
Iterative Controller Tuning by Real-Time
Optimization

Gene A. Bunin, Grégory François, Dominique Bonvin ∗

∗ Laboratoire d’Automatique, Ecole Polytechnique Fédérale de
Lausanne (EPFL), CH-1015 Lausanne (e-mail:

dominique.bonvin@epfl.ch).

Abstract: The present article looks at the problem of iterative controller tuning, where the
parameters of a given controller are adapted in an iterative manner to bring a user-defined
performance metric to a local minimum for some repetitive process. Specifically, we cast the
controller tuning problem as a real-time optimization (RTO) problem, which allows us to exploit
the available RTO theory to enforce both convergence and performance guarantees. We verify
the effectiveness of the proposed methodology on an experimental torsional system and note
that the results are particularly promising considering the simplicity of the method.
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1. INTRODUCTION

We consider the problem of iteratively tuning the param-
eters ρ ∈ Rnρ of some general control law, G(ρ), so as
to achieve optimal control performance for a repetitive
setpoint trajectory. Concretely, G(ρ) can take the form of
any of the controllers in use today, as we can easily use it to
express the PID, a general fixed-order controller, or even
the optimization-based model-predictive control (MPC).

Iterative tuning usually follows the initial controller design
stage, where the latter may be carried out in a number
of ways and may be characterized based on, for example,
whether it is data-driven or model-based, or whether or
not it uses simple heuristics (e.g., Ziegler-Nichols) or more
advanced design methodologies. The goal of the design
stage is often to find an initial set ρ0 that meets certain
stability criteria while at the same time obtaining good
performance. However, regardless of the method used, it
is a general fact that ρ0 will not be the best choice in
actual application due to:

• assumptions made at the design stage (e.g., linearity,
time invariance),
• modeling errors and simplifications,
• conservatism of a robust design,
• practical arguments that favor a rough, quick design

over a rigorous method.

When the process is “repetitive”, the control task is usu-
ally the same from one realization (one “run”, “batch”,
“cycle”, or “window”) to another, and some sort of learn-
ing may be used to adapt ρ from one run to the next so
as to reduce the suboptimality of ρ0 (Fig. 1) by taking
advantage of the fact that the resulting differences in
performance will be, on average, a solely deterministic
reflection of the change in ρ. While there are several classes
of methods for carrying out such adaptations, the focus in
this paper will be on the optimization-based approach of
minimizing directly some controller performance metric as
an unknown function of the parameters. Here, the choice of
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Fig. 1. The basic premise of iterative controller tuning.

the metric may vary depending on the strategy used – e.g.,
it may be a correlation function in correlation-based tun-
ing (Karimi et al., 2004) or a general performance criterion
that is a weighted sum of subcriteria (e.g., tracking error
or control effort) in iterative feedback tuning (Hjalmarsson
et al., 1998) or extremum-seeking methods (Killingsworth
and Krstić, 2006). A standard optimization method for
these algorithms, which attempts to find parameters ρ∗

that locally minimize the performance metric, is the gra-
dient descent, with the way in which the gradient is esti-
mated representing an additional trait that differentiates
one method from another.

Our contribution in this work is to generalize this class
of methods by treating them in the real-time optimization
(RTO) framework, where the minimization of an unknown
function is a standard problem (see, e.g., Box and Draper
(1969), Brdys and Tatjewski (2005), Conn et al. (2009),
Myers et al. (2009)), and where recent contributions by
the authors (Bunin et al., 2013d,e) have provided a uni-
fied methodology for solving such a problem with opti-
mality guarantees. As will be shown, such a generaliza-
tion presents many new possibilities. Namely, one is not
forced to use a gradient-descent method in adapting ρ,
constraints on closed-loop stability may be incorporated
directly into the RTO problem, and the issue of robustness
against gradient uncertainty may be handled in a relatively
simple manner.

The formulation of the tuning problem in the RTO frame-
work and the performance guarantees that are possible
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therein are discussed in Sections 2 and 3, respectively.
Section 4 then takes the reader through an experimental
case study of a laboratory torsional system where a fixed-
order controller with three degrees of freedom is tuned by
the proposed method to achieve better performance. We
conclude the paper in Section 5.

2. RTO-BASED ITERATIVE CONTROLLER TUNING

In order to apply RTO theory and methods to the tun-
ing problem, a basic repeatability assumption, previously
stated in Bunin et al. (2012) for the problem of run-to-run
MPC tuning, is required.

