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Abstract: Independent component analysis (ICA) is a newly emerging feature extraction method for 

non-Gaussian process monitoring. However, the extracted feature by ICA may not represent the original 

process data well, which can result in the degraded monitoring performance. In this paper, an improved 

ICA method based on the minimum mean squared prediction error criterion is proposed for process 

monitoring. A new criterion which can make the extracted non-Gaussian feature be efficient 

representation for the original process data is constructed as the objective function of the improved ICA 

by integrating the maximum negentropy criterion of the conventional ICA with the minimum mean 

squared prediction error criterion. Then the gradient ascent algorithm is applied to optimize the 

constructed objective function for seeking the feature extraction directions. Finally, a monitoring statistic 

is built based on the extracted feature to detect process faults. The simulation studies on the Tennessee 

Eastman benchmark process demonstrate that the improve ICA is more effective than the conventional 

ICA for improving the monitoring performance in terms of the fault detection rate. 

Keywords: Process monitoring, independent component analysis, feature extraction, non-Gaussian, 
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1. INTRODUCTION 

As industrial processes become more complex, process 

monitoring plays a critical role in ensuring the production 

safety and improving the product quality. Multivariate 

statistical process monitoring (MSPM), which is a kind of 

data-driven methods, has drawn much attention from 

academic researchers and process engineers (Jiang and Yan, 

2012; Stubbs et al., 2012; Yu, 2011; Zhang et al., 2009). 

Among the numerous MSPM methods, principal component 

analysis (PCA) is a classical approach and has a wide range 

of applications in process monitoring (BinShams et al., 2011; 

Jia et al., 2010; Shao et al., 2009; Wang and Yuan, 2007; Yu, 

2012). It projects the original process variables onto a smaller 

set of uncorrelated principal components (PCs) which can 

retain most of the original variance. However, PCA can only 

consider up to second-order statistics and can not make use of 

higher-order statistical information contained in process data 

(Lee et al., 2006), which may lead to inadequate feature 

extraction and degraded monitoring performance. 

Independent component analysis (ICA), originated from the 

blind source separation problem, is recently introduced into 

the process monitoring field (Ge et al., 2012; Hsu et al., 2010; 

Lee et al., 2011; Stefatos and Hamza, 2010; Zhang et al., 

2010; Zhao et al., 2008). Different from PCA, ICA can utilize 

the higher-order statistical information of process data and 

extract non-Gaussian feature called independent components 

(ICs) from original process variables. Compared with PCs 

extracted by PCA, ICs can reveal more useful process 

information and realize the process monitoring more 

precisely (Wang et al., 2012). Many extensions of ICA have 

been developed to account for different process 

characteristics. Tian et al. (2009) proposed a multiway kernel 

ICA method based on feature samples for nonlinear batch 

process monitoring. Considering the process dynamics, 

Odiowei et al. (2010) proposed a state-space ICA based 

process monitoring method. Rashid et al. (2012) proposed a 

hidden Markov model based adaptive ICA method for 

monitoring complex chemical process with multiple 

operating conditions and inherent system uncertainty. Taking 

both the nonlinearity and multimodality of process into 

account, Zhang et al. (2013) proposed a modified kernel ICA 

based monitoring method. In these studies, ICA has been 

thought as a promising feature extraction and dimension 

reduction method. However, the maximum negentropy 

criterion in conventional ICA only concentrates on extracting 

the non-Gaussian feature from the process data whereas 

ignores to make the extracted feature represent the process 

data as well as possible, which can result in the insufficient 

feature extraction and thus the adverse effect on the 

monitoring performance. 

Motivated by the above analysis, we propose an improved 

ICA method based on minimum mean squared prediction 

error criterion for process monitoring in this paper. The 

maximum negentropy criterion commonly used in 

conventional ICA is integrated with the minimum mean 

squared prediction error criterion, and an improved ICA 

objective function which can make the extracted non-

Gaussian feature represent the original process data 

sufficiently is constructed. Subsequently, the built objective 

function is optimized by the gradient ascent algorithm to 

obtain the feature extraction directions. Lastly, a monitoring 
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statistic is established to conduct process monitoring based 

on the extracted feature. The remainder of this paper is 

organized as follows. In section 2, the principle of 

conventional ICA is described. Section 3 proposes an 

improved ICA method based on the minimum mean squared 

prediction error criterion. Section 4 formulates the process 

monitoring strategy using the improved ICA method. 

