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Abstract: In this paper a design method for proportional-integral-derivative (PID) controller based on 
internal model control (IMC) principle is proposed. A feedback controller equivalent to internal model 

control is obtained and then PID controller is derived by an approximate frequency response matching at 

two low frequency points. A simple and meaningful criterion is provided to choose such low frequency 

points. The method is illustrated through examples taken from literature.  
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1. INTRODUCTION 
 The most of the industrial controllers are of 

proportional-Integral-Derivative (PID) type till today. The 

performance of the control system is greatly affected by 

parameters of the PID controller. Many researchers have 

attempted to develop the design methods for the PID 

controller (Astrom & Hagglund, 1995). A few of them are 

the Ziegler-Nichols method (Ziegler & Nichols, 1942), the 

Cohen-Coon method (Cohen & Coon, 1953), methods 

based on gain margin and phase margin specifications (Ho 

et al., 1995), methods based on optimization of integral 

error criteria (Panagopoulus et al., 2002), (Visioli, 2001), 

an analytical tuning method which is based on finding the 

parameters of overall transfer function in some 

transformed domain to have desired set-point response 

(Chidambaram & Sree, 2003), method based on IMC and 

percentage overshoot specification (Ali & Majhi, 2009). 
The internal model control methods (Rivera et al., 1986), 

(Shamsuzzoha & Lee, 2007), (Wang et al., 2001) and 

direct synthesis method (Chen & Seborg, 2002) are the 

PID controller design methods which are based on 

achieving the desired closed-loop response. These design 

methods have only one tuning parameter and the controller 

required to achieve the desired response is computed 

analytically which are originally non-PID controllers 

simplification of which give PID controllers 

(Shamsuzzoha & Lee, 2007), (Skogestad, 2003), 

(Shamsuzzoha & Lee, 2008). Generally, such methods 

reduces the plant order before controller design. 

 In this paper an IMC-PID design method is 

proposed in which the desired PID controller is achieved 

by approximate frequency response matching at low 

frequency points. Using desired closed-loop response in 

internal model control architecture the desired controller in 

conventional unity negative feedback configuration is 
computed and further simplified to the PID controller by 

frequency response matching at two low frequency points. 

The method involves linear algebraic equations and 

approximation of the dead time term     is avoided.   

 The paper is organised as follows. The design 

method is discussed in Section 2, and its effectiveness is 

demonstrated through examples in Section 3. Conclusion 

is given in Section 4. 

2. THE DESIGN METHOD 

 A plant is considered which is described by the 

following transfer function, 

  
 

 
1
( )

sL sL

P

N s
G s e G s e

D s

 
   (1) 

where, ( ) / ( )N s D s is a rational transfer function and L is 

the time delay of the plant. The poles of 
1
( )G s are 

considered to be in the left hand side of s-plane. 

 The PID controller in the parallel form is 

implemented as given by 

  PID I

C P D

K
G s K K s

s
    (2) 

where, ,  and 
P I D

K K K  are the proportional, integral and 

derivative constants of the controller that are to be 

determined by the proposed design method.  

 The closed-loop block diagram is shown in Figure 

1 and Figure 2 where, ( )
P

G s is the process, ( )
M

G s is the 

model of the process, ( )
IMC

C
G s  the IMC controller, r  is the 

input, e  is the error, u  is the controller output, d  is the 

disturbance, x  is the plant input and y  is the output to the 

plant. 
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Figure 1: Block diagram of IMC control schemes. 
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The IMC configuration in Figure 1 is simplified to have 

the standard unity negative feedback control with the 

controller ( )
C

G s  as shown in Figure 2. The ideal feedback 

controller can be expressed in terms of IMC controller and 

the model of the process as: 

  
 

   1

IMC

C

C IMC

M C

G s
G s

G s G s



 (3) 

 

 
 

 The set-point response in IMC control scheme is 

given below 
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For the perfect model of the plant i.e.,    
P M

G s G s  

the Equation (4) becomes 

    
( )

( )

IMC

P C

Y s
G s G s

R s
  (5) 

According to the IMC design method, the process model 

 
M

G s is factored into two parts as: 

     ( )
M

G s G s G s
 

  (6) 

where,   and  ( )G s G s
 

 are the parts of the model that 

are to be inverted and not inverted by the controller, 

respectively. The non-invertible part includes the dead-

time and right half plane zeros. 