Assumption 1. Let Jk denote the observed control perfor-
mance at run k. Process repeatability implies that:

Jk = J(ρk) + δk, (1)

where δk is an unknown stochastic element while J :
Rnρ → R is purely deterministic.

Assumption 1 has two crucial characteristics. First, it
makes the very idea of improving (minimizing) Jk sensible,
as it guarantees that applying a given set ρ will always
return the same deterministic component J(ρ), together
with some “non-repeatable noise” component δk that is
independent of ρ. Assuming J(ρ) to be differentiable, it
follows that ∇J(ρ) = 0 implies first-order optimality of
the observed performance Jk.

The other important aspect of (1) is that it renders
any additional assumptions on the system and controller
structure unnecessary. The control law G(ρ) may be
parameterized in almost any way – in MPC, for example,
ρ may correspond to the parameters of an optimization
problem, and may affect control performance in a highly
nontrivial manner (Bunin et al., 2012). Likewise, the
process being controlled may itself be nonlinear and of
unknown structure. An alluring trait of Assumption 1
is that it lumps all of these analytically unknown (but
deterministic) characteristics into the single function J(ρ).

Some caution is necessary, however, as Assumption 1 is
only an approximation of reality, the validity of which
depends on the amount of non-repeatable effects in the
system, which may originate from measurement noise,
equipment degradation, and disturbances. In the ideal
case where such effects are completely absent, δk = 0
since applying the same ρ will always yield the same
input/output trajectories and thus the same performance.
When these effects are present but minor, we expect
their influence on the controller performance to be small,
thereby leading to approximately the same performance
for the same ρ (with the variations approximated by the
stochastic term δ). If the non-repeatable effects become
significant, Assumption 1 will no longer be valid and the
methods proposed in this work may not be appropriate.

Supposing hereafter that the repeatability assumption is
satisfied, we may minimize Jk by minimizing J , and so
the task of iterative controller tuning may be formulated
in RTO form as:

minimize
ρ

J(ρ)

subject to R(ρ) � 0
ρ � ρ � ρ

, (2)

where R(ρ) may be a set of model-based stability con-
straints, with ρ and ρ representing lower and upper limits,
respectively, on the tunable parameters. Note that any
general RTO algorithm of the form

ρ∗k+1 = Γ(ρ0, ...,ρk, J0, ..., Jk) (3)

may be used to solve (2), with Γ some law that uses past
data to generate the next “best” iterate, ρ∗k+1. Usually, the
solution of (3) is filtered by an adaptable step Kk (Brdys
and Tatjewski, 2005):

ρk+1 = ρk +Kk

(
ρ∗k+1 − ρk

)
, (4)

and the calculated parameters ρk+1 are used in the next
run.

We remark that choosing Γ(·) = ρk − ∇J(ρk) and Kk =
1/k yields the well-known gradient descent method with a
diminishing step size, but it should be evident that better
performing schemes that employ all of the previous data
may be used instead. In fact, any RTO method, from a
simple, gradient-free approach like evolutionary operation
(Box and Draper, 1969) to advanced model-based methods
(Brdys and Tatjewski, 2005; Marchetti et al., 2010) may
be used to minimize J .

Although the methodology for solving (2) with theoretical
guarantees exists (Bunin et al., 2013d), we choose here to
work with the simpler unconstrained problem of

minimize
ρ

J(ρ) , (5)

as this allows us to state the relevant RTO theory without
going into the full detail of the constrained case. An in-
depth treatment of the latter may be found in Bunin et al.
(2013b).

3. GUARANTEES AND PRACTICAL
CONSIDERATIONS

When applying an RTO algorithm to autotune a con-
troller, it is desired that the algorithm in question have
some guarantee of convergence and optimality. As such,
we will now outline the rigorous conditions for finding
ρ∗ such that the stationarity condition ∇J(ρ∗) ≈ 0 is
satisfied, as well as discuss the practical aspects that must
be considered when applying these conditions.

3.1 Conceptual Convergence Conditions

We proceed to derive the sufficient conditions for the
convergence of an RTO algorithm (3) to a local stationary
point of (5). The following assumption on J is required:

Assumption 2. Let J be twice continuously differentiable,
coercive, and have bounded second derivatives ∀ρ ∈ Rnρ .

