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Abstract: The use of multivariate image and texture analysis is proposed in this study to quantitatively 

characterize the elegance of film-coated tablets. Four unsupervised metrics are developed to quantify 

both the color uniformity of tablet faces/bands and the erosion level inside and outside the tablet logo. 

Latent variable modeling is used to regress the measured elegance against coating operating conditions in 

order to investigate the driving forces acting on the system, consistently with the quality-by-design 

framework promoted by the Food and Drug Administration. 
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1. INTRODUCTION 

The Food and Drug Administration (2006) has been 

encouraging the design and validation of pharmaceutical 

processes within a multidimensional domain of processing 

conditions, referred to as the process design space. Within the 

chosen design space, pharmaceutical companies should 

provide evidence that the resulting product is acceptable, 

being safety and efficacy the foremost priority. This concept 

is referred to as Quality by Design. The proposed design 

space has to be supported by the scientific understanding of 

the driving forces acting on the system and governing the 

complex network of interactions between materials, process 

and product. This framework should be based on metrics that 

are robust and reproducible, and not on qualitative ones that 

might be easily biased by human perception (García-Muñoz 

and Carmody, 2010). 

Film coating is a common processing step in the manufacture 

of tablets (Libermen et Lachman, 1981). Tablets are loaded 

inside a rotating pan and sprayed with an aqueous or non-

aqueous solution, and air is used to evaporate the solvent. 

Tablet coating is carried out for several reasons. It can 

enhance the tablet stability, because the core might contain a 

substance that is not compatible with light and/or subject to 

atmospheric oxidation. Also tablet mechanical integrity (i.e., 

higher resistance to mishandling) can be enhanced by 

coating. Furthermore, coating can cover a bitter taste or an 

unpleasant odor of a substance within the tablet core, or it can 

modify the drug release profile (e.g., enteric coating, osmotic 

pump, pulsatile delivery; Libermen et Lachman, 1981; Cole 

et al., 1995).  

The elegance of film-coated tablets have been usually related 

to color uniformity and surface finish (roughness/erosion), 

and several techniques have been proposed for its 

characterization (Ruotsalainen et al., 2003; Seitavuopio et al., 

2006). Among them, the use of multivariate image (MIA) and 

wavelet texture analysis (MWTA) has been suggested by 

García-Muñoz and Gierer (2010) and García-Muñoz and 

Carmody (2010). Both MIA and MWTA rely on simple color 

images taken with a digital camera, which is much less 

expensive and easier to operate than other equipment. Hence, 

the use of MIA and MWTA is attractive for practical 

industrial applications, where the elegance assessment is still 

typically performed by a trained panel of experts and, as 

such, may suffers from reproducibility issues. 
In this paper, MIA and MWTA are combined together to 

quantify the elegance of film-coated tablets through several 

indices with the aim of supporting pharmaceutical 

manufacturing. The proposed strategy is applied to multiple 

batches of tablets coated at different conditions. Projection to 

latent structures (PLS; Geladi and Kowalski, 1986) is used to 

regress the measured elegance against the coating operating 

parameters, in order to investigate the main driving forces of 

the process. 

The paper is organized as follows. Section 2 presents the 

experimental apparatus and the available data. Section 3 

provides an overview of the multivariate data analysis 

techniques used throughout the paper. Sections 4 and 5 

describe the unsupervised metrics defined for elegance 

assessment. These metrics are regressed against process 

operating conditions in Section 6. 

