
Discrete-time Sliding Mode Tracking
Control for NMP Systems using Reduced

Order Switching Function

Machhindranath Patil ∗ B. Bandyopadhyay ∗∗

∗ Systems and Control Engineering, Indian Institute of Technology
Bombay, India; (e-mail: machhindra@sc.iitb.ac.in).

∗∗ Systems and Control Engineering, Indian Institute of Technology
Bombay, India; (e-mail: bijnan@sc.iitb.ac.in).

Abstract: In this paper design of reduced order switching function for a discrete-time uncertain
nonminimum phase system in special coordinate basis form is proposed. The sliding mode control
with this method guarantees the asymptotic stability of all states of system in presence matched
disturbance. This problem is further extended to the tracking problem of discrete time uncertain
nonminimum phase systems. The results obtained with reduced order sliding surface design are
compared with the results of full order sliding surface.
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1. INTRODUCTION

In nonminimum phase systems, the problem in tracking
arises because the inverse of the system is unstable. An-
other problem associated with nonminimum phase system
is that, the system is remained internally unstable even
after stabilization of state trajectory. Therefore output
may become unbounded in presence of disturbance.

Asymptotic tracking of arbitrary reference signals in a
nonminimum phase system is classical control problem
and yet it is challenging. In earlier work, Francis and
Wonham (1976) solved the tracking problem in a linear
systems by incorporating the dynamical model of plant
in an exosystem that generate the reference signal . This
property is commonly known as Internal Model Principle.
Isidori and Byrnes (1990) solved the tracking problem by
identifying the acceptable dynamics on a particular center
manifold. Gopalswamy and Hedrick (1993) redefined the
output variables to obtain a system with a stable zero
dynamics. They solved this problem by extending center
manifold technique and sliding mode control. Using a
method of system center and the dynamic sliding manifold
technique the nonminimum phase output tracking prob-
lem is solved by Shkolnikov and Shtessel (1999). In Lan
(2008) a structural decomposition of a system is done to
transform it into special coordinate basis (SCB) for easier
tuning of composite nonlinear feedback control. A system
in SCB shows zero structure (zero dynamics) of a system
in state equation, which is stabilized by virtual gain in
second transformation so that bounded reference states
can be generated.

A sliding mode control (SMC) has been a topic of great
interest for researchers because of the robustness against
the matched disturbance, See Utkin (1977); Hung et al.
(1993); Decarlo et al. (1988). This motivates the use of

SMC for tracking systems. Tracking problem in sliding
mode control is solved as a stabilization problem by
expressing the system in terms of error between output and
reference trajectory. Bandyopadhyay and Fulwani (2009)
have solved the tracking problem using nonlinear sliding
surface to achieve high performance in terms of transient
response specifications for both the continuous time and
discrete-time systems. Also refer to Bandyopadhyay et al.
(2009) and references therein.

Basic problem in output tracking of nonminimum phase
system is to obtain the bounded solution of a unstable
zero dynamics. The high accuracy tracking can be achieved
by computing noncausal inverse using a preview-based
approach, which allows the inversion process to be applied
online, see S.Devasia et al. (1996). In the similar manner
Jeong and Utkin (1999) have obtained the bounded solu-
tion to the internal dynamics and solved the problem using
SMC for tracking of predefined smooth arbitrary reference
signal without an exosystem. They allowed noncausality to
obtain the bounded solution for unstable zero dynamics
and convert the tracking problem into stabilization of
mismatch dynamics. A multirate output feedback based
sliding mode control of nonminimum system is solved
by computing noncausal inverse. See Bandyopadhyay and
Janardhanan (2006). Output feedback tracking problem in
the class of causal nonminimum phase uncertain nonlinear
systems has been handled using higher order sliding mode
technique by Baev et al. (2008). Recently, sliding mode
control for a NMP system in SCB with matched distur-
bance using full order sliding surface has been addressed in
Patil and Bandyopadhyay (2013). They have used virtual
stabilization of unstable zeros using certain state trans-
formation with some virtual gain. In Lan (2008), use of
virtual stabilization of zero dynamics of the system in SCB
form by using the transformation is found.
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A sliding mode control design consists of two steps, se-
lection of a sliding surface and design of a discontinuous
control that enforces the system into sliding motion (refer,
Edwards and Spurgeon (1998)). A dynamical behavior
of the system during the sliding motion is governed by
the sliding surface parameters, therefore the design of the
sliding surface to achieve the stability and improvement in
response characteristics in presence of the disturbance has
received considerable attention of researchers. A sliding
surface design with reduced order states is rarely found
in literature. White (1983) proposed the reduced order
switching function in the variable structure system via
modal synthesis. A similar approach has been used in Paul
et al. (1994) for the positioning of the piston in pneumatic
actuator. In Bandyopadhyay et al. (2006), it has been
shown that reduced order sliding surface can be designed
if all eigenvalues of the system are not unstable. However,
in former two cases sliding motion was quasi-sliding and
in later case approach is limited to the plants with stable
eigen values.

