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Abstract: This paper describes the application of batch trajectory alignment, outlier detection, and 

multiblock multiway principal component analysis (MPCA) to data from an industrial active 

pharmaceutical ingredient manufacturing process. The process data routinely collected from historical 

batches, including temperatures, pressures, and controller outputs, has been used to improve process 

operation and understanding. MPCA highlighted questionable batches from which plant issues were 

identified. Variable contributions to the MPCA scores were used to identify the process variables 

potentially causing the variation in batch drying time. 
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1. INTRODUCTION 

Research and industrial applications in the area of Principal 

Component Analysis (PCA) have been widely reported in the 

literature. Most of this work has been in the area of 

multivariate statistical process control, and the monitoring of 

continuous processes; however extensions to PCA, Multiway 

Principal Component Analysis (Nomikos and MacGregor, 

1994), has enabled the monitoring of batch processes. A 

number of case studies, utilising both simulated and 

industrial data, have been presented in the literature. This 

paper focuses on data obtained from an industrial batch 

process, and highlights the challenges that arise when 

developing a monitoring scheme..  These challenges include 

data alignment, non-conforming batches and multiple unit 

operations.  A number of general solutions to these issues are 

presented as well as the specific solutions applied to the 

process being studied. 

The process under study relates to the commercial 

manufacture of an Active Pharmaceutical Ingredient (API). 

The process exhibits significant variation in the drying time 

of a batch, resulting in the dryer being the bottleneck in the 

manufacturing process. If the cause of the variation in drying 

time could be understood, process control may be 

implemented to minimise the drying time, thereby reducing 

the batch cycle time and hence increasing plant capacity and 

profitability. Understanding of the possible causes of the 

differences between batches was investigated through the 

application of Multiway Principal Component Analysis 

(MPCA). 

This paper is organised as follows: section 2 introduces the 

problem in more detail, and discusses the issues of batch 

trajectory alignment and outlier identification. A description 

of data unfolding, scaling, MPCA, and contribution analysis 

is given in section 3. Conclusions and future work are 

presented in section 4.  

 

2. DATA COLLECTION 

The API manufacturing process is carried out in three unit 

operations: reactor, filter, and dryer. As the issues to be 

addressed relate to batch drying, the dryer was studied 

initially. Five online measurements are recorded, contents 

temperature (°C), jacket outlet temperature (°C), jacket 

temperature controller output (%), full range pressure (bara) 

and vacuum pressure (mbar). The dryer is controlled by an 

Emerson PROVOX
®
 DCS (Distributed Control System).  

The batch dryer sequence in the DCS comprises six control 

components (Fig. 1). The first component (1) starts when half 

the batch is in the dryer and is dried at a low jacket 

temperature under vacuum. The second half of the batch is 

then added to the dryer (2), followed by another low jacket 

temperature dry under vacuum (3). The jacket temperature is 

then ramped up and the vacuum maintained (4). Atmospheric 

pressure is restored to the dryer and the higher jacket 

temperature maintained (5). Subsequent to this is a period of 

vacuum, (6) before the pressure is restored, and the batch is 

cooled, and discharged. Drying is complete when the 

contents temperature reaches a set point. Each of these 

phases, with the exception of the loading phase (2), is 

progressed based on elapsed time. The loading phase is only 

implemented when the batch has been transferred to the dryer 

and the operator progresses the operation. Batches that are 

not at the target temperature by the end of stage (6) require 

the operator to manually extend the drying until the target 

temperature is achieved. This can vary between 0 and 24 

hours, resulting in significant delays in progressing 

subsequent batches through the manufacturing process.  

2.1 Batch Trajectory Alignment 

The first step in processing the data was to identify 

questionable batches and remove these prior to developing an 
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MPCA representation. When dealing with batch processes, 

the data-set is three dimensional (Fig. 2); process variables 

(J) by time (K) by ‘batch’ (I). The data therefore needs to be 

unfolded prior to analysis. There are six methods for 

unfolding batch data; I×JK, J×KI and K×IJ are three methods 

cited in the literature (Nomikos and MacGregor, 1994); the 

other three are equivalent (I×KJ, J×IK and K×JI).  

 
Fig. 1. Typical batch trajectory and segmentation. 

 

 

Fig. 2. 3-Dimensional data matrix of batch process data. 

A further challenge is that MPCA requires that the batches 

are aligned. For data alignment to be implemented, it is 

essential to have a detailed understanding of the process and 

data collection systems (DCS). The DCS scans the process 

data every thirty seconds and stores it in the data historian. 