Simulation studies on the Tennessee Eastman benchmark 

process are investigated and discussed in section 5. Finally, 

conclusions are drawn in section 6.   

2. THE PRINCIPLE OF CONVENTIONAL ICA 

In this section, the principle of the original ICA will be 

simply reviewed, which will be the basis of the proposed 

improved ICA method in this paper. 

The measured variables [ ]T 1

1 2
, , , m

m
x x x R ×= ∈x ⋯ are 

supposed to be linear combinations of the unknown zero-

mean ICs [ ]T 1

1 2
, , , m

m
s s s R ×= ∈s ⋯ . The relationship 

between them can be given by 

 =x As                                        (1) 

where m mR ×∈A  is the unknown mixing matrix. 

The ICA tries to estimate both A  and s  only from the 

known x . Alternatively, the objective of the ICA can be 

defined as follows: to find a de-mixing matrix m mR ×∈W  

which can make the elements of the estimated vector 
1mR ×∈sɵ  given by 

T

1 2, , , ms s s = =
 

s Wxɵ ɵ ɵ ɵ⋯                         (2) 

be as independent of each other as possible. 

Usually, the process variables need to be whitened before 

applying the ICA algorithm. The whitened variables 1mR ×∈z  

can be obtained as 

=z Qx                                          (3) 

where 1 2 T m mR− ×= ∈Q Λ V  denotes the whitening 

matrix,
1 2

( , , , ) m m

m
diag Rλ λ λ ×= ∈Λ ⋯ , ,  1, 2, ,

i
i mλ = ⋯  are 

the eigenvalues of T T[ ] m m

x
E R ×= = ∈C xx VΛV  and satisfy 

the condition 
1 2 m

λ λ λ≥ ≥ ≥⋯ , 
1 2

[ , , , ] m m

m
R ×= ∈V v v v⋯ is 

an orthogonal matrix, ,  1, 2, ,
i

i m=v ⋯  are the eigenvectors 

of 
x
C , [ ]E ⋅  denotes the expectation operator. 

The whitened variables satisfy the condition 

T[ ]
m

E =zz I                                      (4) 

where m m

m
R ×∈I  is the identity matrix. 

For the mathematical convenience, all the ICs can be 

assumed to have the unit variance without loss of generality. 

Then (2) can be reformulated as 

= = =s Wx UQx Uzɵ                                 (5) 

where =W UQ , T

1 2
[ , , , ] m m

m
R ×= ∈U u u u⋯  is an orthogonal 

matrix due to the reason which is 
T

T T T T T[ ] [ ] [ ]
m

E E E= = = =ss Uzz U U zz U UUɵ ɵ I . 

To calculate the orthogonal matrix U , the optimization 

objective of the ICA can be defined as follows (Hyvarinen, 

1999)  

T T

T T 2

1

T 2 T

max ( ) max{ [ ( )] [ ( )]}

s.t. [( ) ] 1,  1

J E G E G

E

υ
∈ ∈

= −

= =
u U u U

u u z

u z u u

             (6) 

where T 1 mR ×∈u  is a row vector of the orthogonal matrix U , 

υ  is a Gaussian variable with zero mean and unit variance, 

( )G ⋅  is a non-quadratic function. The specific details of the 

ICA can be found in (Hyvarinen, 1999). 

Once the orthogonal matrix U  is obtained, the ICs can be 

estimated by using (5).  

3. IMPROVED ICA BASED ON MINIMUM MEAN 

SQUARED PREDICTION ERROR 

Although the estimated ICs sɵ  by the above conventional ICA 

can reveal important statistical information from process data, 

they may still run the risk of not representing the process data 

well. The reason is that the above ICA does not take the 

minimum mean squared prediction error criterion which is 

widely used for feature extraction and dimension reduction 

into account (Wang et al., 2012). As a result, the estimated 

ICs may not reconstruct the original process data well and 

some important process information may be lost. In this 

section, we propose an improved ICA method based on the 

minimum mean squared prediction error criterion to solve 

such the problem of the above ICA. 