In this paper, we propose a method to design sliding
surface with reduced order states that guarantees the
asymptotic stability of all the states of a system in special
coordinate basis form (SCB) for NMP systems. It is shown
with the help of numerical simulation that results obtained
from reduced order sliding surface are quite comparable
with one obtained from full order sliding surface.

2. PROBLEM FORMULATION

Consider a discrete time uncertain nonminimum phase
system

x(k + 1) =Ax(k) +Bu(k) + d(k) (1)

y(k) =Cx(k) (2)

Where x(k) ∈ Rn, u(k) ∈ R and y(k) ∈ R are state, input
and output vectors of the system respectively. d(k) ∈ R
is considered to be matched disturbance. Consider that
system has relative degree r at output. Assume that (A,B)
pair is stabilizable and (A,C) pair is observable.

2.1 Special Coordinate Basis

The special coordinate basis of linear time-invariant sys-
tems was first developed in the seminal work of Sannuti
and Saberi (1987) and further unproven facts are rig-
orously proved by Chen (1998). SCB form displays the
minimum phase part (unit delay sequence) and the zero
dynamics in diagonal form and latter are driven by output
function only. Such a decomposition can be obtained using
specially designed software toolbox like one in MATLAB
by Liu et al. (2005).

Assume that the disturbance d(k) = 0. There exist state
and input transformations that transform the system (1)
into the special coordinate basis (SCB) form which reveals
the structure of the system. Define,

x(k) := Γsx̄(k), u(k) := Γiū(k) (3)

such that

x−a (k + 1) =A−
aax

−
a (k) + L−

adx1(k)

x+
a (k + 1) =A+

aa(k)x+
a + L+

adx1(k)

x̄1(k + 1) = x̄2(k)

x̄2(k + 1) = x̄3(k) (4)

...

x̄r−1(k + 1) = x̄r(k)

x̄r(k + 1) = Ē x̄(k) + ū(k)

and

y(k) = x̄1(k) (5)

Where

x̄(k) :=
[
x−a (k) x+

a (k) x̄1(k) · · · x̄r (k)
]T

Ē :=
[
Ē−

da Ē
+
da Ē1 · · · Ēr

]
In this structure A−

aa and A+
aa are diagonal matrices that

contain stable and unstable invariant zeros of a system,
respectively.

Remark 1. For the output tracking, the choice of control
law that generate desired trajectory (y0(k), x0(k)) satisfy-
ing (4)-(5) could have the form

ū(k) = y0(k + r)− Ēx̄0(k)
∆
= ū0(k)

However, as A+
aa contains unstable zeros, x+

a go unbounded
and so does the desired control ū0.

2.2 Virtual Zero Placement

As the system (1) is stabilizable, there exists matrix Fa

such that eigen values of (A+
aa +L+

adFa) are placed within
unit circle. Define the transformations in following manner
that stabilizes the unstable zero dynamics.

x̃(k) = Γ̃−1
s x̄(k), ū(k) = Γ̃iũ(k) (6)

where

Γ̃−1
s =



1 0 0 · · · 0
0 1 0 · · · 0
0 −Fa 1 · · · 0
0 −FaA

+
aa −FaL

+
ad · · · 0

0 −Fa(A+
aa)

2 −FaA
+
aaL

+
ad · · · 0

...
...