2. IMAGING STATION AND AVAILABLE DATA 

The in-house imaging station used in this study was equipped 

with a digital single-lens reflex Canon EOS 40D camera 

(10.1 megapixel resolution) with a Canon EF-S 60 mm f/2.8 

USM Macro lens. LED lights illuminated the subjects (two 

racks mounting 64 LEDs each), and the system was isolated 

from the outside and operated through a computer. The user 
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was allowed to set camera elevation, lights elevation (hence 

changing the angle of incidence of the light on the subject 

surface) and camera settings (used to ensure proper 

exposure). Images were collected off-line for five different 

batches, indicated as Batches A-E. For color uniformity 

assessment, the tablets were withdrawn from the coater 

during the coating process, and tablet faces and bands were 

imaged separately. Several tablets were photographed per 

each single image; furthermore, three images of faces and 

three images of bands were taken for each pull point. For 

erosion assessment, the tablets were imaged at the end of the 

coating process (one tablet per image), using an angle of 

incidence of the light onto the tablets surfaces that allowed to 

highlight the defects (if any). Details on the number of 

images collected for each batch are given in Table 1. 

Table 1. Images collected for each batch. 

Batch 
Number of pull point 

(color uniformity) 

Number of tablets 

(erosion analysis) 

A 4 1308 

B 6 1142 

C 7 994 

D 6 765 

E 6 1148 

 
Batches A-E were characterized by different operating 

conditions (in terms of batch duration, spray rate, pan load 

and rotation speed) and tablets formulation details 

(particularly tablets hardness). A detailed list of process 

operating conditions is given in Table 2. 

Table 2. Film coating operating parameters. 

Variable name Description 

Duration 1 Phase 1 duration 

Exhaust T1 Phase 1 exhaust air temperature 

Spray 1 Phase 1 spray rate 

Duration 2 Phase 2 duration 

Spray 2 Phase 2 spray rate 

Pan load Amount of loaded tablets 

Pan speed Pan rotational speed 

Hardness Average tablets hardness 

 
It should be noticed that the coating process was run in two 

phases, exploring different duration /spray rate combinations. 

The air flowrate and the exhaust temperature of the second 

phase were kept constant (the latter by adjusting the inlet air 

temperature), and hence they do not appear in Table 2. It 

should be stressed that other variables that might have 

affected either the coating uniformity or the surface erosion 

(gun to bed distance, air pressure, etc.; Cole et al., 1995; 

García-Muñoz and Carmody, 2010) were not changed in the 

batches considered in the present study, and hence they did 

not represent a source of variability to include in the models. 

3. METHODS 

3.1  Principal component analysis 

Given a generic matrix X [N×M], its principal component 

analysis (PCA; Jackson, 1991) decomposition is given by  

XETPX +=
T
PCA  (1) 

 
with T [N×A], PPCA [M×A] and EX [N×M] being respectively 

the scores, loadings and residual of the model built on A 

principal components (PCs), and the superscript 
T
 indicating 

the transpose of a matrix. Note that the data in X need to be 

properly scaled before transformation (1) is carried out. PCA 

summarizes the information stored in the X matrix by 

defining a low-dimensional space (called latent space), whose 

axes (of which the A loadings are the direction cosines) 

represent the directions of maximum variability of the 

original data. The scores T = [t1, t2, …, tA] are the projections 

of X onto the latent space. They represent the new variables, 

and are orthogonal to each other. 

3.2  Projection to latent structures 

Given a matrix Y [N×I] of I quality (or response) indicators 

of the N samples of X, a PLS model (Geladi and Kowalski, 

1986) finds the driving forces that are most related to the 

response, by maximizing the correlation among the 

projections of X and Y onto a common latent space (the 

model space). Formally, 

XETPX +=
T
PLS  (2) 

YETQY +=
T

 (3) 

*XWT =  (4) 

 
where PPLS [M×A] and Q [I×A] are the loadings relating the 

projections in the model space T to the data matrices X and Y 

(respectively). W
*
 [M×A] is the weight matrix, through which 

the data in X are projected onto the latent space to give the 

scores T. EX [N×M] and EY [N×I] are the residual matrices, 

and account for the mismatch in the reconstruction of the 

original data. Both X and Y data need to be scaled prior to 

being transformed through PLS. The relative importance of 

each predictor within the PLS model can be evaluated 

through a modified variable importance in projection (VIP) 

index, which is defined for variable m as 

Y

Y

2

1

2*2

VIP
R

MRw

A

a

ama

m

⋅⋅

=

∑
=  (5) 

 

being 
*
maw  the weight of the m-th variable on the a-th 

component and R
2
aY and R

2
Y the explained variance of the 

response matrix, respectively for the a-th LV and for the 

overall PLS model. 