 The desired closed-loop response is considered in 

terms of the following transfer function. 

 
( ) ( )

( ) 1 1

sL
Y s G s e

R s s s 
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 
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 (7) 

where,  is the desired closed-loop time constant. 

To achieve the desired closed-loop response the IMC 

controller will be 

  
   

1 1

( 1)

IMC

C
G s f

G s G s s
 

 


 (8) 

where, 
1

1
f

s



 is the filter in the IMC control scheme. 

The controller ( )
C

G s  may be written as  

  
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It may be seen from Equation (9) that the controller ( )
C

G s  

has a structure different than the PID controller and also 

includes a term  
sL

e


. Thus it is required that the ( )
C

G s  

should be approximated to  PID

C
G s  as 

        
PID

C C
G s G s  (10) 

 or,        PID PID

CR CI CR CI
G jG G jG       (11) 

where, 
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and        ,  ,  and 
PID PID

CR CI CR CI
G G G G    are real 

functions of  . 

Separating the real and imaginary parts in Equation (11), 

one may write: 

 
   

   

 and
PID

CR CR

PID

CI CI

G G

G G

 

 




 (12) 

 In order to force the equivalence of two real 

functions,     and 
CR CI

G G  with their approximants 

    and 
PID PID

CR CI
G G  , respectively, one may equate 

appropriate number of initial few terms of the 

corresponding Taylor’s series expansions about 0  . 

Thus, to accomplish approximate matching of the L.H.S 

functions in Equation (12) with the corresponding 

functions on the R.H.S., the initial N derivatives of the 

corresponding functions are equated at 0   to give 

     
0 0

k k

PID

CR CRk k

d d
G G

d d
 

 
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    (13) 
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 
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 where  [0, 1]k N   

Now, using the mathematical preliminaries given in (Pan 

& Pal, 1995),  PID

CR
G   approximately matches  

CR
G    

if  

     ;      [0, 1]
k

k

PID

CR CR
G G k N

  
 


    (15) 

where 
k

 is the small positive values around 0. Similarly, 

     ;      [0, 1]
k

k

PID

CI CI
G G k N

  
 


    (16) 

 It is clear from Equations (15) and (16) that N

values of  give 2N  linear equations with the unknown 

parameters. For 3 numbers of unknowns of the PID 

controller N  is at least 2. Thus, the parameters of the PID 

controller can be found by solving the equations (15) and 

(16). Here, it is to be noted that the method is general in 

the sense that the controller structure and the order can be 

chosen arbitrarily. 

 However, theoretically for frequency response the 

range of ω is from 0 to ∞ and for this infinite range, 

choosing the frequency around 0   i.e., of ‘low value’ 

+
  

+
  

+

  

x u e 

–
  

d 

y r 
( )

P
G s  ( )

C
G s  

Figure 2: Closed-loop configuration considered. 
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should be consistent with the effective range of frequency 

response. Here, the ‘low frequency’ values are selected 

with the following concept.  

  If  is the dominant time constant of the plant, 

10 times of 2 /   which is 20 /   can be assumed as 

the effective range of dominant frequency response of the 

plant. Hence, the low frequency values, for the purpose of 

matching, can be selected at around 0.01 times or like of 

the effective range. Such frequency points for matching 

give good result for the most of the plants. 

 By putting such a low frequency values 
0

  and 

1
  in Equation (15) and separating the real and imaginary 

parts, we get the following two linear algebraic equations. 

    
0

0

1

PID

CR P CR
G K G

  
 


   (17) 

    
1

1

2

PID

CR P CR
G K G

  
 


   (18) 

It is observed from various examples that, the solutions of 

Equations (17) and (18) are almost equal i.e., 
1 2P P

K K   

and we may take the value of 
P

K  as any one of 
1 2
 or 

P P
K K

.  

 Similarly, Equation (16) will give two linear 

algebraic equations as  
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0

0

0

0

PID I

CI D CI

K
G K G

  
  




    (19) 

    
1

1

1

1

PID I

CI D CI

K
G K G

  
  




    (20) 

The values of 
I

K  and 
D

K  are determined by solving the 

Equations (19) and (20). Thus, all the parameters of the 

PID controller are evaluated. 

