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Abstract: In this paper a novel method for batch-to-batch modelling and optimization, Iterative Learning 
Partial Least Squares Optimization (IL-PLSO) is proposed. This method uses a recursive technique to 
update a multi-way PLS model so that it is able to track the varying dynamics from one batch to the next. 
Based on the model obtained at the end of one batch, a Quadratic Programme (QP) is used to identify the 
required trajectory for the primary manipulated variable in the subsequent batch to ensure that the target 
end-point quality is met. This target quality can be gradually increased to optimise the productivity, or 
yield of the process. The capabilities of the proposed IL-PLSO method are illustrated through its 
application to optimise the end-point product quality of a benchmark simulation of a fermentation 
process. In this application, the proposed algorithm is able to identify an optimal trajectory for the 
manipulated variable after approximately 10 batches. The results are shown to compare very favourably 
with alternative approaches. 

Keywords: Iterative methods, Partial Least Squares, Optimal control, Adaptive control, Batch control, 
Quadratic programming. 

 

1. INTRODUCTION 

Almost all processes in nature work through cycles and as 
most industrial processes are based on natural systems, they 
too tend to be cyclic. Iterative Learning Control (ILC) is a 
technique, first applied in robotic systems, that was designed 
to deal with the control of systems such as this. In ILC, 
information collected from previous cycles of the system is 
used to obtain an optimal Manipulated Variable Trajectory 
(MVT) in subsequent cycles. The optimal MVT is typically 
obtained by minimizing a function related to the difference 
between the actual and desired outputs of the system (Owens 
& Hätönen 2005). ILC and similar techniques, such as 
Repetitive Control and Run–to-Run Control have been 
successfully applied in many control applications (Wang et 
al. 2009). 

The focus of the work described in this paper is optimising 
fermentation processes, where the control requirement is 
typically to identify an appropriate trajectory, or feeding law, 
for substrate addition, which ensures that product quality or 
yield is maximised. The use of optimization procedures to 
improve yield and product quality is crucial in fed-batch 
processes, such as fermentation systems, as there are intense 
pressures on manufactures to improve quality and 
profitability of these processes (Zhang & Nguyan 2008). 
Unfortunately, the optimization and control of batch 
processes is complicated by the nature of the dynamics, 
which tend to contain nonlinearities, have slow response 
times and contain large numbers of variables that affect the 
outputs of the system (Lei et al. 2001).  

As a result of the difficulties in controlling batch processes, 
many such processes in industry operate in open-loop, which 
is far from ideal. To regulate such processes, several 
techniques have recently been proposed in academia. One 

approach is to design a control system that is based on a 
mechanistic understanding of the dynamics within the 
process (Jobé et al. 2003; Picó-Marco et al. 2005; 
Valentinotti et al. 2003). A major drawback with this 
approach is that the knowledge required to develop such a 
control system is typically unavailable. As a result, 
alternative approaches have been proposed that utilise data-
driven or empirical models to estimate the optimal feeding 
law (Fu & Barford 1992; Mezghani et al. 2001; Lee & Lee 
2003; Francois et al. 2003; Camacho et al. 2007; Busch et al. 
2007; Zhang & Nguyan 2008). 

Several approaches have been proposed for modelling the 
dynamics of batch and fed-batch processes. These include 
non-linear techniques, such as neural networks (Lennox et al, 
2001b) and multi-way extensions to multivariate statistical 
methods, such as Partial Least Squares (PLS) (Nomikos and 
MacGregor, 1995). The simplicity and ease with which PLS 
models can be identified has made them particularly popular 
in batch applications. PLS models are identified for a process 
by reducing the dimensionality of the measured variables by 
projecting them on to a new Latent Variable space (Wold et 
al, 1984).  