3.3  Multivariate image analysis 

Multivariate image analysis (MIA; Prats-Montalbán et. al., 

2011) relies on the PCA decomposition of an image. RGB 

images (such as those available in this study) are three-way 

arrays of size [Nrow×Ncol×3], whose first two dimensions are 

the number of pixel rows (Nrow) and columns (Ncol). The third 

dimension represents the light intensity along the red (R), 

green (G) and blue (B) channels, and is a value bounded 

IFAC DYCOPS 2013
December 18-20, 2013. Mumbai, India

332



 

 

 

within the range [0-255]. Prior to the PCA factorization to 

generate two scores vectors (t1 and t2), images are unfolded 

into two-way matrices of size [(Nrow⋅Ncol) ×3], as depicted in 

Figure 1 for a sample image. 

Fig. 1. Schematic of multivariate image analysis (MIA).

The t1 and t2 scores (which typically account for more than 

90% of the total variability on X) are scaled within the

[0-255]. The score space is usually represented in terms of a 

two dimensional (2D) histogram-scatter (or density) plot, as 

shown in Figure 2 for the image of Figure 1 (the 

Figure 2a is related to the number of pixels having specified 

t1 and t2 coordinates; i.e. the lighter the color

number of pixels). Pixels having projections close to each 

other in the score space are similar in terms of 

regardless of their spatial arrangement in the original image. 

This can be easily seen by defining a mask 

shape highlighting a certain region of the 

looking at the pixels in the original image that project within 

it. An example is given in Figure 2a, where the mask is used 

to highlight the red pixels in the original image.

   

                        (a)             (b)

Fig. 2. (a) 2D histogram-scatter plot of the score space of the 

MIA model built on the image of Figure A1, with a mask 

defined on it (green contour). (b) pixels (in the

image) whose projection lay underneath the mask defined in 

(a). 

The 2D histogram-scatter plot is the starting point for 

covariance mask method (García-Muñoz and Gierer, 2010) 

used in this work in the definition of the color uniformity 

metrics 

3.4  Multivariate texture analysis 

Multivariate texture analysis by means of the wavelet 

transform (MWTA; Duchesne et al., 2012) is considered to 

be state-of-the-art among other texture analysis methods

and Han, 2011). MWTA relies on the discrete wavelet

transform (Addison, 2002), which decomposes a bi

dimensional signal (such as an image) into a sequence of 

approximations (low-resolution elements, 

(high-resolution elements, D) through the convolution with 

low-pass and high-pass filters, hence returning a multi

t
1

t 2
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255]. Prior to the PCA factorization to 

), images are unfolded 

) ×3], as depicted in 

 

Fig. 1. Schematic of multivariate image analysis (MIA). 

scores (which typically account for more than 

) are scaled within the range 

255]. The score space is usually represented in terms of a 

scatter (or density) plot, as 

shown in Figure 2 for the image of Figure 1 (the color in 

to the number of pixels having specified 

color, the larger the 

number of pixels). Pixels having projections close to each 

other in the score space are similar in terms of color structure, 

regardless of their spatial arrangement in the original image. 

mask (i.e. a geometrical 

shape highlighting a certain region of the t1t2 space) and 

looking at the pixels in the original image that project within 

, where the mask is used 

the red pixels in the original image. 