... · · ·
...

0 −Fa(A+
aa)

r−1 −Fa(A+
aa)

r−2
L+
ad · · · 1


So the system in new coordinate space is represented by

x̃−a (k + 1) =A−
aax̃

−
a + L−

adx̃1(k) + L+
adFax̃

+
a (k)

x̃+
a (k + 1) = (A+

aa + L+
adFa)x̃+

a (k) + L+
adx̃1(k)

x̃1(k + 1) = x̃2(k)

x̃2(k + 1) = x̃3(k) (7)

...

x̃r−1(k + 1) = x̃r

x̃r(k + 1) = Ẽx̃(k) + ũ(k)
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and output

y(k) = Fax̃
+
a + x̃1(k) := C̃x̃(k) (8)

Where

x̃(k) :=
[
x−a (k) x+

a (k) x̃1(k) · · · x̃r (k)
]T

Ẽ :=
[
Ẽ−

da Ẽ
+
da Ẽ1 · · · Ẽr

]
Here the intention for second transformation is clear.
For the tracking of a constant reference R(k), bounded
solution x̃0 can be derived by means of some control ũ0(k)
such that ‖y0(k) − R(k)‖ → 0 as k → ∞. Once the
nominal trajectories are made available, tracking problem
can easily be converted into stabilization of mismatch in
the system trajectory and nominal trajectory.

Fact 2. Apparently zero (or internal) dynamics of the sys-
tem is stable, however, output of the system is modified
and keeping the nonminimum phase behavior of the sys-
tem intact.

3. TRACKING CONTROL

3.1 Nominal Control

Consider that ũ0(k) be the nominal control that generates
the nominal trajectory

x̃0 =
[
x̃−a0 x̃

+
a0 x̃10 · · · x̃r0

]T
which satisfy the system in (7).

Lemma 3. For asymptotic tracking of constant reference
R(k), there exists a nominal control

ũ0(k) = −Ẽx̃0(k) +GaR(k + r) (9)

that generates the nominal trajectory x̃0(k) and nominal
output y0(k) such that ‖y0(k)−R(k)‖ → 0 as k →∞.

Where

Ga := [Fa(I −A+
aa − L+

adFa)−1L+
ad + 1]−1 (10)

Proof. Applying nominal control (9) to the system (7)
gives,

x̃10(k) = GaR(k) (11)

and consequently the unstable zero dynamic subsystem is
given by

x̃+
a0(k + 1) = (A+

aa + L+
adFa)x̃+

a0(k) + L+
adGaR(k) (12)

Define A+
as := (A+

aa + L+
adFa) and rewriting (12),

x̃+
a0(k + 1) = (A+

as) x̃
+
a0(k) + L+

adGaR(k) (13)

For constant reference R(k), the solution to the (13) is
given by

x̃+
a0(k) = (A+

as)
k
x̃+
a0(0) +

k−1∑
j=0

(A+
as)

k−j−1L+
adGaR(k)

= (A+
as)

k
x̃+
a0(0) +

k−2∑
j=0

(A+
as)

k−j−1L+
adGaR(k)

+L+
adGaR(k) (14)

Pre-multiplying (14) by A+
as and rearranging the terms,

(A+
as) x̃

+
a0(k) = (A+

as)
k+1

x̃+
a0(0) + (A+

as)
kL+

adGaR(k)

+

k−2∑
j=0

(A+
as)

k−j−1
L+
adGaR(k) (15)

Subtracting (15) from (14), we get

(I −A+
as) x̃

+
a0(k) = (I −A+

as)(A
+
as)

k x̃+
a0(0)

− (A+
as)

kL+
adGaR(k) + L+

adGaR(k)

⇒ x̃+
a0(k) = (A+

as)
k x̃+

a0(0)

− (I −A+
as)

−1(A+
as)

kL+
adGaR(k)

+ (I −A+
as)

−1L+
adGaR(k) (16)

As A+
as is a stable matrix, (A+

as)
k → 0 as k →∞. so

x̃+
a0(∞) = (I −A+

as)
−1L+

adGaR(k) (17)