Whilst multi-way PLS models have traditionally been used in 
fault detection studies (Lennox et al, 2001a), in recent work 
their application to regulate batch processes has been 
proposed. For example, in Flores-Cerrillo & MacGregor 
(2004) and Flores-Cerrillo & MacGregor (2005), the authors 
use latent variable models to define a cost function, which is 
solved to identify an optimal manipulated variable trajectory. 
Wan et al. (2012) later extended this technique to enable it to 
provide improved disturbance rejection capabilities. These 
PLS based control techniques have until now been based on 
PLS models with fixed parameters, that don’t explicitly 
consider the iterative nature of the batch process. Improved 
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process operation can be obtained by adapting these models 
to the local conditions of the process. For example, Camacho 
& Pico (2007) presented a Batch to Batch gradient-based 
optimization method that utilised adaptive PLS models. Their 
technique gathered data from the process and then used these 
data to update the PLS model at the end of each batch. Their 
results showed significant improvement in end-point quality 
compared to those presented in Pham & Larsson (1998) and 
Lei et al (2001). However the gradient based approach that 
was applied in this study required data from approximately 
20 batches before the process could begin to be optimised 
and then took a further 60+ batches before the process was 
optimised. Operating such large numbers of batches can in 
many cases be impractical or financially prohibitive. 

This article presents an alternative approach to batch-to-batch 
optimization that defines a cost function for batch 
performance, which takes in account the change in the 
manipulated variables, and that is based on a multiway 
adaptive PLS model. This cost function is then solved using a 
QP to identify a suitable Manipulated Variable Trajectory 
(MVT) that can be applied to optimise the process.  

The paper is organized as follows: Section 2 presents the 
mathematical tools used in the proposed IL-PLSO technique. 
Section 3 presents the methodology employed in the adaptive 
optimization scheme. Section 4 deals with the case study and 
compares the results with those obtained in other research 
studies. Finally, in section 5 the conclusions from this work 
are presented.  

2. MATHEMATICAL PRELIMINARIES 

2.1 Partial Least Squares modelling 

PLS regression (Wold et al, 1984) is a popular technique used 
in batch modelling. It reduces the dimensionality of the 
variables included in the model by projecting them on to a 
Latent Variable (LV) space and then performing the 
regression in this space using only a limited number, n, of 
these LVs. The technique is described by equations 1 and 2. 

 

 � � ��� � � (1) 
 � � ��� � 	 (2) 

The PLS model describes the correlation between the output 
quality variables Y, and the input variables �. The loading 
matrices � and � describe the relationships between the � and 
� matrices to the scores for each LV respectively. The � 
matrix is referred as the scores of the LVs and � and 	 are the 
residual matrices, which are obtained when some of the LVs 
are discarded. 

PLS can be applied to the three-dimensional datasets 
obtained in batch processes by unfolding the data contained 
in the X and Y matrices, as presented in Nomikos and 
MacGregor (1995). This can be achieved by extending the 
variables (J) and the time intervals (K) of the data in the 
batch (I) direction (batch-wise unfolding). Equation 3 shows 
the 3D to 2D transformation of the � matrix.   

 �
�, 
. �� � �
�, 
�� (3) 

2.2 Adaptive PLS model 

Batch to batch modelling requires the use of adaptive 
techniques to enable the developed model to gradually adjust 
itself to better approximate the local conditions of the process 
as they change from one batch to the next. Batch processes 
tend to be highly non-linear, but over limited operating 
spaces, linear models, such as multi-way PLS techniques 
have been shown to provide a reasonable approximation of 
the process dynamics (Nomikos and MacGregor, 1995). The 
adaptive optimisation technique proposed in this article 
gradually adjusts the operating point of the process, by 
manipulating the MVT from batch to batch. The optimal 
MVT is determined by using an optimisation function to 
minimise the difference between the estimated end-point 
quality of the batch and its target. The estimated end-point 
quality is provided by a multi-way PLS model that adapts to 
the current conditions of the batch.  

It is important, at least in the case studies investigated in this 
paper, that the model adapts such that it gives greater 
weighting to the most recent batches and forgets older 
batches. The reason for this is that as the operating conditions 
change from batch to batch, so too will the process dynamics 
and it is important that the model captures the most recently 
encountered dynamics. 