Data collection is subjected to a modified boxcar–back-slope 

compression algorithm. The compression algorithm uses 

deviation tolerances that are smaller than the calibration 

tolerances on the plant instrumentation, and therefore can be 

considered to serve as a low pass filter thereby having 

minimal impact on the accuracy of the data. The data was 

exported from the historian using the Aspen Process Data 

Add-In for Microsoft Excel
®
 and interpolated to a sampling 

rate of 30 seconds. The interpolation interval of 30 seconds 

was selected, as this is the fastest the process data can change 

due to the DCS scan rate. The remainder of the analysis was 

carried out using MATLAB 7.10 software and the PLS 

Toolbox 6.71 from Eigenvector. 

There are several techniques available for the alignment of 

data, including cutting data, linear interpolation, use of an 

indicator variable, dynamic time warping (DTW) and 

correlation optimised warping (COW). Data cutting involves 

deleting sections and may be undesirable if the data contains 

information that may be of importance in terms of process 

behaviour. Linear interpolation is another method of re-

sampling to attain a consistent number of samples for all 

variables and for all batches. This method is preferred over 

data cutting as no information is lost, however the time 

information needs to be captured in a new variable by 

performing the same re-sampling on the time variable 

(García-Muñoz et al., 2003). When a batch has a variable that 

starts and ends on the same value for each batch, and changes 

monotonically over time, this variable can be used as an 

indicator variable in place of time (e.g. reaction conversion) 

(Nomikos and MacGregor, 1995). More complex alignment 

algorithms, such as DTW and COW can give better trajectory 

alignment based on features (shapes) within the data. This is 

achieved by compressing and stretching the time axis of the 

process data to align it to a reference trajectory. Care must be 

taken that the alignment is of the features, and not just 

matching the variable’s level across the batches. For 

example, if an addition of a solvent is slightly more for one 

batch, DTW will not correct for this and therefore the batches 

will still not be truly aligned (Kassidas et al., 1998, Fransson 

and Folestad, 2006).  

The selection of the alignment techniques must be done on a 

case-by-case basis. In this case study, two techniques were 

implemented. Data cutting was applied to each batch. Firstly, 

the data prior to the start of the first dry (1) was cut as the 

dryer was empty and therefore the data does not contain 

information. The second region that was cut was all the data 

following the higher temperature higher pressure drying 

phase (5) since the focus of the investigation is on the cause 

of extended drying which starts immediately post this time 

point. Finally, the data between the two low-pressure low-

temperature drying phases (2) was also cut. This was because 

during this time the PID (proportional + integral + derivative) 

controller for the jacket temperature is on automatic, however 

the circulation pump for the jacket is stopped, therefore the 

measurements obtained during this period do not reflect the 

conditions the batch is operating under. The time elapsed for 

this cut region was retained as it may be important in the 

analysis. 

An indicator variable could only be used on the region within 

phase (4) where the jacket temperature is ramped, however 

this is only a small section of the data. Linear interpolation 

was thus used for batch trajectory alignment and carried out 

on each of three sections: section (1); section (3) and (4); and 

section (5), thereby ensuring each batch had the same number 

of samples. 

2.2 Detection and Removal of Questionable Batches 

Two hundred and twenty one batches were extracted from the 

process historian and aligned by the method detailed in 

section 2.1. The next step was to identify the location of 

missing data. There are many potential causes of missing data 

and many methods to deal with it. (Walczak and Massart, 

2001) provide an overview of some of these techniques. The 

data analysed from the industrial process contained large 

sections of missing data as a result of problems when 

extracting the data from the continuous data historian and 

forming it into batch segments. There were eighteen batches 

found to have significant periods of missing data.  
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The date and time stamps on the electronic batch record 

(EBR) were used to identify the start and end points of each 

operational phase of a batch. Eighteen of the batches had 

issues due to one of the date stamps not being present in the 

EBR. This may be due to several factors, including if the 

process operator was required to ‘exit a unit operation’ to 

resolve an issue on the plant to progress the batch. Where this 

was the case, the data was imported as a zero vector, because 

the location is not able to be identified reliably. These 

eighteen batches were removed resulting in two hundred and 

three batches to be included in the analysis 

Identifying questionable data is important as not only can 

spurious data impact on model development, but the causes 

of non-conforming data may also be of interest. The process 

data was plotted to identify questionable batch trajectories. 

Twenty-three batches were identified as having atypical 

controller responses (Fig. 3). More specifically, the controller 

output was fixed at the maximum value for a period of time 

during either: the first low-pressure, low-temperature phase 

(1); the second low-pressure, low-temperature phase (3); or 

both low-pressure, low-temperature phases (1) and (3). 

Immediately prior to the occurrence of this, the controller 

output moved to 0% and the vacuum started to decay. These 

are characteristics of the DCS entering the fail phase. The 

batch was then recovered; the pressure then dropped to an 

acceptable vacuum, and the controller output increased. The 

jacket temperature did respond to the controller moving, 

however it did not reach the set point, causing the controller 

output to remain at 100%. 

 

Fig. 3. Questionable behaviour of controller output. 