This allows us to state the following lemma and theorem:

Lemma 1. (Quadratic Upper Bound). There exists a di-
agonal matrix Q � 0 such that:

J(ρk+1)− J(ρk) ≤ ∇J(ρk)T (ρk+1 − ρk)

+
1

2
(ρk+1 − ρk)TQ(ρk+1 − ρk), ∀ρk,ρk+1.

(6)
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Proof. The proof follows from Assumption 2 and the
mean-value theorem (Bunin et al., 2013d). �

Theorem 1. (Sufficient Conditions for Convergence to a
Stationary Point). Consider the RTO algorithm ρ∗k+1 =
Γ(·) and filter law (4) that either satisfy the conditions:

∇J(ρk)T (ρ∗k+1 − ρk) ≤ −δJ , δJ > 0 (7)

Kk = −γ
∇J(ρk)T (ρ∗k+1 − ρk)

(ρ∗k+1 − ρk)TQ(ρ∗k+1 − ρk)
, 0 < γ < 2 (8)

−∆ρ∗ � ρ∗k+1 − ρk � ∆ρ∗ (9)

when this is possible or yield ρk+1 := ρk otherwise.

It follows that such an algorithm will:

(i) Converge to a point ρ∗ with:

‖∇J(ρ∗)‖1 <
δJ

min ∆ρ∗
. (10)

(ii) Converge monotonically in no more than:[
min
ρ
J(ρ)− J(ρ0)

]
(∆ρ∗)TQ∆ρ∗

(0.5γ2 − γ)δ2
J

(11)

iterations.

Proof.

(i) Only (7) is in danger of not being satisfied at ρ∗,
which may only occur when:

∇J(ρ∗)T (ρ∗k+1 − ρ∗) > −δJ
∀ρ∗k+1 ∈ ρ∗ ±∆ρ∗

, (12)

or, equivalently, when:

min
ρ∗
k+1
∈ρ∗±∆ρ∗

∇J(ρ∗)T (ρ∗k+1 − ρ∗) > −δJ

⇔ ∇J(ρ∗)T ∆ρ∗ > −δJ
⇔ −∇J(ρ∗)T ∆ρ∗ < δJ

, (13)

where we have assumed, without loss of generality,
that all of the elements in ∇J(ρ∗) are negative. We
complete the proof by noting that:

‖∇J(ρ∗)‖1 min ∆ρ∗ ≤ −∇J(ρ∗)T ∆ρ∗

⇒ ‖∇J(ρ∗)‖1 <
δJ

min ∆ρ∗
. (14)

(ii) Substituting the filter law (4) into the bound (6) and
setting Kk as given in (8) yields:

J(ρk+1)− J(ρk) ≤
(0.5γ2 − γ)

[
∇J(ρk)T (ρ∗k+1 − ρk)

]2
(ρ∗k+1 − ρk)TQ(ρ∗k+1 − ρk)

, (15)

which achieves its worst-case maximal value for[
∇J(ρk)T (ρ∗k+1 − ρk)

]
= −δJ and (ρ∗k+1 − ρk)TQ

(ρ∗k+1 − ρk) = (∆ρ∗)TQ∆ρ∗:

J(ρk+1)− J(ρk) ≤ (0.5γ2 − γ)δ2
J

(∆ρ∗)TQ∆ρ∗
< 0. (16)

This proves that there will be a monotonic improve-
ment from iteration to iteration. Since J is coercive
by assumption, it must achieve its global minimum
on Rnρ , thereby allowing us to divide the largest pos-
sible initial suboptimality gap J(ρ0) − min

ρ
J(ρ) by

the worst-case improvement to obtain the maximal
possible number of iterations for which Conditions
(7) and (8) can be met, as given in (11). Meeting the
conditions for more than the number of iterations
given by (11) would guarantee decreasing the cost
past its global minimum, which is impossible. �

Conditions (7) and (8) may thus be viewed as the concep-
tual sufficient conditions to bring ∇J(ρ) close to 0 in some
finite number of iterations, where the degree of accuracy
and the worst-case convergence time are functions of δJ ,
γ, and ∆ρ∗, which may be set by the user.

