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Abstract: A set of methods for identification of continuous-time transfer function models for
integrating processes with time delay is proposed. The step, piecewise constant and piecewise
linear inputs are considered which indeed cover most of the input signals commonly used in
industries. For all of the three types of input signals, estimation equations to simultaneously
obtain model parameters and the time delay are derived. The final parameter estimation
equations are in a form suitable for the least-squares solution. Mathematical formulation of
the methods is presented using the example of an integrating process with a first order lag
dynamics and a zero which can be extended for other structures. An instrumental variable
method to deal with the bias issue in least-squares solutions is used. Simulation results are
presented to demonstrate the efficacy of the algorithms and their relative performance.
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1. INTRODUCTION

Integrating processes, characterized by the presence of a
root of the characteristic equation at the origin of the s-
plane, are difficult to identify and control. An example
of such a system is the motor drive present in a remote
position control system (Thaler (1989)). Here, in open-
loop, a bounded step input usually produces an unbounded
output. An equally common but different problem that
occurs in the process industries, is the control of water level
in a steam boiler drum and applications involving surge
tanks (Panda et al. (2011)). More basic examples involving
liquid level are considered in (Wang and Cluett (1997)).
Other cases cited in the literature include the control of
processes involving the heating and cooling of closed batch
reactors (Huzmezan et al. (2002)) which tend to have an
integrating response due to the circulation of the heating
and cooling fluids through coils and jackets.

In order to understand the behaviour of such complex
systems simulation plays an important part. Astrom and
Bell (2000) developed from first principles a nonlinear
dynamic model for a natural circulation drum boiler. As
pointed out by Pai et al. (2010), such a model whilst
informative is not suitable to be used for control system
design. Further, because of the non-minimum performance
of this and many other similar processes, the authors
agreed that a more useful representation was the open-loop
structure proposed by Luyben (2003) with the transfer
function

Gp(s) =
Kp(1 − sT1)

s(1 + sT2)
e−sL (1)
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Luyben (2003) also presented a curve fitting procedure
using MATLAB software to determine the system pa-
rameters based on the open loop step response. Several
papers have been presented using auto-tuning feedback
to identify low order integrating plus time delay models.
Examples include the paper by Liu and Gao (2008) and the
references included. Panda et al. (2011) also exploited relay
feedback but their models incorporated an extra pole and
zero in the transfer function. Gu et al. (2006) proposed a
graphical method for identification of non-minimum phase
integrating processes with time delay.

In this paper we propose a set of identification methods
to estimate the parameters and the delay of continuous-
time transfer function similar to the structure (1). The
new approach has the ability to identify both minimum
and non-minimum phase processes. The advantages of the
procedures include that the input signal is not restricted
to being a step function but methodologies for piecewise
constant and piecewise linear inputs are also developed.
Further desirable properties are the system can be in
a non-steady state condition when the input is applied
and the system response can be noise contaminated. The
following section describes the proposed methodologies.

2. METHODOLOGY

The mathematical formulation is described using the fol-
lowing model as an example; however, the methods are
applicable to models with other numerator and denomina-
tor orders.

G(s) =
b1s+ b0
s(s+ a0)

e−δs (2)

Where G(s) is the transfer function between the input,
U(s) and the output Y (s); [a0 b1 b0] are the model
parameters and δ is the time delay. Considering that the
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process output is initially at a transient state, y(0), when
the input signal is applied, the input-output relation can
be expressed in the equation error form as

s2Y (s) − sy(0) − y′(0) + a0 [sY (s) − y(0)]

= (b1s+ b0) e−δsU(s) + E(s)(3)

With further rearrangement the equation is written as

(s2 +a0s)Y (s) = (b1s+b0)e−δsU(s)+c1s+c0 +E(s) (4)

where E(s) is the error term resulting from the measure-
ment noise in the output signal and

c1 = y(0) (5)

c0 = a0y(0) + y′(0) (6)