3. Examples 

Example 1: 

The following FOPDT process (Panda, 2008) has 

been considered. 

   0.251

1

s

P
G s e

s





 

   
Table 1: Parameters of the PID controller considering different 

frequency point for matching for Example 1. 

S. No. 
0
ω  

1
ω  

P
K  

I
K  

D
K  

1 0.01 0.02 1.55 1.48 0.146 

2 0.03 0.04 1.55 1.48 0.064 

3 0.5 0.6 1.55 1.48 0.065 

4 1.2 1.4 1.55 1.48 0.066 

5 2.8 3.0 1.57 1.48 0.066 

   

 The PID controllers are designed considering the 

filter as 
1

0.425 1
f

s



 and for various pairs of low 

frequency points as shown in Table 1. In the table it is 

observed that the performances of the PID controller 

evaluated at low frequency points are almost same as long 

as the frequency values selected for matching are 

sufficiently small. Finally, the PID controller with 

0
0.01  rad/sec and 

1
0.02   rad/sec is chosen as 

given below: 

  
1.481

1.55 0.1467
PID

C
G s s

s
    

 The process output and the controller output for 

set-point as well as load-disturbance with unit step input 

and disturbance are shown in Figure 3 and 4. The 

performance comparison of the proposed method with 

Panda (Panda, 2008) and IMC-MAC (Lee et al., 1998) is 

shown in Table 2. The proposed design method with 

0.425   (Proposed 1) gives comparable performance 

with the other methods while further improvement in the 

performance is achieved with 0.25   (Proposed 2). The 

set-point response of the proposed method is very much 

attractive as compared to other methods as depicted by the 

figures and table.  The robustness of the proposed 

controller is studied by considering +20% change in the 

gain, time constant and the time delay of the plant and the 

corresponding step response is shown in Figure 5. 

 
Table 2: Performance comparison for Example 1. (MP-peak 
overshoot and Ts-settling time with 2% criteria) 

Method KP KI KD λ 

Set-point 

Response 

Load 

disturbance 

response IAE 

(for 30 

sec) MP 

(%) 

Ts 

(sec) 

Max 

process 

output 

Settling 

time 

(sec) 

 

Proposed 1 1.55 1.48 0.146 0.425 1 1.7 0.34 4.3 1.408 

Proposed 2 2.12 2.00 0.160 0.25 2 2.0 0.30 3.8 1.072 

Panda 1.58 1.48 0.103 0.425 0.5 1.7 0.34 4.4 1.371 

IMC-MAC 1.55 1.48 0.065 0.425 0.5 1.7 0.35 4.5 1.353 

 

 
Figure 3: Process output for Example 1. 

 
Figure 4: Controller output for Example 1. 
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Figure 5: Process output for Example 1 with +20% change in 

gain, time constant and time delay of the plant. 

Example 2: 

 A second order plus dead time (SOPDT) process 

is considered (Panda, 2008) as 

  
 

12

10 1 (5 1)

s

P
G s e

s s




 
 

The proposed design procedure is followed and frequency 

points for matching are taken as 
0

0.01   rad/sec and 

1
0.02   rad/sec which results in PID controller as  

  
0.207

3.149 11.12
PID

C
G s s

s
    

 The process output and the controller output by 

the proposed method along with that by the methods of 

Panda (Panda, 2008) and IMC-MAC (Lee et al., 1998) are 

shown in Figure 6 and 7, respectively. The various 

performance parameters for the comparison of the design 
methods are tabulated in Table 3. From Figure 6, 7 and 

Table 3 it is observed that the performance of the proposed 

method is better than the other methods. The robustness of 

the proposed controller is studied by considering +20% 

change in the gain, the dominant time constant and the 

time delay of the plant and the corresponding step 

response is shown in Figure 8. 

 
Table 3: Performance comparison for Example 2. 

Method KP KI KD λ 

Set-point 

Response 

Load 

disturbance 

response IAE (for 

180 sec) 
MP 

(%) 

Ts 

(sec) 

Max 

process 

output 

Ts 

(sec) 

 

Proposed 3.14 0.207 11.12 1.41 12 42.5 0.22 41.4 12.31 

Panda 1.93 0.130 6.123 1.41 11.5 41.5 0.36 47 15.92 

IMC-

MAC 
1.91 0.130 5.777 1.41 11.8 40.4 0.36 46.5 15.87 

 

 
Figure 6: Process output for Example 2. 