As the relationship of the vector T
u  and the corresponding 

estimated IC s R∈ɵ  can be written as T Ts = =u z u Qxɵ , the 

mean squared prediction error (MSPE) for the vector T
u  and 

the extracted IC sɵ  can be defined as 

1 T 1

1 T T 1 T

T

MSPE [( ) ( )]

= [( ) ( )]

s.t. 1

E s s

E

− −

− −

= − −

− −
=

x Q u x Q u

x Q uu Qx x Q uu Qx

u u

ɵ ɵ

               (7) 

From (7), it is well acknowledged that if the vector T
u  and 

the extracted feature sɵ  can well reconstruct the original 

process data, they should make the MSPE as small as 

possible. Based on this analysis, we take the minimum MSPE 

as the criterion for seeking the vector T
u  and further derive 

(7) as follows, after which the relationship of the minimum 

MSPE criterion and the vector T
u  can be found more 

obviously. 
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T T

T

T

T

T T T T 1 T

T 1 T T T T

T T T 1 T

T T 1 T T T T T

T T T T 1 T

T

min MSPE=min [ ( )( ) ]

min [ (

         ) ]

min{ ( ) ( ) ( )

         ( )}

min{ (

m m

m

E

E

E E E

E

E

− −

∈ ∈

− −

∈

− −

− −

∈

− −

∈

− −

= − −

+

= − −

+

=

u U u U

u U

u U

u U

x Q uu Q Q uu Q x

x Q uu Q Q uu Q

Q uu Q Q uu Q x

x x x Q uu Qx x Q uu Q x

x Q uu Q Q uu Qx

x x

Ι ΙΙ ΙΙ ΙΙ Ι

ΙΙΙΙ

T

T

T T 1 T T T T

T T 1 T T T

T T T 1 T T T T

T T 1 T T T

T T 1 2 T T 1 2 T 1 2 T T 1 2

) ( ) ( )

         ( )}

min{ ( ) ( ) ( )

         ( ) }

min{ ( )

         

E E

E

E E E

E

E

− −

− −

− −

∈

− −

− −

∈

− −

+

= − −

+

= − −

+

u U

u U

u Qxx Q u u Q xx Q u

u Q Q uu Qxx Q u

x x u Q xx Q u u Q xx Q u

u Q Q uu Q xx Q u

x x u Λ V VΛV VΛ u u Λ V VΛV VΛ u

u

T

T

T 1 2 T 1 2 T 1 2 T T 1 2

T T T T

T T

}

min{ ( ) }

min{ ( ) }                                                             (8)

E

E

− −

∈

∈

= − − +

= −
u U

u U

Λ V VΛ uu Λ V VΛV VΛ u

x x u Λu u Λu u Λu

x x u Λu

From (8), we can find that the minimum MSPE criterion only 

depends on the vector T
u  since the first item T( )E x x  is a 

constant. Then, the minimum MSPE criterion can be 

transformed into the following equivalent form 

T T

T T T

2
max ( ) max    s.t. 1J

∈ ∈
= =

u U u U

u u Λu u u                  (9) 

In order to make the extracted non-Gaussian feature represent 

the process data effectively, we can integrate (9) with the 

maximum negentropy criterion of (6) and construct a new 

objective function as follows 

T T

T

T T T

1 2

T 2 T

T 2 T

  max ( ) max{ ( ) (1 ) ( )}

max{ [ ( ( )) ( ( ))] (1 ) }

s.t. [( ) ] 1,  1

J J J

E G E G

E

η η

η υ η
∈ ∈

∈

= + −

= − + −

= =

u U u U

u U

u u u

u z u Λu

u z u u

     (10) 

where η  is a predefined weight used to place different values 

on the two subobjective functions according to the practical 

necessity and satisfies the condition 0 1η≤ ≤ , the non-

quadratic function ( )G ⋅  can be chosen as 

T T 2( ) exp( ( ) 2)G = − −u z u z  (Hyvarinen, 1999). 

The gradient ascent algorithm can be adopted to optimize (10) 

as 

T

T T

( )
( 1) ( ) |

( ) {2 [ ( ( ( ) )) ( ( ))] ( ( ( ) ))

  2(1 ) }

k

J
k k

k E G k E G E g k

µ

µ η υ
η

∂+ = +
∂

= + −
+ −

u
u u

u

u u z z u z

Λu

  (11) 

where ( )ku  denotes the value of u  at the k th iteration, µ  is 

the step size parameter, the function ( )g ⋅  is the first order 

derivative of ( )G ⋅ . 