Integrating Eq. (4) twice which is equivalent to multiplying
both sides of the equation by 1

s2 and expressing the
resulting equation in the form of an estimation equation

Y (s) = −a0
Y (s)

s
+ b1

U(s)

s
e−δs

+b0
U(s)

s2
e−δs +

c1
s

+
c0
s2

+ E1(s) (7)

Taking inverse Laplace transform the following time do-
main equation can be obtained.

y(t) = −a0y
[1](t) + b1u

[1](t− δ)

+b0u
[2](t− δ) + c1 + c0t+ e1(t) (8)

where, for any signal x(t), x[i](t) is its i-th order integral.
Equation (8) is valid for any bounded input sinal u(t).
In the above equation, the time delay term remains as
an implicit parameter which cannot be directly estimated.
Also to estimate other parameters, the time delay should
be known. In the following sections, estimation equations
are derived from Eq. (8) which allow simultaneous estima-
tion of the model parameters and the delay term. Also the
initial conditions can be obtained as part of the solution.

2.1 Method 1: Identification from step response

If the input is a step of size h and is applied at time t = 0,
the following integral holds for t ≥ δ.

u[i](t− δ) =
h[t− δ]i

i!
(9)

For a step input the estimation equation Eq. (8) becomes

y(t) = −a0y
[1](t)+b1h[t−δ]+b0h

[t− δ]2

2
+c1 +c0t+e1(t)

(10)
which can be rearranged to give

y(t) = −a0y
[1](t) + b0

ht2

2
+ (b1h− b0hδ + c0)t

+(−b1hδ + b0hδ
2/2 + c1) + e1(t) (11)

In the least-squares form the equation is written as

γ1(t) = φ1(t)θ1 + e1(t) (12)

where,

γ1(t) = y(t), φ1(t) =

[
−y[1](t)

ht2

2
t 1

]

θ1 =


a0

b0
b1h− b0hδ + c0

−b1hδ +
b0δ

2

2
+ c1


Equation (12) can be written for t = td+1, td+2 · · · tN and
combined to give the set of estimation equations

Γ1 = Φ1θ1 + E1 (13)

with

Γ1(t) =

 γ1(td+1)
γ1(td+2)
. . .

γ1(tN )

 , Φ1(t) =

 φ1(td+1)
φ1(td+2)
. . .

φ1(tN )


Here, d is the time delay in terms of number of sampling
intervals (∆t), i.e. d = δ

∆t and N is the total number of
samples available. When the time delay is not an integer
multiple of the sampling interval, d is chosen as the nearest
integer in the positive direction. From the solution of the
above equation the parameters a0 and b0 can be obtained
directly. However the parameter b1 and the time delay
δ cannot be obtained as they are aggregated with c0
and c1. Ahmed et al. (2008) showed that using higher
order integration of the model equation an estimation
equation can be formulated to give all the unknowns.
The idea behind this approach is that the higher order
integrals of the delayed input terms can be decomposed
into more terms to yield as many parameters, individual
and aggregated, in the parameter vector as the number of
unknowns. One more step of integration would give

y[1](t) = −a0y
[2](t) + b1h

[t− δ]2

2

+b0h
[t− δ]3

3!
+ c1t+ c0

t2

2
+ e2(t) (14)

Or in the least-squares form

γ2(t) = φ2(t)θ2 + e2(t) (15)

where,

γ2(t) = y[1](t), φ2(t) =

[
−y[2](t)

ht3

3!

t2

2
t 1

]

θ2 =



a0

b0
b1h− b0hδ + c0

−b1hδ +
b0δ

2

2
+ c1

b1hδ
2

2!
− b0hδ

3

3!

 =

[
θ1

b1hδ
2

2
− b0hδ

3

3!