 
Figure 7: Controller output for Example 2. 

 
Figure 8: Process output for Example 2 with +20% change in 

gain, dominant time constant and time delay of the plant. 

Example 3: 

 A third order oscillatory system with time delay is 

considered (Wang et al., 1999) as given by: 

 
0.3

2

1
( )

( 2 3)( 3)

s

P
G s e

s s s



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The PID controller is designed considering the filter as 

1/ (1.3 1)f s    and frequency points for matching are 

taken as 
0

0.1   rad/sec and 
1

0.2  rad/sec which 

yields the controller as: 

  
5.62

5.78 3.66
PID

C
G s s

s
    

 The step response of the proposed controller 

along with that of Wang et al (Wang et al., 1999) and Ho 

et al (Ho et al., 1995) for set-point as well as load 
disturbance is shown in Figure 9 and 10 and performance 

comparison is tabulated in Table 4. It is observed from the 

figures and the table that the proposed controller perform 

better in comparison with the other methods. To show the 
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robustness of the proposed controller a +20% change in 

the gain and the time delay is considered and 

corresponding step response is shown in Figure 11. 
Table 4: Performance comparison for Example 3. 

Method KP KI KD 

Set-point 

Response 

Load 

disturbance 

response IAE (for 

30 sec) 
MP 

(%) 

Ts 

(sec) 

Max 

process 

output 

Ts 

(sec) 

 

Proposed 5.78 5.62 3.66 0.5 4.2 0.076 3.8 1.84 

Wang et 

al 
3.88 5.38 2.15 3.2 4.4 0.085 3.9 1.96 

Ho et al 5.06 5.92 1.08 11.4 7.1 0.087 3.5 1.98 

 
Figure 9: Process output for Example 3. 

 
Figure 10: Controller output for Example 3. 

 
Figure 11: Process output for Example 3 with +20% change in 
gain and the time delay of the system. 

Example 4: 

 A second order time delay system with inverse 

response is considered (Jeng & Lin, 2012) as: 

 
0.52( 3 1)

( )
(2 1)( 1)

s

P

s
G s e

s s

 


 
 

 A PID controller is designed with frequency 

points for matching are taken as 
0

0.01 
 
rad/sec and 

1
0.02 rad/sec  which gives the PID controller as: 

  
0.

0.25 0.2
76

13
0PID

C
G s s

s
    

 Table 5: Performance comparison for Example 4. 

Method KP KI KD λ 

Set-point 

Response 

Load 

disturbance 

response IAE (for 

90 sec) 
MP 

(%) 

Ts 

(sec) 

Max 

process 

output 

Ts 

(sec) 

 

Proposed 0.25 0.076 0.213 3 0 11.7 2.37 19.1 25.54 

Jeng and 

Lin 
0.19 0.063 0.128 4.39 0 17.6 2.17 23.5 28.88 

Chien et 

al 
0.15 0.078 0.156 - 14.5 22.5 2.14 30.5 29.89 

 

The performance of the proposed controller is 

compared with that of the Jeng and Lin (Jeng & Lin, 2012) 

and Chien et al (Chien et al., 2003). The step responses for 

set-point as well as the load-disturbance response are 

shown in Figure 12 and 13 and various performance 

parameters are shown in Table 5. It is observed from the 

figures and the table that the proposed controller has better 

performance. To show the robustness of the proposed 

controller a +20% change in system the gain and the time 

delay is considered and corresponding step response for 

set-point as well as load disturbance response is shown in 

Figure 14. 

 
Figure 12: Process output for Example 4. 

 
Figure 13: Controller output for Example 4. 
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Figure 14: Process output for Example 4 with +20% change in 
the gain and the time delay of the plant. 

4. Conclusion  

 A simple IMC based PID controller design has 

been proposed in this paper. The feedback controller 

equivalent to internal model control is obtained and further 

simplified to PID controller by an approximate frequency 

response matching method. Two low frequency points are 

required for matching the frequency response and a 

criterion has been provided for choosing such two 

frequency points that does not require elaborate frequency 
response analysis. The method is involved with solution of 

linear algebraic equations and approximation of the delay 

term 
sL

e


 is not required.  The method is mathematically 

simple and the computational burden is very small. 
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