The PROVOX
®
 sequences in the detailed design 

specification were then interrogated and it was found that 

there was an error in the fail sequence logic for this part of 

the operation. During the low-pressure, low-temperature 

drying phases, water is re-circulated through the dryer jacket 

and heated using low pressure steam (Fig. 4). The jacket 

outlet temperature is used to control the steam valve position. 

When PROVOX
®
 goes into the fail phase, the steam control 

valve is set to zero, valve XV1169 is closed and valve 

XV1170 is opened. This allows cold water to be circulated in 

a single pass through the jacket, cooling the dryer contents 

(Fig. 5). When the batch is recovered, the controller returns to 

automatic, however the valves remain in the cooling position. 

This causes the jacket outlet temperature to rise with the heat 

from the steam; however, as the water is not re-circulated, the 

jacket temperature does not rise sufficiently to allow the 

steam valve to start to close (Fig. 6). 

 

Fig. 4. Dryer heat transfer system during routine drying 

operation. 

 

Fig. 5. Dryer heat transfer system during failed operation 

 

Fig. 6. Dryer heat transfer system after failed operation 

recovery. 

All of the batches exhibiting this behaviour were excluded 

from the analysis. A further ten batches were removed 

because the vacuum was lost during one of the vacuum 

drying phases, and seven batches were excluded because the 

dryer failed during one of the operations causing the batch to 

be cooled for a period of time before the operator recovered 

the batch and continued the drying process.  

MPCA was then applied to identify any questionable batches 

that remained within the data-set that had not been observed 

from the analysis of the raw data. The data for each of the six 

process variables (including batch elapsed time) were 

unfolded to give an I×JK matrix (Fig.7). This allows for the 

comparison of the batches about the mean trajectory, and 
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Fig. 11. Unfolding data (J×KI). 

therefore batches that significantly differ from the mean 

trajectory are identified as questionable (Nomikos and 

MacGregor, 1994). 

  

 

 

 

 Fig. 7. Unfolding data (I×JK). 

 
 

Fig. 8. Process data for I×JK MPCA model. 

 

Fig. 9. Questionable batch identification using Hotelling T
2
. 

 

Fig. 10. Hotelling T
2
 of data with questionable batches 

removed. 

Hotelling T
2
 (Hotelling, 1947) was used to identify 

questionable batches (Fig. 9). It is a measure of how far a 

sample (batch) is from the origin of the principal component 

model for all retained principal components. One batch was 

observed to exhibit non-conforming behaviour and was 

removed (Fig. 10). The resulting cleaned data set contained 

one hundred and fifty three batches (sixty nine percent of the 

original data set). To understand the underlying causes for 

extended drying time, it is important that the data-set only 

includes batches that exhibit variation under ‘normal’ 

operating conditions. 

Finally those batches where the dryer started the cooling 

operation after the final vacuum drying period (6) were also 

removed. This was to ensure that the calculation of extended 

drying time is consistent for each batch and does not include 

periods where the batch was actively being cooled. This 

resulted in a further twenty batches being excluded giving a 

final data-set size of one hundred and thirty-three batches. 

The last stage in terms of pre-processing was to remove the 

spikes in the process data (Fig. 8) seen around time points 

1500 and 3000 as these are artefacts of the alignment method 

and do not contain any relevant process information.  

 

3. MULTIWAY PRINCIPAL COMPONENT ANALYSIS 

3.1 Process Variable Selection and Data Unfolding 

Three additional variables were created from the process 

data: the first derivatives of the contents temperature, jacket 

temperature and vacuum pressure. This allows information as 

to how the temperature and pressure change with time to be 

included in the model.  

The differential variables and the 

jacket temperature and controller 

output variables were filtered with a 

low pass filter to remove noise 

resulting from the instrumentation 

and the controller. The data was then 

split into two groups based on the 

extended drying time. The first group, 

‘Good’, comprised twenty batches 

with extended drying times of less 

than three hours. The second group, 

‘Bad’, comprised forty-two batches 

where the extended drying times were 

greater than ten hours. These values 

were chosen to allow for a separation 

in the data, so any differences 

between ‘Good’ and ‘Bad’ batches 

could be observed (Fig. 12). The data 

was then unfolded in the JxIK 

direction (equivalent to J×KI) prior to 

the  application of PCA.  

3.2 Data Scaling 

Scaling the data in an appropriate manner is important as the 

method selected can have a significant impact on the quality 

of the model. (Gurden et al., 2001) gives examples on scaling 

multi-way data. In this paper, the mean trajectories were 

removed from each of the process variables, consequently the 

deviations from the process means were modelled using 

MPCA. The range of the process data varied significantly. 
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For example, pressure ranged from 40 mbar to 1050 mbar, 

whilst the range of the controller output was -10 % to 110 %. 