]

The parameter vector θ1 is a subset of θ2. γ2(t) and φ2(t)
can be written for t = td+1, td+2 · · · tN and combined
to give Γ2 and Φ2. The additional element of θ2 can be
obtained as

θ21 = Γ2 − Φ̃2θ1 (16)

where, 1 is a unit vector of length N − d. Using the
notations

θn : the last element of θn

Φ̃n : Φn with its last column removed
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The last element of θ2 can be obtained as θ2 =(
1T1

)−1
1T
[
Γ2 − Φ̃2θ1

]
which is the mean value of the

elements of
[
Γ2 − Φ̃2θ1

]
. Follwing the above procedure,

two further steps of integration will give

γ3(t) = φ3(t)θ3 + e3(t) (17)

γ4(t) = φ4(t)θ4 + e4(t) (18)

where,

γ3(t) = y[2](t), γ4(t) = y[3](t)

φ3(t) =

[
−y[3](t)

ht4

4!

t3

3!

t2

2
t 1

]
φ4(t) =

[
−y[4](t)

ht5

5!

t4

4!

t3

3!

t2

2
t 1

]
θ3 =

[
θ2

−b1hδ
3

3!
+
b0hδ

4

4!

]
, θ4 =

[
θ3

b1hδ
4

4!
− b0hδ

5

5!

]
The additional elements of θ3 and θ4 can be obtained from

θ31 = Γ3 − Φ̃3θ2 (19)

θ41 = Γ4 − Φ̃4θ3 (20)

From the above solutions we get the the following set of
equations

b1hδ
2

2
− b0hδ

3

3!
= θ2 (21)

−b1hδ
3

3!
+
b0hδ

4

4!
= θ3 (22)

b1hδ
4

4!
− b0hδ

5

5!
= θ4 (23)

The solution for δ from this set of equations is

δ =
−4θ3 ± 2

√
4θ2

3 − 5θ2θ4

θ2

(24)

Of the two solutions of δ, one has to choose the one
corresponding to the “ + ” sign for non-minimum phase
processes whereas for minimum phase processes the one
corresponding to the “−” sign should be chosen. Using the
estimated value of δ and the estimate of b0 obtained from
θ2, one can get the parameter b1 from any of the equation
set (21)-(23). Using the estimated δ, b0 and b1 one can
get c0 and c1 from the last two elements of θ2. Finally the
initial conditions y(0) and y′(0) can be retrieved using the
estimate of a0 and the relations (5)-(6).

2.2 Method 2: Identification using piecewise constant
input signals

A step input may not be always applicable to a process
with integrating dynamics. As an alternative, pulse type
input signals can be applied. Also binary input signal or
relay type input can be used. All these signals can be
characterized as piecewise constant signals which can be
mathematically expressed as

u(t) =

N∑
i=0

hiΩ(t− Li) (25)

Here, i corresponds to the sampling instants, hi is the step
change of the input signal at the i-th sample point i.e.
hi = ui − ui−1 and Li = ti−1. Ω is the unit step signal i.e.

Ω(t− Li) =

{
0 for (t− Li) < 0
1 for (t− Li) ≥ 0

(26)

For any t = tk, where tk is the k-th sampling time, in
Eq. (25), for all the terms with i > k, Ω(t − Li) = 0. So
for t = tk we have

u(t) =

k∑
i=0

hiΩ(t− Li) (27)

For such an input the delayed signal can be expressed as

u(t− δ) =

k∑
i=0

hiΩ(t− Li − δ) (28)

For simplicity in the presentation the notation Ωi = Ω(t−
Li − δ) will be used. Using this notation, the integral of
the delayed input signal can be expressed as

u[i](t− δ) =

k∑
i=0

hi
[t− Li − δ]

i

i!
Ωi (29)

The estimation equation (8) then becomes

y(t) = −a0y
[1](t) + b1

k∑
i=0

hi [t− Li − δ] Ωi

+b0

k∑
i=0

hi
[t− Li − δ]

2

2!
Ωi + c1 + c0t+ ξ(t) (30)

Or equivalently

γc(t) = φTc (t)θc + ξ(t) (31)

with

γc(t) = y(t)

φc(t) =



−y[1]

k∑
i=0

hi
[t− Li]

2

2
Ωi

k∑
i=0

hi [t− Li] Ωi

k∑
i=0

hiΩi

t
1


, θc =


a0

b0
b1 − b0δ

−b1δ + b0δ
2/2

c0
c1



ξ(t) = e[1](t). Equation (31) can be written for t =
td+1, td+2 · · · tN and combined to give the estimation equa-
tion.