On the basis of (11), we develop an improved ICA algorithm 

for calculating the orthogonal matrix U  as follows 

1) Let counter 1i = . 

2) Set an initial value with unit norm for 
i
u . 

3) Update 
i
u  by using (11). 

4) Do the following orthogonalization and normalization: 
1

T

1

( )
i

i i i j j

j

−

=

= −∑u u u u u , 
2i i i

=u u u . 

5) If 
i
u  has not converged, go back to 3); else, save the 

vector 
i
u  and go to the next step. 

6) Let 1i i= + . If i m≤ , go back to 2); else, stop the 

procedure. 

Once the orthogonal matrix U  is obtained, we can also 

estimate the ICs sɵ  by using (5). 

4. PROCESS MONITORING BASED ON IMPROVED ICA 

In order to detect process faults, the estimated ICs by the 

proposed ICA method should be arranged in the descending 

order according to their importance and the row vectors of 

the orthogonal matrix U  should also be sorted 

correspondingly. The d  estimated dominant ICs 1d
d R ×∈sɵ  

can then be expressed as 

T
1 2[ , , , ]d dd

s s s= =s U zɵ ɵ ɵ ɵ⋯                          (12) 

where T

1 2
[ , , , ]

d d
=U u u u⋯  and d m< . 

Based on the extracted feature, a monitoring statistic can be 

defined as 

T
2 T T( ) ( ) ( ) ( )d d d d d d

I = = =s s U z U z U Qx U Qxɵ ɵ      (13) 

The δ  confidence limit for the 2I  monitoring statistic can be 

determined according to (Russell et al., 2000). Split the 

normal process data into two parts: the training dataset with 

sample size 
1

N  and the validating dataset with sample size 

2
N . Based on the training data, calculate the whitening 

matrix Q  and the matrix 
d

U . Based on the validating data, 

calculate the time series of the 2I  statistic by (13). Then 

round 
2
(1 )N δ−  toward the nearest integer r . Adopt the r th 

highest value of the time series of the 2I  statistic as the δ  

confidence limit. 

The monitoring strategy based on the improved ICA can be 

divided into two stages: offline modeling stage and online 

fault detection stage. The details can be described as follows 

Stage I: offline modeling stage 

1) Divide the normal process data into two parts: the training 

dataset with sample size 
1

N  and the validating dataset with 

sample size 
2

N . 
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2) Calculate the mean and variance of each process variable 

in the training dataset and scale both the training data and 

validating data using the obtained means and variances. 

3) Based on the training data, calculate the whitening matrix 

Q  and the matrix 
d

U . 

4) Based on the validating data, calculate the time series of 

the 2I  statistic by (13). 

5) Determine the δ  confidence limit. 

Stage II: online fault detection stage 

1) Scale the current process data with the means and 

variances of the training data. 

2) Calculate the current value of the 2I  monitoring statistic 

by (13). 

3) Determine whether the current statistic value exceeds the 

confidence limit and give an alarm if some fault is detected. 

5.  SIMULATION STDUIES 

The Tennessee Eastman (TE) process is a well-known 

benchmark for testing the performance of various process 

monitoring methods (Ge et al., 2012; Lee et al., 2011; 

Mahadevan and Shah, 2009; Stefatos and Hamza, 2010; Yu, 

2011; Yu, 2012; Zhang et al., 2010). It consists of five major 

units: a reactor, a condenser, a compressor, a separator, and a 

stripper. The four reactants A, C, D, E and the inert B are fed 

into the reactor where the products G and H are formed and a 

byproduct F is also produced. The process has 52 monitoring 

variables and allows 21 pre-programmed process faults. 

There are 960 observations for normal and each fault 

condition with a sampling interval of 3 minutes. Each fault is 

introduced at the 160th sample. More details about the TE 

process can be found in (Chiang et al., 2001). 