From (8) and (9), the output of a system under nominal
control is given by,

y0(k) = Fax̃
+
a0(k) +GaR(k) (18)

So with constant reference R(k), as k →∞ the output of
the system tends to

y0(∞) = Fa(I −A+
as)

−1L+
ad GaR(k) +GaR(k) (19)

= [Fa(I −A+
as)

−1L+
ad + 1] GaR(k)

= [Fa(I −A+
aa − L+

adFa)−1L+
ad + 1] GR(k)(20)

Follow from the definition (10), y0(k) → R(k) as k → ∞.
This completes the proof.

Remark 4. If zeros are not placed on unit circle, there
exists such a invertible scalar Ga. Also reference R(k) can
be generated from rth unit delay of R(k+ r). This can be
easily obtained from rth order stable reference system.

3.2 Tracking via Stabilization of mismatch dynamics

Consider that x̃0(k) be the nominal trajectory that satis-
fies the system (7) and ũ0(k) be the nominal control as in
(9), we can write

x̃0(k + 1) = Ãx̃0(k) + B̃ũ0(k) (21)

where Ã = Γ−1
s AΓs and B̃ = Γ−1

s B Define mismatch in
the system and nominal trajectories.

∆x̃(k) := x̃(k)− x̃0(k)

:=
[

∆x̃−a (k) ∆x̃+
a (k) ∆x̃1(k) · · · ∆x̃r(k)

]T
and

∆ũ(k) := ũ(k)− ũ0(k)

So the tracking problem is converted into stabilization
problem by describing the system into mismatch variables
as defined above.

∆x̃(k + 1) = Ã∆x̃(k) + B̃∆ũ(k) (22)

As the system is assumed to be stabilizable, there exists a
state feedback control

∆ũ(k) = −F∆x̃(t) (23)
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such that ‖∆x̃(k)‖ = ‖x̃(k) − x̃0(k)‖ → 0 as k → ∞. It
implies that ‖ỹ(k)− ỹ0(k)‖ → 0.

However, when high performance transient response in
presence of disturbance is desirable, merely state feedback
control as in (23) is not enough. In the following sections
sliding mode control is designed to achieve the robustness
and high performance transient response.

4. SLIDING MODE CONTROL

4.1 Reduced order Switching Function

If the system is transformed into SCB structure, then
it is possible to construct the the sliding surface with
reduced order state vector such that the state trajectory
of the system reaches the sliding surface in finite time and
remained thereon thereafter. Define,

Ãd :=

[
Ã11 Ã12

Ã21 Ã22

]
, x̃d(k) :=

 X̃1(k)

X̃2(k)

 =


x̃1(k)

...

x̃r−1(k)

x̃r(k)

(24)

Input matrix and disturbance d(k) after transformations
(3) and (6) is given by

B̃ :=

[
0(n−1)×1

1

]
, d̃(k) := (ΓsΓ̃s)

−1d(k) :=

[
0

d̃2(k)

]
So minimum phase part of system dynamics can be written
as ,

X̃1(k + 1) = Ã11X̃1(k) + Ã12X̃2(k) (25)

X̃2(k + 1) = Ã21X̃1(k) + Ã22X̃2(k)

+ ũ(k) + d̃2(k) (26)

Note that (Ã11, Ã12) pair inherits the controllability prop-
erty from the system.

Theorem 5. If the system (7) in SCB form has relative
degree 1 < r < n at output, then it is possible to construct
the sliding surface,

s(k) := cT x̃d(k) :=
[
c1 1

]  X̃1(k)

X̃2(k)

 (27)

using at least rth order state vector xd(k) as in (24) such
that motion of the full state vector x̃(k) along the sliding
surface is asymptotically stable.

Proof. Sliding motion along the surface (27) can be
evaluated by setting the surface s(k) = 0. This implies

X̃2(k) = −c1X̃1(k). Follow from equation (25), the sliding
motion along the surface s(k) is given by

X̃1(k) = (Ã11 − Ã12c1)X̃1(k) (28)

As (Ã11 − Ã12c1) is stable by design, ‖X̃1(k)‖ → 0 as

k →∞. Also, X̃2(k) state follows the X̃1(k) motion, since
they have algebraic relationship via sliding surface.