 

(b) 

scatter plot of the score space of the 

MIA model built on the image of Figure A1, with a mask 

defined on it (green contour). (b) pixels (in the original 

image) whose projection lay underneath the mask defined in 

scatter plot is the starting point for 

Muñoz and Gierer, 2010) 

used in this work in the definition of the color uniformity 

Multivariate texture analysis by means of the wavelet 

transform (MWTA; Duchesne et al., 2012) is considered to 

art among other texture analysis methods (Liu 

. MWTA relies on the discrete wavelet 

transform (Addison, 2002), which decomposes a bi-

dimensional signal (such as an image) into a sequence of 

resolution elements, A) and details 

) through the convolution with 

nce returning a multi-

resolution representation of the original data. Texture

information are typically stored within the details, whose 

information at each decomposition stage 

summarized with a synthetic descriptor such as the energy 

defined as 

2

FkkE D=  

where 
F

⋅ denotes the Frobenius norm. Thus, for each image, 

a feature vector of size [1×K] can be extracted, being 

number of decomposition scales retained.

4. COLOR UNIFORMITY ASSESSMENT

The color signature introduced by García

(2010) was used to characterize the tablet 

The color signature is an unbiased metric 

as coating material is applied to the tablets, until a certain 

end-point is reached. For each lot of tablets, the following 

procedure was used (García-Muñoz and Gierer; 2010):

1. calibration of an MIA model on the composite image 

obtained from the concatenation of all the images 

available for the lot; 

2. background removal, by fitting a second PCA model on 

the scores obtained from the projection of some 

background images onto the MIA model;

3. manipulation of the 2D histogram

to the covariance mask method (Yu and MacGregor, 

2003), using the time of each withdrawn as the dependent 

variable; 

4. calibration of a 1-PC PCA model on the matrix obtained 

by stacking on the top of each the features vectors 

extracted from the 2D histogram

representing the color signature;

5. application of the covariance mask and of the PCA model 

defined in steps 3 and 4 (respectively) to the scores 

resulting from the projection of the sub

(approximately of the size of one tablet) extracted from 

each available image on the MIA model of step 1.

The last step allowed to extract the 

tablets faces and bands (separately), as shown in Figure 3 for 

one of the five available batches.
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Fig. 3. Color signature evolution of faces (open boxes) and 

bands (hashed boxes) for Batch D.

 

resolution representation of the original data. Texture-related 

information are typically stored within the details, whose 

information at each decomposition stage k can be 

summarized with a synthetic descriptor such as the energy E, 

(5) 

denotes the Frobenius norm. Thus, for each image, 

] can be extracted, being K the 

number of decomposition scales retained. 

UNIFORMITY ASSESSMENT 

signature introduced by García-Muñoz and Gierer 

(2010) was used to characterize the tablet color uniformity. 

signature is an unbiased metric that evolves as long 

as coating material is applied to the tablets, until a certain 

point is reached. For each lot of tablets, the following 

Muñoz and Gierer; 2010): 

calibration of an MIA model on the composite image 

from the concatenation of all the images 

background removal, by fitting a second PCA model on 

the scores obtained from the projection of some 

background images onto the MIA model; 

manipulation of the 2D histogram-scatter plots according 

to the covariance mask method (Yu and MacGregor, 

2003), using the time of each withdrawn as the dependent 

PC PCA model on the matrix obtained 

by stacking on the top of each the features vectors 

D histogram-scatter plots, the score t1 

representing the color signature; 

application of the covariance mask and of the PCA model 

defined in steps 3 and 4 (respectively) to the scores 

resulting from the projection of the sub-images 

size of one tablet) extracted from 

each available image on the MIA model of step 1. 