A computationally efficient method for adapting PLS models 
was proposed by Qin (1998). This approach incorporates a 
forgetting factor, �, which enables the model to remember 
only the most recently collected data. Using Qin’s approach, 
a new PLS model is identified when data from a new batch, x 
and y becomes available. New X and Y matrices are 
formulated as follows: 

 � � ����
�� � (4) 

 � � ����
�� � 

(5) 

Where P and C are obtained from the previously identified 
PLS model. 

The number of batches of data, N, that are used in the 
adaptation phase is related to the forgetting factor, �, in the 
following way (Dayal & MacGregor 1997): 

 � � 1
1 � � 

 where                       0 � � � 1 

(6) 

2.3 Quadratic Programming Optimization 

To identify the MVT that is required to satisfy a performance 
criteria, such as a specific target end-point quality, a cost 
function, related to this must be determined and solved. 

In the work reported in (Flores-Cerrillo & MacGregor 2004), 
the authors used an optimisation algorithm to identify the 
MVT that minimised a function that described the quadratic 
difference between the target for a quality measurement and 
its estimated value. The cost function used in that work is 
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provided in equation [7]. In this expression, constraints in the 
latent variable space are introduced to ensure that the process 
does not move too far away from the original operating 
conditions. 

 min∆"      $�% � �&'(�)*$�% � �&'( �  ∆"�)+∆" 

where         �%� � 
∆" � ",���� 

st                ∆"-./ � ∆" � ∆"-01 
 

(7) 

Where �% is an estimate of the final quality; �&' is the target 
end-point, or set-point; ", is the score vector for the current 
batch; ∆" is the change in the score vector which is to be 
optimized; )* and )+ are diagonal weighting matrices. In the 
research published in (Zhang et al. 2010), the authors use a 
similar approach using the score directly in the cost function. 

The use of constraints in the latent variable space is not ideal 
as the real constraints are imposed on the raw measured 
variables. Equation 8 transforms the cost function in to the 
the space of the manipulated variables, 2: 

min∆2 $�% � �&'(�)3$�% � �&'( �  ∆2�)4∆2 

s.t. �%� � 56789:0;<=� �� 

>? � 2% � 2? 

(8) 

Where >? and 2? are vectors containing the lower and upper 
bounds; the score vector for the current batch 56789:0;<=�  can 
be decomposed into the input variable vector � and the 
projection weights matrix @A as defined in equations 9 and 
10. 

 56789:0;<=� � ��@A (9) 

 @A � @ B��@C�1
 (10) 

In order for the optimisation to consider changes in the initial 
conditions of the batch, the vector of input variables is 
defined as in equation 11 (Flores-Cerrillo & MacGregor, 
2004). This vector divides the measured data in to the 
previous process measurements, �-D0&EFDG� ; values for the 
previously implemented manipulated variable changes, 
2.-'HD-D/;DG� ; future changes to the manipulated variable, 
∆2 � 2IE;EFD�  and future estimated values for the process 
measurements (which are determined using missing data 
techniques that utilise the identified PLS model),  �IE;EFD� . 

�� � J�-D0&EFDG     � 2.-'HD-D/;DG�     ∆2 � 2IE;EFD�     �IE;EFD�    K (11) 

Using equation 11, equation 8 can be reformulated as a QP 
problem defined by equation 12. 

 min∆E
.�   
1
2 ∆2�M∆2 � N�∆2 

where  M � @OIE;EFDA ��)*�@OIE;EFDA� � )+ 

N� � J�
@A��� � �&'K)*�@OIE;EFDA�  

∆2 � 2% � 2IE;EFD  

s.t. >? � 2IE;EFD � ∆2 � 2?�2IE;EFD  

(12) 

The diagonal matrices )3 and )4 are the weights that describe 
the relative importance of the difference between the target 
and predicted quality and the changes that need to be made to 
the trajectory of the manipulated variable. In this work, 
)3 was set to be the identity matrix and )4 was adjusted until 
an acceptable response was obtained. 