Γc = Φcθc + ξ (32)

From the solution of Eq. (32) the model parameters a0

and b0 as well as the initial condition parameters c1 and
c0 can be obtained directly. To get b1 and δ, the elements
of θ can be used as

δ =
−θc(3) ±

√
θc(3)2 − 2θc(2)θc(4)

θc(2)
(33)

b1 = θc(3) + θc(2)δ (34)
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2.3 Method 3: Identification using piecewise linear input
signal

A number of input signals cannot be approximated as
piecewise constant because of their piecewise linear nature.
This section outlines the mathematical formulation for
input signals with piecewise linear characteristics which
can be mathematically expressed as

u(t) =

N∑
i=0

αi [t− Li] Ω(t− Li) (35)

Here, i corresponds to the sampling instant, αi is the rate
of change of the slopes of the input signal at the i-th sample
point and Li = ti−1. Ω is the unit step signal. For any
t = tk, where tk is the k-th sampling time, in Eq. (35), for
all the terms with i > k, Ω(t− Li) = 0. So for t = tk one
gets

u(t) =

k∑
i=0

αi [t− Li] Ω(t− Li) (36)

For such an input the delayed signal can be expressed as

u(t− δ) =

k∑
i=0

αi [t− Li − δ] Ω(t− Li − δ) (37)

For simplicity in the presentation the notation Ωi = Ω(t−
Li−δ) will be used. Using the notation, the integral of the
delayed input signal can be expressed as

u[i](t− δ) =

k∑
i=0

αi
[t− Li − δ]

i+1

(i+ 1)!
Ωi (38)

The estimation equation then becomes

y(t) = −a0y
[1](t) + b1

k∑
i=0

αi
[t− Li − δ]

2

2!
Ωi

+b0

k∑
i=0

αi
[t− Li − δ]

3

3!
Ωi + c1 + c0t+ e1(t)(39)

Or equivalently

γl(t) = φTl (t)θl + ξ(t) (40)

with

γl(t) = y(t)

φl(t) =



−y[1]

k∑
i=0

αi
[t− Li]

3

3
Ωi

k∑
i=0

αi
[t− Li]

2

2
Ωi

k∑
i=0

αi(t− Li)Ωi

t
1


, θl =



a0

b0
b1 − b0δ

−b1δ + b0δ
2/2

b1δ
2

2
− b0δ

3

3!
c0
c1



Equation (40) can be written for t = td+1, td+2 · · · tN and
combined to give the estimation equation.

Γl = Φlθl + ξ (41)

The first four elements of θl are the same as θc. Also these
are the elements that contain the model parameters and

the delay. hence we can use Eqs. (33) and (34) to retrieve
the terms δ and b1 for this case. The parameters a0, b0
and the initial condition terms c0 and c1 can be obtained
directly.

2.4 Bias elimination

The properties of least-squares solution of an equation
Γ = Φθ + ξ is given by (42) and depend on the error
term ξ.

θLS = (ΦTΦ)−1ΦTΓ (42)

The error evolves due to the presence of noise in the output
measurements which is generally zero mean white noise
or filtered white noise. However, the integration operation
performed on the output signal results in a colored error
term even if the measurement noise is assumed to be
white with zero-mean. So, the LS solution is not unbiased
even for a white measurement noise and we need a bias
elimination scheme. We use the instrumental variable (IV)
method proposed by Young (1970) which is commonly
used in continuous-time identification; see e.g. Ahmed
et al. (2007) and Garnier et al. (2003). The instrument
vector, Ψ(t) is derived by replacing the terms related
to the output, y(t), in the regressor by their predicted
values, ŷ(t). The LS solution is used for prediction. The
instrumental variable estimate of the parameters is given
by