In this section, the process monitoring performance of the 

conventional ICA and improved ICA is investigated with the 

TE process. The performance is evaluated from the fault 

detection rate which is defined as the percentage of the 

alarming fault samples in all the fault samples. The normal 

dataset is divided into two parts: the training dataset with size 

500 to build the monitoring model and the validating dataset 

with size 460 to calculate the 99% confidence limit. The 

parameter η  in (10) is set as 0.5 to balance the two 

subobjective functions. The ICs are ordered according to the 

L2 norm of the row vectors of the de-mixing matrix (Lee et al., 

2004). The number d  of dominant ICs for both methods is 

chosen as 30 so that the eigenvalues cumulative sum of the 

covariance matrix 
x
C  is above 90%. 

The monitoring charts of the fault 4 are firstly illustrated in 

Fig. 1 to show the effectiveness of the proposed method. The 

monitoring statistic values are plotted as the solid line and the 

confidence limit is plotted as the dashed line. For 

convenience of comparisons, in each monitoring chart, all 

monitoring statistic values are divided by their corresponding 

confidence limit and then the confidence limit is equal to one. 

It can be seen from the monitoring chart of the improved ICA 

that, after the occurrence of the fault 4 at the 160th sample, 

the monitoring statistic values exceed the confidence limit 

obviously and almost all the fault samples are detected 

successfully. However, in the monitoring chart of the 

conventional ICA, the monitoring statistic values of many 

fault samples are still below the confidence limit and thus can 

not indicate the fault effectively and confidently. Thus, the 

monitoring charts comparison suggests that the improved 

ICA is more sensitive to the fault 4 than the conventional 

ICA. The monitoring charts of fault 19 are also used for 

methods comparison. Due to the proprietary reason, the 

information of this fault is unknown and only the fault data 

are provided. The monitoring charts on this fault are shown 

in Fig. 2. It is obvious that there are much more fault samples 

whose monitoring statistic values exceed the confidence limit 

in the monitoring chart of the improved ICA, leading to a 

much higher fault detection rate than the conventional ICA. 

160 320 480 640 800 960
0

0.5

1

1.5

2

2.5

3

Sample number

I2
 s
ta
ti
s
ti
c

 

(a) The monitoring chart of the conventional ICA 
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(b) The monitoring chart of the improved ICA 

Fig. 1. The monitoring charts of the two methods on fault 4 
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(a) The monitoring chart of the conventional ICA 
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(b) The monitoring chart of the improved ICA 

Fig. 2. The monitoring charts of the two methods on fault 19 

The fault detection rate of the two methods on all the 18 fault 

cases of the TE process is tabulated in the Table 1. The faults 

3, 9, and 15 are excluded, because there are no observable 

changes in the mean or the variance of those three fault 

datasets and these three faults have been proven to be 

difficult for data-driven methods (Zhang et al., 2011). 

Obviously, for the faults 1, 2, 5-8, 12-14, and 18, the two 

methods have similar fault detection rate. However, for the 

faults 4, 10, 11, 16, 17, and 19-21, the improved ICA 

achieves much higher fault detection rate than the 

conventional ICA. The average fault detection rate of the 

conventional ICA is 0.8766, whereas the average fault 

detection rate of the improved ICA is 0.9214, which also 

shows the superior fault detection ability of the improved 

ICA. According to the above analysis, it can be concluded 

that the fault detection performance of the improved ICA is 

much better than that of the conventional ICA. 

Table 1. The fault detection rate comparison 

Fault   ICA-I
2 

Improved ICA-I
2 

1 0.9975   0.9975 

2 0.9850 0.9850   

4 0.8025 0.9988 

5 1.0000 1.0000 

6 1.0000 1.0000 

    7 1.0000 1.0000 

    8 0.9762 0.9788 

   10 0.8225 0.8788 

   11 0.5362 0.6800 

   12 0.9962 0.9975 

   13 0.9475 0.9538 

   14 0.9988 0.9988 

   16 0.8150 0.8988 

   17 0.9188 0.9550 

   18 0.8962 0.9012 

   19 0.7512 0.8400 

20 0.8275 0.9100 

21 0.5075 0.6112 

 

6. CONCLUSIONS 

This paper proposed an improved ICA method for process 

monitoring. The proposed method can not only extract the 

important non-Gaussian information from the original 

process data but also make the extracted feature represent the 

original data efficiently and sufficiently by integrating the 

maximum negentropy criterion and the minimum mean 

squared prediction error criterion. The simulation example of 

the TE process demonstrates that the proposed method can 

effectively detect process faults and its process monitoring 

performance outperforms the conventional ICA. 
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