 

3. METHODOLOGY 

The proposed IL-PLSO algorithm is applied in 6 relatively 
straightforward steps.  

Step1: Collect data from open–loop batches  

A suitable initial trajectory is identified for the manipulated 
variable. This could be the MVT for a golden batch, an initial 
estimate of a suitable trajectory, or as was applied in the case 
study in Section 4, a vector of zeros. A small PRBS is applied 
to this nominal MVT and then data is collected from m 
batches.  

In most manufacturing processes, the cost of running batches 
to identify the system is prohibitive as it requires process 
excitation and hence there is an incentive to use the minimum 
amount of initial testing. In the case study investigated in this 
work, it was found that 3 test batches were sufficient to 
identify the initial model, which is consistent with the results 
of Flores-Cerrillo & MacGregor (2005). 

Step 2: Identify Initial PLS model 

A PLS model is identified using the data collected from the m 
initial batches. To determine the number of latent variables 
required in the model, leave-one-out cross validation utilising 
the mean squared prediction error (MSEP) was used. 

Step 3: Estimate the future values of x based on initial 
conditions 

The initial conditions for the current batch are collected and 
the PLS model is used to make a prediction of the end-point 
quality, y. When making the prediction, the future values of 
the manipulated variables are set to nominal conditions and 
the Projection to the Modal Plane (Arteaga & Ferrer 2002) 
algorithm is used to obtain the future values of the process 
variables in the �� vector. This algorithm is defined in 
equation 13. 

�P:R� � 
�*:P� �*:P�S*�*:P� �*:P� �P:R�  (13)  

Where: �*:P is a matrix which consist of the values of P for 
the measured and implemented values x from the start point 
to the interval A where the control is applied (�*:P) and �P:R 
is a matrix with the values of P which corresponds to the 
estimated future values of x (�P:R). 

Step 4: Calculate optimal MVT  

The objective in the case study investigated in this paper was 
to increase end-point yield, which was the chosen measure of 
quality for this particular process. Hence, the target measure, 
ysp was increased from batch to batch and the quadratic 
optimization function, defined by equation 12 was then 
solved to find a suitable vector for the MVT. The precise 
amount by which the target end-point quality can be 
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manipulated from one batch to the next will be problem 
dependent, but the case study in Section 4 provides some 
suggestions as to how the end-point quality can be increased 
from batch to batch. 

For the PLS model to adapt to the new conditions, it is 
necessary to apply continuous excitation to the MVT. This 
excitation need not be large and in the study described in 
Section 4, a low amplitude PRBS was added to the newly 
acquired MVT. Finally, the MVT is passed through a low 
pass filter to reduce the changes made from one sample point 
to the next, transforming the MVT into a time correlated 
vector (Camacho et al. 2007). Smoothing the MVT was 
found to improve the results significantly.  

Step 5: Run the batch and collect data 

The batch is run with the computed MVT and data is 
collected. At the end of the batch a check is made that the 
output quality has improved. If it has not then the previous 
MVT, with newly computed PRBS should be applied to the 
next batch and the target for the output should remain 
unchanged. If however, quality is improved then the output 
target should be increased slightly for the next batch.  

Step 6: Model Adaptation 

With data collected from the most recent batch, two different 
options are available for adapting the model for use in the 
next batch. If the number of batches of data available is less 
than LV+1, then the model cannot be identified using the 
maximum number of LVs. Therefore equations 13 and 14 
should be employed to increase the size of the � and � 
matrices. If the number of batches exceeds LV+1 then 
equations 4 and 5 should be used. 

