, 
respectively, i.e., [ ]1 1, , , T

k k k k ky y u u− −=x . The 
cross-validation approach is adopted to train the model. 

Here, to show the characteristics of CKL, it is compared with 
a well-known weighted LS-SVM (WLS-SVM) method 
proposed by Suykens et al. (2002b).  

( )
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where c1 and c2 are user-defined parameters; ŝ  is a robust 
estimate of the standard deviation of the LS-SVM error 
variables ie . In the estimate of ŝ , one takes into account 
how much the estimated error distribution deviates from a 
Gaussian distribution (Suykens et al., 2002b). However, the 
WLS-SVM method is heuristic but not general. Additionally, 
it is not in an adaptive weighting manner because several 
user-defined parameters in Eq. (24) should be determined.  
Those parameters cannot be used straightforward for many 
practical problems.  

The training results of CKL and WLS-SVM identification 
models and their weighted terms ( )ieρ  can be shown in Fig. 
2. The fitting results of CKL and WLS-SVM are almost the 
same. The weighted terms of CKL are continuous. The 
outliers tend to have smaller weights and thus they show less 
effect on the model, although they are kept in the model. 
They can be adaptively determined by their training errors. 
However, the weights of WLS-SVM are discontinuous and 
most of them are equal to 1. This indicates that the heuristic 
weighting strategy of WLS-SVM (Suykens et al., 2002b) is 
not suitable for many practical problems. 

The prediction results for the test samples of all the CKL, 
WLS-SVM and LS-SVM identification methods are shown 
in Fig. 3. As shown in Figs. 2-3, although the fitting results of 
CKL and WLS-SVM approaches are almost the same for 
training, the prediction results on the test set are different. 
Generally, the CKL method can achieve better prediction 
performance than the other two methods because more 
samples have relatively small prediction errors. 
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Fig. 2. The training results of CKL and WLS-SVM 
identification models and their weighted terms ( )ieρ . 
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Fig. 3. The validation results of CKL, WLS-SVM and 
LS-SVM identification methods for the industrial process 

The RMSE index (
tst

2

1tst

1RMSE
N

i
i

e
N =

= ∑ , Ntst is the number 

of test samples) is adopted to evaluate the performance 
quantitatively. The obtained identified results of all the CKL, 
WLS-SVM and LS-SVM methods with different model 
orders are also summarized in Table 1. As for nonlinear 
system identification, there is still relatively little work on 
determining the proper model orders. In Table 1, whatever 
model orders are chosen, the CKL method achieves superior 
performance to WLS-SVM and LS-SVM. And as for this 
case, the suitable model orders can be roughly determined as 

[ ]1 1, , , T
k k k k ky y u u− −=x . If the model orders are not enough, 

i.e., [ ], T
k k ky u=x , CKL is only a little better than 
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WLS-SVM and LS-SVM. If the model orders are a little 
larger, e.g., [ ]1 2 1 2, , , , , T

k k k k k k ky y y u u u− − − −=x , CKL can still 
obtain much more than WLS-SVM and LS-SVM because 
error-in-variables can be accumulated with more orders. 
Therefore, from the obtained results in Table 1, as for offline 
identification, the model orders can be simply determined 
using the CKL method.  

Table 1. The performance evaluation of CKL, WLS-SVM 
and LS-SVM identification methods for the industrial case  

General input vector (Model orders) Method RMSE 
CKL 0.42 
WLS-SVM 0.43 

 

[ ], T
k k ky u=x  

LS-SVM 0.43 
CKL 0.42 
WLS-SVM  0.53 

 

[ ]1, , T
k k k ky u u −=x  

LS-SVM 0.52 
CKL 0.39 
WLS-SVM 0.46 

 

[ ]1, , T
k k k ky y u−=x  

LS-SVM 0.44 
CKL 0.34 
WLS-SVM 0.45 

 

[ ]1 1, , , T
k k k k ky y u u− −=x  

LS-SVM 0.43 
CKL 0.39 
WLS-SVM 0.50 

 

[ ]1 2 1 2, , , , , T
k k k k k k ky y y u u u− − − −=x

 LS-SVM 0.48 

In summary, as explored in this paper, the proposed CKL 
method is more general and efficient than LS-SVM and 
WLS-SVM methods for identification of nonlinear systems 
with unknown noise. In general, this method can be extended 
to other KL models, such as state-dependent models, 
nonlinear autoregressive and moving average models, 
subspace models, Hammerstein/Wiener models, and so forth. 
Additionally, as for online identification, the recursive form 
of CKL model can also be used straightforward. This is 
because the recursive formulation of P in Eq. 19 by 
increasing/decreasing samples can be implemented in a 
similar way with an existing recursive KL method proposed 
by Liu et al (2010). 

4.  CONCLUSION 

The concept of correntropy is introduced in the area of 
nonlinear system identification. Without much effort to 
outlier detection, the proposed CKL method can be utilized 
for identification of nonlinear systems with outliers and 
unknown noise. The main appealing properties, such as the 
structural risk minimization principle, the kernel technique, 
the convex optimization problem, and a few free parameters 
to be adjusted, are still preserved in this identification 
framework. The superiority of the proposed CKL method, in 
terms of more accurate and reliable performance, has been 
validated through an industrial process. Some interesting 
future studies have also been highlighted.  
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