The last step allowed to extract the color signature for both 

tablets faces and bands (separately), as shown in Figure 3 for 

atches. 
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signature evolution of faces (open boxes) and 

bands (hashed boxes) for Batch D. 
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Results for all lots are summarized in Figure 4 in terms of 

range of the color signature distribution at each withdrawal 

(difference between the two extreme values) versus the 

percentage of the coating operation completed (withdrawal 

time divided by the total batch time), in such a way that all 

lots are scaled to a 0-100% x-axis. To avoid including 

potential outliers in the result, the interquartile range (25
th

 – 

75
th

 percentiles) was used. Figure 4 highlights that bands 

require longer coating time than faces, because the peaks of 

the distributions are shifted to higher fractions of the 

completion time. In fact, although the end-point is the same 

(cf. Fig. 3), the color signature range of faces reaches its 

lowest value at around 75% of the total batch time, whereas 

for bands it evolves until the end of the batches. 

 

(a) 

 

(b) 

Fig. 4. Color signature range evolution for (a) faces (b) and 

bands for Batches A-E. 

 

5. EROSION ASSESSMENT 

The application of MWTA for erosion quantification required 

several preprocessing steps on the images prior to the 

analysis, in order to perfectly align and properly cut all 

tablets images to the greatest area around the logo. The 

preprocessing operations were automated: tablets were 

localized within each image by using the derivative of the 

summation of the grayscale intensities along the two spatial 

directions, while the cropping operation involved simple 

trigonometric calculations (García-Muñoz and Carmody, 

2010). After cropping, images of tablets surfaces were 

converted to grayscale. An example of two tablet surfaces 

characterized by a different level of erosion is given in Figure 

5. 

 

                       (a)                 (b) 

Fig. 5. Examples of two different tablet surfaces 

characterized by different erosion level: tablet (a) is more 

eroded than tablet (b). 

With respect to the images of Figure 5, texture analysis was 

complicated by the presence of the logo. As suggested by 

Russ (1999), texture can be defined as a descriptor of local 

brightness variation from pixel-to-pixel in a small 

neighborhood. Hence, texture analysis was found to be biased 

towards the detection of the logo, since it localizes the 

greatest pixel-to-pixel brightness variations. For this reason, 

the erosion quantification exercise was split into two separate 

problems, i.e. the erosion quantification inside and outside 

the logo. A template matching technique (Lewis, 1995) was 

used to extract the logo from each image. The metrics 

developed to quantify the erosion inside and outside the logo 

are presented in the following sections. 

5.1  Inside logo erosion assessment 

The erosion quantification inside the logo relied on the 

consideration that the darker the logo, the easier to read it, 

since erosion does not affect it. Hence, the light intensity 

distribution of the logo pixels (i.e. the distribution of the 

values of the light intensity for each pixel) was used to 

characterize each tablet. In order to develop a synthetic 

descriptor of the erosion inside the logo (which will be 

indicated as “logo index” hereafter), the following procedure 

was used: 

1. for each lot, evaluation of the average light intensity 

distribution; 

2. calibration of a 1-PC PCA model on the matrix built from 

the average light intensity distributions, the score t1 being 

the average logo index for the batch; 

3. for each lot, projection of the light intensity distribution 

of each tablet onto the PCA model, generating a t1 

distribution. 

The logo index distributions of the five batches are given in 

Figure 6. Higher values of the logo index indicate higher 

(average) erosion of the logo. Figure 6 suggests that Batches 

B and C are characterized by a higher erosion level than the 

other batches. 
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Fig. 6. Logo index distributions for Batches A-E. 

 

5.2  Outside logo erosion assessment 

Erosion outside the logo was evaluated by means of the 

wavelet transform using the Coiflets 5 wavelet (Addison, 

2002). Only the details at the fourth decomposition stage 

were considered, since higher stages extracted useless 

information. Figure 7 shows the details at the fourth 

decomposition stage for the tablets of Figure 5.  

   

                       (a)                 (b) 

Fig. 7. Fourth decomposition stage wavelet details for the 

tablets of Figure 5. 

Pixels highlighted in white in Figure 7 identify the 

discontinuities in the tablets surfaces. Thus, the lighter the 

detail image, the higher its energy index (E4), the more 

eroded the tablet. For the computation of the energy index, 

pixels belonging to the logo were excluded.  