Let us investing the effect of sliding motion on remain-
ing (n − r) states of the zero dynamics. It is evident

from the structure of the system that zero dynamics
[x̃−a (k)T x̃+

a (k)T ]T is driven by the state X̃1(k). As X̃1(k)
state vector is bounded and zero dynamics is stable, it

follows ‖[x̃−a (k)T x̃+
a (k)T ]T ‖ → 0 as |̃X1(k)‖ → 0.

Hence motion of the full state vector of a system (7) is
asymptotically stable along the sliding surface s(k). As
remaining (n − r) states are stable, some of them can be
included to design the sliding surface. So reduced order
sliding surface using reduced order state vector of any
order higher than or equal to r can be designed. This
completes the proof.

4.2 Existence of the sliding mode

Theorem-5 proves the asymptotic stability of the sliding
motion of the entire state vector x(k) along the sliding
surface s(k). However, the sliding mode exists only when
xd(k) trajectory originated from any initial condition is
forced to reach the sliding surface s(k) in finite time.

Proposition 6. If the system in SCB form (7) has relative
degree 1 < r < n at output, then the control law with
d̃2(k) ≤ |d̃2(k)|max

ũ(k) = −cT (k + 1)Ãx̃d(k)− d̃2(k − 1) (29)

enforces the trajectory xd(k) of the system from any initial
condition to reach the quasi-sliding band

‖s(k)| ≤ |d̃2(k)|max

in finite time and remained therein thereafter.

Proof. The control law for the system in the regular form
is derived using reaching law due to Utkin (1993). To reach
the sliding surface in one sampling period the reaching law
is given by s(k + 1) = 0. So from (27) control law can be
derived as

0 = c1X̃1(k + 1) + X̃2(k + 1)

⇒ ũ(k) =−cT (k + 1)Ãx̃d(k)− d̃2(k) (30)

However, the control law (30) can not be realized as it
contains the uncertain term. If the disturbance is assumed
to be constant during one sampling instant then estimation
of the disturbance is possible, see Su et al. (2000).

d̃2(k − 1) = X̃2(k)− Ã21X̃1(k − 1)

−Ã22X̃2(k − 1)− ũ(k − 1) (31)

Substituting (31) in (30), we get

ũ(k) = −cT (k + 1)Ãx̃d(k)− d̃2(k − 1)

With this control, the sliding surface dynamics is given by,

s(k + 1) = −d̃2(k − 1)⇒ |s(k)| ≤ |d̃2(k)|max

Hence proved.

4.3 Tracking problem

Tracking problem can be converted into stabilization of
mismatch in dynamics of the system and reference tra-
jectory. Let (x̃−a0(k), x̃+

a0(k), x̃d(k)) be the trajectory that
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generate desired output y0(k) = R(k) by means of a
control ũ0(k).

Define mismatch variables, ∆ũ(k) = ũ(k)− ũ0(k)

∆x̃(k) :=

∆x̃−a (k)
∆x̃+

a (k)
∆x̃d(k)

 :=

 x̃−a (k)− x̃−a0(k)
x̃+
a (k)− x̃+

a0(k)
x̃d(k)− x̃d0(k)


So the mismatch dynamics of an integration subsystem in
(7) in presence of disturbance can be written as

∆X̃1(k + 1) = Ã11∆X̃1(k) + Ã12∆X̃2(k) (32)

∆X̃2(k + 1) = Ã21∆X̃1(k) + Ã22∆X̃2(k)

+ ∆ũ(k) + d̃2(k) (33)

As (A,B) pair is assumed to be controllable, there exists
matrix F such that (A11−A12F ) matrix is Hurwitz. Define
the sliding surface with the reduced order state vector
∆xd(k),

s(k) := cT ∆̃xd(k) :=
[
c1 1

]  X̃1(k)

X̃2(k)

 (34)

By the virtue of Theorem-5, full state of the system in
mismatch dynamics will be asymptotically converging to
the origin. From proposition-6, the sliding mode control
law for the stabilization of mismatch dynamics can be
given by

∆ũ(k) = −cT Ã∆x̃d(k)− d̃2(k) (35)

5. NUMERICAL EXAMPLE

Consider the system with sampling time Ts = 0.1 sec.