θIV = (ΨTΦ)−1ΨTΓn (43)

3. SIMULATION RESULTS

The proposed methodologies are applicable to models with
different lag and lead dynamics. For the simulation study
the following model is used

G(s) =
K

s(τs+ 1)
e−δs (44)

with [K τ δ] = [1.25 20 7] which is equivalent to
G(s) = 0.0625

s(s+0.05)e
−7s in the notations used in Sec. 2 with

[a0 b0 δ] = [0.05 0.0625 7]. Although the parameters are
estimated as [a0 b0 δ], they are represented as [K τ δ] in
the results presented in this section as this gain and time
constant representations are more common in use.

Three input signals were used for the three methodologies;
namely a step signal for method 1, a pulse signal for
method 2 and a multiple frequency sinusoid signal for
method 3. Simulink was used to generate data and all
calculations were carried out using Matlab. Noise free
output signals were corrupted with white measurement
noise with different noise to signal ratio (NSR) defined
as the variance of the noise to that of the noise free
signal. Monte Carlo simulations (MCS) were performed
by changing the seed of the noise. For all simulations
the end time of experiment, tN , was chosen as 100 and
the sampling time varied according to the choice of data
length, N . The output was maintained at a initial steady
state [y(0) y′(0)] = [0.1 0.1].

3.1 Effect of noise

To study the effect of noise on the performance of the three
methods, noise with different NSRs were added and the
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model parameters were obtained for 100 MCS by changing
the seed. Figures 1-3 present the identification results for
the step, pulse and sinusoidal input signal, respectively.
The mean values of 100 estimates are presented along with
their standard deviations. The number of data points used
for identification was 500 for each case.

Fig. 1. Effect of NSR on parameter estimates for the step
input.

Fig. 2. Effect of NSR on parameter estimates for the pulse
input.

Fig. 3. Effect of NSR on parameter estimates for the
sinusoidal input.

3.2 Effect of data length

To study the effect of data length on the performance of
the three methods, identification exercise were carried out
for all of the three methods keeping the NSR at 10%.
Figures (4)-(6) present the the results of 100 MCS.

Fig. 4. Effect of data length on parameter estimates for
the step input.

Fig. 5. Effect of data length on parameter estimates for
the pulse input.

Fig. 6. Effect of data length on parameter estimates for
the sinusoidal input.
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3.3 Comparative performance of the three methods

To compare the performance of the three methods using
a single index a total error criterion is defined which is a
combined measure of bias and variance and is denoted by
Etotal.

Etotal =
1

Nθ

Nθ∑
i=1

(θ̂(i) − θ(i))2 + var(θ̂(i))

θ(i)2
(45)

where, θ(i) represents the true values of the i− th param-

eter and θ̂(i) is its estimated value. Nθ is the number of
parameters.

As seen from the results in the above sections and the
results presented in Figures (7)-(8), although all of the
three methods give satisfactory results for different NSR
and data lengths, the methodology for piecewise linear
signal gives better performance compared to the other
two methods in terms of the properties of the estimated
parameters.

Fig. 7. Total error in the parameter estimates for the three
input signals with different data length and 10% NSR.

Fig. 8. Total error in the parameter estimates for the three
input signals with different NSR and data length of
N=1060.

4. CONCLUDING REMARKS

Input signals used for system identification are either
piecewise constant or piecewise linear. The step input is

also commonly used for identification. This article presents
methodologies for identification of integrating processes
using all of the above mentioned input signals. Through
simulation study it has been demonstrated that the meth-
ods are capable of estimating model parameters for a wide
range of NSR and data length. In terms of the properties
of the estimated parameters, the sinusoidal input which
is considered a piecewise linear signal, showed better per-
formance compared to the other two signals namely the
step and the pulse. The proposed methodologies, although
derived taking a process with a first order lag dynamics as
an example, are applicable to models with higher order
dynamics as well.
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