3.2 Implementation Issues

While we do not consider Assumption 2 as being prac-
tically limiting, the proper choice of Q may be. When a
model of the system that captures the system’s nonlinear
trends is available, one may estimate Q by numerical
trials and then, for example, multiply this estimate by an
additional safety factor (Bunin et al., 2013c, Sec. 4.1.2).
Alternatively, experimental data and past measurements
of Jk may be used to construct an estimate of Q either
offline or online.

Another crucial difficulty arises when we want to satisfy
the sufficient conditions despite having only an estimate
of the gradient ∇Ĵ(ρk), as ∇Ĵ(ρk)T (ρ∗k+1−ρk) ≤ −δJ 6⇒
∇J(ρk)T (ρ∗k+1 − ρk) ≤ −δJ . Assuming that the elements

in ∇Ĵ(ρk) are well scaled and defining σ = 1, we may
add robustness to the sufficient conditions by building an
uncertainty box, Ek, around ∇Ĵ(ρk):

Ek =
{
∇J̃(ρk) : ∇Ĵ(ρk)−mkσ � ∇J̃(ρk)

� ∇Ĵ(ρk) +mkσ
} , (17)

with mk ≥ 0 a scalar used to define the size of the box. We
then attempt to satisfy the robust versions of Conditions
(7) and (8):

max
∇J̃(ρk)∈Ek

∇J̃(ρk)T (ρ∗k+1 − ρk) ≤ −δJ (18)

Kk = −γ
max

∇J̃(ρk)∈Ek
∇J̃(ρk)T (ρ∗k+1 − ρk)

(ρ∗k+1 − ρk)TQ(ρ∗k+1 − ρk)
, (19)

which have a tractable reformulation and may be handled
without introducing any computational difficulties (Bunin
et al., 2013e). If the true gradient ∇J(ρk) ∈ Ek, then
it is clear that (7) and (8) will be satisfied as well.
Increasing mk represents adding robustness at the price
of speed, as the numerator of (19) will simply approach
0 due to growing Ek, thereby leading to smaller steps
and slower progress. Increasing mk too much will lead to
infeasibility in (18) as Ek cannot be made arbitrarily large
(the condition cannot hold for all possible gradients).

Finally, some additional constraints on the steps ρk+1−ρk
are generally desired in practice. As RTO schemes often try
to estimate the gradient from past measurements (Brdys
and Tatjewski, 2005, Sec. 4.3-4.4), (Marchetti et al., 2010)
and as many of these estimations are finite-difference
based, it is of interest to maintain a sufficient minimal gap
between consecutive sets of parameters so as to help reject
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output: angular position of top disk

input: motor voltage

Fig. 2. The ECP 205 torsional system.

the noise term δk. Additionally, since improper choices of
Q or bad estimates of ∇Ĵ(ρk) may lead to an adaptation
that would increase J (or even make the closed-loop
system detrimentally unstable), some maximum allowable
change in the parameters from one run to the next is also
desired. These two requirements may be summarized as:

∆ρ ≤ ‖ρk+1 − ρk‖∞ ≤ ∆ρ, (20)

and may be met by simply tuning Kk. Note, however, that
the lower constraint may force (8) to not be met, whereas
the upper constraint may lead to slower progress. As such,
the (ad hoc) choices of ∆ρ and ∆ρ – guided by the size of

δk and our uncertainty in Q and ∇Ĵ(ρk) – should be as
small and large, respectively, as possible.

4. APPLICATION TO A TORSIONAL SYSTEM

We illustrate the proposed ideas on an experimental tor-
sional system in our laboratory.

4.1 Experimental Setup

The physical system, pictured in Fig. 2, consists of a
motor and three disks in series along a torsionally flexible
shaft, with the motor generating a torque that rotates
the shaft. Up to four removable weights may be placed
on each of the disks to vary the inertia of the system
– the configuration with all four weights on each disk is
used here. A Macintosh PC with a National Instruments’
LabVIEW R© interface and data acquisition system is used
to adjust the voltage to the motor and to collect the
angular position measurements of the top and middle disks
with a sampling time of 60 ms. A detailed description
of the system is available from the vendor (Educational
Control Products, 2008).

4.2 Formulation of the Controller Tuning Problem

We consider a single-input-single-output control problem,
treating the motor voltage as the input and the angular
position of the top disk as the output (Fig. 2). Two
different repetitive setpoint trajectories are considered:

yd,1(t, A) = A sign

(
sin

πt

6

)
yd,2(t, A) = −A cos

πt

6

, (21)

with t expressed in seconds and A denoting the amplitude
that is set to either 1 or 2 radians, thereby creating a

total of four test cases. yd,1(t, A) is a square wave while
yd,2(t, A) is a sinusoid, both with a period of 12 s that
corresponds, essentially, to one “run”. An adaptation of
the controller parameters is carried out in the sampling
time gap between each pair of consecutive periods.