Each of the five batches was characterized by an energy 

distribution. Results are shown in Figure 8. 

 

Fig. 8. Energy index distributions for Batches A-E. 

Figure 8 returns results similar to those of Figure 6, i.e. 

Batches B and C are those characterized by a higher erosion 

level. 

6. REGRESSING ELEGANCE METRICS AGAINST 

COATING OPERATING CONDITIONS 

The four elegance metrics defined in Sections 4-5 were used 

to build the quality matrix Y to be regressed against the [5×8] 

X regressor matrix (the coating operating conditions listed in 

Table 2). Namely, Y was defined as Y = [Yfaces Ybands Ylogo 

Yenergy], i.e. Y was obtained from the horizontal concatenation 

of the color signature range of faces (Yfaces [5×6]) and bands 

(Ybands [5×6]), the erosion logo index (Ylogo [5×13]) and the 

energy index (Yenergy [5×13]) . Prior to the concatenation into 

Y, however, the matrices of the four metrics were further 

simplified: 

• Ylogo and Yenergy were reduced to [5×3] matrices 

considering the high correlation among the variables 

(verified using a PCA model); only the first, mid 

and last points of each distribution were retained; 

• Yfaces and Ybands were reduced to a [5×2] matrix and 

a [5×1] matrix respectively, retaining only the last 

points of the distributions; in fact, the appropriate 

color uniformity needs to be ensured only at the end 

of the coating process. 

The diagnostics of the 3-LV PLS model relating X and Y are 

given in Table 3 in terms of coefficient of determination per 

component (R
2
) and cumulated (R

2
CUM) for both the predictor 

and the response matrices. While 2 LVs were probably 

sufficient to explain quality, the third LV was included in the 

model since it greatly contributed in the definition of the X 

space (Tomba et al., 2012). 

Table 3. PLS model diagnostics. 

LV R
2
X R

2
CUMX R

2
Y R

2
CUMY 

1 52.6 52.6 64.7 64.7 

2 20.9 73.5 19.6 84.3 

3 25.3 98.8 8.70 93.0 

4 1.20 100 7.00 100 

 

The PLS scores, loadings and modified variable importance 

in projection (VIP) index are shown in Figure 9. 

The score plot (Figure 9a) clearly clusters batches B and C at 

negative t1 values. Recall that these batches are characterized 

by poor surface finish. The W
*
/Q biplot (Figure 9b) clarifies 

the main driving forces of the process and product 

characteristics and how they relate to the erosion of the 

product. The obvious relationships in the plot lead to 

conclude that higher hardness and pan-speed leads to less 

erosion, and that the larger the duration of the phases, the 

more erosion the tablets will exhibit. It is interesting to 

observe that the spray rate and the thermodynamic conditions 

of the coater do not have an obvious and direct effect onto the 

overall erosion. This is seen also in the modified VIP index 

(Figure 9c), where the predictors are ranked according to 

their importance within the PLS model. 
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(a) 

 

(b) 

 

(c) 

Fig. 9. PLS model (a) scores, (b) loadings biplot and (c) 

modified VIP index. 

 

Based on the PLS model results, some recommendations 

could be obtained on how to run the film coating process. 

Batches A and D, in fact, returned the best overall tablets 

elegance, as suggested by the combined analysis of the t1t2 

plot (Figure 9a) and of the W
*
/Q biplot (Figure 9b). 

 

7. CONCLUSIONS 

This paper presented the use of multivariate image and 

texture analysis for the assessment of film coated tablets 

elegance. The regression of the elegance metrics against the 

coating operating conditions allowed to investigate the 

process design space. Recommendations on how to run the 

film coating operation were given based on the diagnostics of 

the regression model. More sophisticated approaches, based 

on the concept of latent variable model inversion (Tomba et 

al., 2012), will be investigated in the future in order to 

properly optimize the process. 
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