 �/DT � ���'FDU.VE& :0;<=D&�
�� � 

(14) 

 � � W��'FDU.VE& :0;<=D&�
�� X 

(15) 

 

4. CASE STUDY 

4.1 Saccharomyces cerevisiae production 

The proposed IL-PLSO was applied to the simulated 
fermentation process described in (Lei et al. 2001). This is a 
simulation of a Saccharomyces cerevisiae fed-batch 
production process. The proposed algorithm has been 
demonstrated on several fermentation simulations. However, 
because of space limitations, only the results obtained from 
the Saccharomyces simulation are presented here. The results 
for this system were consistent with those obtained from 
other simulations. 

The objective of the case study was to maximize the end-
point biomass concentration by iteratively optimising the 
trajectory of the highly concentrated glucose feed (100g/l). 
The total time for each batch is 10 hours, which is divided in 
to 100 sample points. To simulate the effects of sensor noise, 
Gaussian noise with a signal to noise ratio of 0.01 was added 

to the output quality measurement and ±5% variability in the 
amplitude of the initial conditions in order to simulate 
realistic process changes. The amplitude of the PRBS added 
to the MVT was set to 3% of the nominal amplitude, which is 
consistent with the work published in (Camacho et al. 2007). 

The simulation model includes 11 model reactions and 9 
mass balance dynamic equations. The variables for the 
equations and initial conditions are shown in table 1. 

Table 1 Variables of the dynamic equations 

Variable or state Initial condition 

Glucose concentration  0 (g/l) 

Pyruvate concentration 0 (g/l) 

Acetaldehyde concentration 0 (g/l) 

Acetate concentration 0 (g/l) 

Ethanol concentration 0 (g/l) 

Biomass concentration 1 (g/l) 

Active cell material 0.3  

Acetaldehyde dehydrogenase 0.0075  

Volume 7 (l) 

 

The initial conditions in this study were consistent with those 
used in other research studies that have used this simulation 
(Lei et al. 2001; Camacho et al. 2007). One exception to this 
is the initial value for the active cell material. This was 
reported to be 0.1 in Camacho & Pico, 2007. However, 
consultation with the authors of this work suggests that the 
value used was actually 0.3. 

The process is subject to a volume constraint of 9 litres in the 
reactor, and therefore the feeding law must be set such that 
this volume is not exceeded. This volume constraint is 
defined in equation 16. 

Y Z. /V-./0H 
;V;0H;.-D

.[./.;.0H
� Y ∆Z.

;V;0H;.-D

.[./.;.0H
� \]^-01 � \]^./. 

(16) 

Equation 16 is equivalent to equation 17, which takes account 
of the fact that the initial volume in the reactor was 7 litres. 

 Y ∆Z.
;V;0H;.-D

.[./.;.0H
� 2 � Y Z/V-./0H

;V;0H;.-D

.[./.;.0H
 

(17) 

Equation 17 represents a simple inequality constraint for 
volume. However, care must be taken with it as the 
normalisation within the PLS model must be considered, as 
shown in equation 18. 

 _ A ∆2` � 2 � ? A 
2/V-` A 5"aE/V- � b9_cE/V-`� 
                    Where    _ � hijkilhkm\n^ A 5"aE/V- 

? � hijkilhkm\n^ A o1  1   1 … 1q&.rD 2stu  

(18) 

Equation 18 scales the mean centred variables from the PLS 
model and tries to restrict the volume to 9l. As the model 
adapts, the mean of each of the variables may not be zero, 
which implies that the optimized values of �u won’t be 
exactly zero centred. In the case study reported in this paper, 
this didn’t cause any problems. However, future work will 
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focus on ensuring that volume constraints can be better 
handled within the optimisation routine. 

Figure 1 shows the final volume for 100 batches, produced in 
the case study. This figure shows that the 9l constraint was 
not exceeded during any of the batches. 

 

Figure 1 Final volume for 100 batches  

4.2  Results from the application of IL-PLSO 

The initial PLS model obtained in step 1 was identified using 
data collected from 3 batches with 5% variability in the 
biomass concentration, the active cell material and the 
acetaldehyde dehydrogenase.  