The controller function G(ρ) takes the form of a fixed-
order discrete-time transfer function, where the denomina-
tor coefficients have been fixed (by prior pole placement)
and the numerator coefficients are adapted:

G(ρ) =
ρ1z

2 + ρ2z + ρ3

z2 + z + 0.5
. (22)

For simplicity, we only consider the tracking error in the
performance metric:

Jk :=

200(k+1)−1∑
T=200k

[yd(0.06T,A)− y(0.06T )]
2
, (23)

with T used to denote the (absolute) sample counter and
k = 0, 1, 2... the adaptation iteration counter.

4.3 Choice and Configuration of RTO Algorithm

As only 60 ms are available to evaluate Jk, to obtain a
gradient estimate ∇Ĵ(ρk), and to calculate the new pa-
rameters ρk+1, we choose the (estimated) gradient descent
with a unit step size for the RTO adaptation, so that
ρ∗k+1 := ρk − ∇Ĵ(ρk). This is done not only because
the computational requirements of such an update are
minimal, but also because Condition (7) – or, equiva-
lently, (18) for mk := 0 – is satisfied by construction,

with −∇Ĵ(ρk)T∇Ĵ(ρk) ≤ −δJ , where the value of δJ is

implicitly inferior to ‖∇Ĵ(ρk)‖22.

∇Ĵ(ρk) is obtained from a least-squares regression of a
quadratic model (without interaction terms) for the full
set of measured data up to run k:

Jk ≈ a11ρ
2
k,1 + a22ρ

2
k,2 + a33ρ

2
k,3

+a1ρk,1 + a2ρk,2 + a3ρk,3 + a0
(24)

∇Ĵ(ρk) :=

[
2a11ρk,1 + a1

2a22ρk,2 + a2

2a33ρk,3 + a3

]
. (25)

Such an estimation, though fairly rudimentary in that it
supposes the noise term δk to be white Gaussian and the
performance function J(ρ) to be quadratic, was found to
be satisfactory in this study. More advanced methods of
estimating the gradient from discrete measurements are
certainly possible (Yeow et al., 2010; Bunin et al., 2013a),
but would require greater computational effort, whereas
a least-squares regression is easily carried out within the
60-ms time constraint.

Condition (18) is implemented to reduce the negative effect

of uncertainty in ∇Ĵ(ρk). An equivalent version of this
condition with δJ ≈ 0 may be written as follows 1 :

3∑
i=1

max

[
−

(
∂Ĵ

∂ρi

∣∣∣
ρk

±mk

)
∂Ĵ

∂ρi

∣∣∣
ρk

]
< 0, (26)

1 Each component is a maximum of two elements. See Bunin et al.
(2013e).
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with the left-hand side easily computed for a given value of
mk. As mentioned, this condition is satisfied when mk = 0,
but must be violated at some point as mk is increased. The
value of mk at which (26) becomes equality, denoted by m,
is approximated online by bisection. Since using mk := m
would lead to very conservative adaptations, the heuristic
choice of mk := 0.5m is used. The adaptation step is then
set as:

Kk := −2

3∑
i=1

max

[
−

(
∂Ĵ

∂ρi

∣∣∣
ρk

±mk

)
∂Ĵ

∂ρi

∣∣∣
ρk

]
∇Ĵ(ρk)TQ∇Ĵ(ρk)

, (27)

where we choose γ = 2 for the largest step possible 2 .

The matrix Q is approximated from the quadratic regres-
sion (and updated at each run k) by a diagonal matrix
with entries:

Qii := 2 max(2aii, 10−3), (28)

i.e., by projecting the Hessian of the regression in (24) onto
the space of positive definite matrices and multiplying by
an additional safety factor of 2.