Furthermore, the behaviour of the variables differ 

considerably resulting in large deviations from the mean 

being possible for the vacuum pressure at the transition 

points between vacuum and atmospheric pressure drying, 

compared to the behaviour of the other variables. The data 

was therefore scaled, to lie between -1 and + 1 ensuring that 

each variable was equally weighted in the analysis. 

 

Fig. 12. Selection of ‘Good’ and ‘Bad’ batches using 

extended drying time 

A PCA representation was then built on the scaled ‘Good’ 

batches data-set with the scaled ‘Bad’ batches data-set then 

being introduced. The scores plots for each batch were 

compared (Fig. 13) and the main difference observed was in 

principal component two, with a clear separation between 

‘Good’ and ‘Bad’ from progression index 1200 onwards.  

 

Fig. 13. Scores plots for J×KI MPCA 

3.3 Contribution Analysis and Interpretation of the Scores 

Plots 

Contribution analysis has been shown to be useful in 

multivariate process control, for identifying the variables 

indicative of an out of control signal in the scores from a 

PCA representation (Chen et al., 2009). In this paper, they are 

used to identify those variables indicative of the different 

structures in the principal component scores, for different 

groups of batches.  

Consider the unfolded data matrix X (J×KI) with I batches, J 

process variables and K samples. After performing MPCA, 

the scores, T, are contained in a KI×N matrix, where N is the 

number of principal components retained. This is then 

unfolded to obtain a three dimensional matrix of scores, T, 

(I×K×N). For the k
th

 sample, nth
 
principal component, and ith 

batch, the score is: 

                    

 

   

 (1) 

where pj,n is the loading for the j
th

 variable and the n
th 

principal component. The scores can therefore be 

decomposed into J contributions, one for each variable. For 

example, the k
th

 observation contribution to the score of the 

i
th

 batch and the n
th

 principal component from the j
th

 variable 

is: 

                      (2) 

and therefore the contribution for the k
th

 observation for the 

n
th

 principal component and j
th

 variable can be summed 

across all batches: 

                    

 

   

 (3) 

and thus grouped batches can be compared.  

The contributions to the scores were then calculated for 

samples 1200 to 2400 for principal component two, as it was 

an area of interest identified from the scores plots (Fig. 13). 

The contributions for the ‘Good’ batches and ‘Bad’ batches 

are shown in Fig. 4, and the difference between the 

contributions are shown in Fig. 15. 

 

Fig. 14. Contribution of scores for ‘Good’ (left) and ‘Bad’ 

batches (right). 

It is clear from Figs. 14 and 15 that the contents temperature 

is contributing most significantly to the difference in the 

scores between the ‘Good’ and ‘Bad’ batches. The 

temperature profile for the region of interest (time points 

1200 through 2400) was compared in terms of extended 

drying time. In Fig. 16 the dark profiles are the ‘Good’ 

batches and the light profiles are the ‘Bad’ batches. It can be 

noted that the temperature of the ‘Bad’ batches is lower. This 

differentiation in batch temperature occurs at the end of the 

temperature ramp (4) and is carried throughout the remainder 

of the drying process. The lack of clear differentiation in the 

scores on the other principal components indicates that this is 

the primary indicator of extended drying present with respect 

to the variables currently monitored on the dryer. 
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Fig. 15. Difference between contribution on scores for 

‘Good’ and ‘Bad’ batches. 
 

 

 

 

 

 

 

 

 

 

Fig. 16. Temperature for ‘Good’ and ‘Bad’ batches. 

As no other process variables were highlighted as 

contributing significantly and no other regions of interest in 

the scores were identified from the retained principal 

components, the cause of extended drying is therefore 

hypothesised to be a characteristic of the batch as it enters the 

dryer that becomes visible when the batch temperature is 

elevated. The root cause is likely to lie further up stream in 

the reaction, crystallization, and/or filtration processes and 

this is currently under investigation.  

 

4. CONCLUSIONS AND FUTURE WORK 

Several operational issues have been identified on the 

chemical plant with respect to the dryer, during the 

identification of non-conforming batches. These issues have 

been highlighted and will be addressed in due course. The 

removal of the affected batches from the data-set meant that 

more subtle operational changes could be highlighted as 

indicative of extended drying times.  

The application of MPCA enabled extended drying to be 

associated with a characteristic of the batch that is seen 

relatively early in the drying process. The root cause of 

extended drying therefore lies up stream of the dryer. Future 

work will include investigating the reactor and filter to 

identify the likely causes of extended drying through 

multiblock multiway principal component analysis. 

Process data alignment is also an important issue for the 

analysis of this industrial data-set prior to the application of 

MPCA. For this study a straightforward alignment technique 

was applied due to the nature of the batch process control, 

however it should be noted that more complex alignment 

techniques such as DTW and COW may have a significant 

impact on the results of the application of MPCA where more 

complex process dynamics are present.  
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