A=


0.1 −0.7416 0.7071 0 0
0 0.2 1.0488 0 0
0 0 0.4 1 0
0 0 0 1.3 1
0 0 0 −0.04 1.3

 , B =


0
0
0
0
2


C =

[
−0.3536 −0.5244 0.5 0 0

]
, D = 0

The relative degree at the output is r = 3, and the
system has invariant zeros at z = 0.6, 1.3 The system is
transformed into SCB using transformations in (3) with

Γs =


1 0 0 0 0

−1.0595 1.0595 0 0 0
−0.4041 1.1112 2 0 0
−0.0808 1.0001 2.4 2 0
0.0566 0 0.16 −0.2 2

 ; Γi = 1

Select the gain Fa = −0.1473 to place virtually the
unstable zero at z = 0.8 and define the transformation
(6)

Γ̃s =


1 0 0 0 0
0 1 0 0 0
0 −0.1473 1 0 0
0 −0.1179 −0.5 1 0
0 −0.0943 −0.4 −0.5 1

 ;

The system after this transformation takes the desired
form with

0 1 2 3 4 5 6 7 8 9 10

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

kTs

y(
k
)

 

 

with full order switching function

with reduced order switching function

5 5.5 6 6.5
0.95

1

1.05
disturbance is

 introduced

Fig. 1. Comparison of responses with reduced and full
order switching function
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−0.1

0

0.1

0.2
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kTs

u
(k
)

 

 

with full order switching function

with reduced order switching function

Fig. 2. Control input u(k) for with reduced and full order
switching function

0 1 2 3 4 5 6 7 8 9 10

−0.1

−0.05

0

0.05

0.1

kTs

s(
k
)

 

 

full order switching function

reduced order switching function

Fig. 3. Reduced and full order switching functions s(k)

Ã=


0.6 −0.2083 1.4142 0 0
0 0.8 3.3941 0 0
0 0 0 1 0
0 0 0 0 1

0.0214 −0.0495 −0.099 −0.55 1.9

 , B̃ =

 0
0
0
1


C̃ = [ 0 −0.1473 1 0 0 ] , D̃ = 0

As per lemma-3, choose Ga = −0.6667

Full order surface: Selecting Full order sliding surface
gain

F = [−0.0318 0.188 0.6775 0.7 ]

s(k) =
[
F 1

] [
x̃−a (k) x̃+

a (k) x̃1(k) x̃2(k) x̃3(k)
]T
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so that dynamics of sliding motion has eigen values at
z = 0.1, 0.15, 0.2, 0.25.

Reduced order surface: As relative degree of the system
is 3, we design the sliding surface with reduced states
x̃1(k), x̃2(k) and x̃3(k)

Ãd =

[
Ã11 Ã12

Ã21 Ã22

]
=

 0 1 0
0 0 1

−0.099 −0.55 1.9


Designing reduced order switching function such that
dynamics of sliding motion has eigen values at z = 0.1, 0.15

s(k) =
[
c1 1

] 
x̃1(k)

x̃2(k)

x̃3(k)

 with c1 = [ 0.015 −0.25 ]

Fig. 1 shows the responses of a system with full and
reduced order sliding surfaces. To verify the robustness
property, the disturbance vector

d̃(k) = 0.2 sin (6πk) [ 0 0 0 0.1 ]
T

is introduced after 5 seconds. Fig. 2 shows the compar-
ison of control efforts while Fig. 3 exhibit the switching
functions s(k) using full and reduced order system states.

6. CONCLUSION

It has been shown here that reduced order switching func-
tion of order higher than or equal to the output relative
degree of the system can be designed effectively for stabil-
ity and performance of any system. This method is also
applicable to the system with unstable internal dynamics
and can be used for output tracking of constant reference
signal. It is also possible to design control law with only
states that are involved in the design of switching func-
tion by considering remaining state variables a matched
disturbance.
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