It should be noted that one of the objectives in this study was 
to develop an optimisation approach that required the 
minimum number of initial test batches. Using more batches 
to identify the initial PLS model was not found to provide 
significant benefits. The value of λ for the model adaptive 
modelling was set to 0.8 which corresponds to the relevant 
information of 5 batch data sets, similar results were obtained 
from 3 to 10 batches used for the adaptive modelling. For this 
simulation, the number of LV used was automatically 
adjusted from batch to batch up to 7 LV, from that point on 
the number of LV was kept fixed.   

To try to increase biomass production from batch to batch, 
the target, or set-point, for the end-point biomass 
concentration was initially set to a final value of 2g/l and then 
increased by 1g/l whenever the target was reached. The 
biomass target reached a value of 11g/l, which was not 
exceeded. The initial value of 2g/l was considered 
appropriate through analysis of the variation in biomass 
concentration in the three initial batches. By imposing only a 
gradual increase in the end-point target, this allowed the 
model to slowly adapt to changing conditions in the 
simulation.  

Figure 2 compares the results obtained when a fixed target of 
11g/l was applied to the process (solid line) and when a 
gradually increasing target (dotted line) was applied over 30 
batches. The trends on this graph were the averages obtained 
from 100 repeated tests. These show that although the fixed 
target led to a faster increase in biomass concentration, it also 
produced greater variability in this concentration and as a 
consequence a gradually increasing target was used in 
subsequent tests. Upper and lower limits are also plotted on 
this graph. These limits were set at +/- 3 x the standard 
deviation of biomass production over the 100 test runs. 

 

Figure 2 Comparison of the constant and variable set points. 

To ensure only smooth changes in substrate were applied, 
upper and lower constraints of 0 l/h and 0.6 l/h respectively 
where applied to ∆2.  

Figure 3 shows the final biomass concentration that was 
obtained for 100 batches when IL-PLSO was applied to the 
simulation. Also displayed on this figure are the approximate 
results obtained using the technique proposed by (Camacho 
et al. 2007). This figure shows that the proposed algorithm 
converges to its optimal point after approximately 15 batches 
and that the final biomass concentration for both techniques 
is very similar. The first 3 batches for IL-PLSO and the first 
20 batches for the Camacho & Pico technique relate to the 
batches used to identify the initial PLS model. 

 

 

Figure 3 Final Biomass concentration average for 100 tests. 

The mean of the Biomass concentration for the IL-PLSO 
result was 10.98 g/l with a standard deviation of 0.27 g/l. In 
comparison, the results obtained by Camacho and Pico 
(2007) were a final average biomass concentration of 10.74 
g/l with a standard deviation of 0.16 g/l. This indicates that 
the consistency of the approach proposed by Camacho and 
Pico (2007) exceeds that of IL-PLSO. However, IL-PLSO 
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converges significantly faster and requires fewer initial 
batches. 

The MVT evolution of the feeding law of a test with 100 
batches is shown in figure 5. The final MVT shows a smooth, 
low frequency response, which is consistent with what would 
be required on a real process.   

 

Figure 4 Optimal MVT for 100 batches 

 

5.  CONCLUSIONS 

A novel batch to batch optimization technique termed IL-
PLSO was proposed and its performance compared with 
results presented elsewhere. This comparison showed that 
although IL-PLSO produced results with slightly lower 
consistency, the speed of convergence was considerably 
faster than alternative techniques.  

For the proposed technique to be applied to the simulated 
process investigated in this study, only 3 initial batches of 
data were required. These batches required PRBS sequences 
to be applied to the primary manipulated variable and using 
these data an initial model of the process could be identified. 
Following this, only a further 12 batches were required 
before the algorithm converged to an optimal MVT. 

The IL-PLSO method is well suited for high cost – low 
quantity production in batch multivariate processes, and can 
be used to improve even further the MVT obtained from an 
understanding of the process dynamics, a golden batch 
trajectory or even an initial guess at the optimal MVT.  
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