The algorithm is initialized with ρ0 := (1, 2.77,−2.6),
which correspond to a stable controller found by simple
hand tuning. As no a priori data are assumed to be
available, runs corresponding to k = 1, 2, and 3 consist
of simply perturbing each parameter, in turn, by +0.05,
so that ρ1 := (1.05, 2.77,−2.6), ρ2 := (1.05, 2.82,−2.6),
and ρ3 := (1.05, 2.82,−2.55), which allows for an esti-
mate of the gradient based on a linear regression (the
quadratic terms in (24) are simply ignored until enough
measurements to form an overdefined regression become
available). Q is initialized as 500I (an ad hoc choice) until
it is possible to carry out the estimation in (28). ∆ρ and
∆ρ are chosen as 0.01 and 0.05, respectively, and Kk is
clipped or extended accordingly in the case that (27) leads
to adaptations that fail to meet these limits.

4.4 Experimental Results

The RTO algorithm was launched 10 times for each of the
four trajectories yd,1(t, 2), yd,1(t, 1), yd,2(t, 2), yd,2(t, 1) –
making for a total of 40 experiments, each of which lasted
for 50 runs (10 minutes). For each case, we also asked three
members of our lab to tune, by hand, the controller so as
to obtain the best possible performance that they could in
the same 10-minute window. This was done mainly so as
to put the RTO results in some perspective, with all of the
results obtained by the tuners repeated for an additional
50 runs so as to filter out the effect of the non-repeatability
noise term δk. It is also worth noting that both the RTO
and human testers started with no real a priori knowledge
of the system.

Figs. 3 and 4 provide results for all four cases, both in
terms of Jk and in terms of the visual improvement due
to reduced tracking error. For the former, we provide the
results of all of the experiments together with an average
of each ten so as to give a general idea of the effect that
using the RTO algorithm has on control performance. We
2 Though needed theoretically, we do not insist on γ < 2 with strict
inequality in practice.
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Fig. 3. Improvement in the performance metric due to
RTO-based controller tuning. Black lines denote the
10 individual cases, while the red line denotes their
average. The vertical bars on the right denote the
average performance (± twice the standard deviation)
obtained by the three human tuners.

see that, in each of the four cases, the average effect is quite
good despite a significant δk (consider the differences in
J0 for the different experiments as well as the particularly
noisy nature of yd,1(t, 1), illustrated by the large variations
in performance both for the controllers obtained by the
RTO and those obtained by the human tuners). We see
that, as would be expected in theory, the average tracking
error is reduced, almost monotonically, until a stationary
point with ∇Ĵ(ρk) ≈ 0 is reached. Furthermore, while
we allow the RTO to operate for fifty runs, we see that
the majority of the improvement in each case is attained
within the first ten, of which three are used to initialize
the algorithm due to lack of prior knowledge – with
the exception of the yd,1(t, 2) case, one sees a noticeably
faster improvement starting from the fourth run. For the
visual results in Fig. 4, we note that the improvement is
less obvious for the yd,1(t, 2) case (though clearly present
as indicated by the performance metric in Fig. 3). For
the other three cases, it is clear that better tracking is
achieved, particularly for the two sinusoidal trajectories.
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Fig. 4. Visual difference between the tracking during
the first two runs and the final two runs, with the
dashed black lines denoting the setpoint, the red lines
denoting the average output, and the blue denoting
the best performance obtained by a human tuner.

We also note that the human tuners almost always do
better than the RTO, but this should not be surprising
given the low complexity of the controller. It is clear that
the innate advantage of RTO lies in its automatic nature,
as it may be run continuously without human supervision
and can be applied to high-complexity controllers where a
good manual approach may not be obvious.

5. CONCLUSIONS

This paper has proposed an approach to iterative con-
troller tuning based on real-time optimization (RTO) the-
ory, with the argument that such an approach may en-
rich the tuning problem by allowing the use of various
approaches and algorithms from the RTO domain. A case
study on a laboratory torsional system confirmed that even
a fairly simple scheme designed to enforce RTO conver-
gence gave, on average, the kind of performance that would
be expected when applying a reliable RTO algorithm. It
is expected that using more advanced gradient estimation
techniques and RTO algorithms would lead to even better
performance. We end by noting that a significant extension

of this work, which uses more powerful RTO tools, incor-
porates constraints, and examines a number of different
controllers, is available in Bunin et al. (2013b).
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Karimi, A., Mǐsković, L., and Bonvin, D. (2004). Itera-
tive correlation-based controller tuning. Int. J. Adapt.
Control Signal. Process., 18, 645–664.

Killingsworth, N.J. and Krstić, M. (2006). PID tuning us-
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