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Abstract: Dry and semi-dry tight formation gas wells normally share the characteristic
production profile defined by an initial high production, with an early steep decline and
subsequent low pseudo steady-state gas rates. Small volumes of co-produced liquids will, even
for dry gas wells, eventually bring the wells into the state of liquid loading, causing erratic
unpredictable production rates deteriorating the performance of the wells. This state of the
wells can be prevented by performing short shut-ins when the gas rate falls below the minimum
rate needed to avoid liquid loading. Multi-well shut-ins may however lead to very high and
low peak rates, possibly causing problems for the capacity of shared surface systems or lower
and upper bounds on the total rate in a production plan. This paper presents a Lagrangian
relaxation based scheme for scheduling of shut-in times for late-life tight formation gas wells
with a shared gathering system. The proposed scheme includes a QP formulation for solving
the Lagrangian dual, together with an aggregated construction and improvement heuristic for
generating primal feasible solutions from the solution of the Lagrangian. We include several test
examples to demonstrate the efficiency of the proposed decomposable scheme.

Keywords: Optimization, Scheduling, Decomposition, Plantwide control.

1. INTRODUCTION

Natural gas produced from unconventional, tight forma-
tions such as tight-sand and shales constitutes a significant
part of the gas supply in North America [EIA, 2011] as
well as in the Middle East and the North Africa. The
exploitation of these resources is land-based, and requires
a large number of wells to achieve sustainable recovery
rates. The properties of these wells vary, depending on the
the formation permeability, the well depth, the completion
of the wells, and in particular on the presence of gas
condensate or liquids in the formation. Tight formation
wells still share a number characteristics [Kennedy et al.,
2012], an early peak or plateau rate followed by a steep
decline and a long transient decline to low pseudo steady-
state production rates.

One of the major production challenges of mature tight-
formation wells is related to liquid loading. This state is
reached when the wells’ pressure is insufficient to lift co-
produced liquids to the surface [Whitson et al., 2012], caus-
ing liquid accumulation in the wellbore which increases
the backpressure in the well. The accumulated liquid may
be due to low saturations of water in the formation,
condensates or oil, or left-over water from the hydraulic
fracturing. Almost all gas wells eventually reach this state,
which can be observed as low erratic unstable production
rates [Al Ahmadi et al., 2010]. Common remedies for liquid
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loading gas wells include installing a plunger-lift or gas-lift
system, or a downhole pumping unit. A different approach
however, involving no installation of additional equipment,
is to perform short, regular shut-ins [Whitson et al., 2012,
Knudsen et al., 2012]. For low permeability wells, regular
short shut-ins can be performed with almost no loss of
ultimate recovery; the lower the permeability, the less is
the loss of cumulative production [Whitson et al., 2012].

An illustration of a land-based gas well gathering system
is given in Fig. 1, with multiple wells feeding gas into
a shared compressor. Each well has its own wellhead
choke, and it is quite common for each well to have
a small separator for gas-water separation. Liquid or
condensate rich wells would include additional separation,
with storage of condensates in on-site tanks. The pressure
drop from the wellhead choke to the compressor inlet
is normally very small, and the wells essentially operate
on a constant wellhead pressure set by the line or the
compressor inlet pressure. Note that the framework in this
paper is aimed on dry and semi-dry gas wells.

Production planning for the type of gas wells considered
is often subject to lower and upper bounds. The bounds
may both be soft, as bounds on the total rate specified by
the day-to-day gas price and demands, or they can be hard
bounds limited by rate handling capacities in the surface
equipment. Examples on hard bounds are maximum rates
in the surface lines, a lower bound on the separator
inlet pressures, and maximum and minimum throughput
rates in the compressors. The field development of tight

Preprints of the 10th IFAC International Symposium on Dynamics and Control of Process Systems
The International Federation of Automatic Control
December 18-20, 2013. Mumbai, India

Copyright © 2013 IFAC 147



Sales line

Gas compressor

Wellhead
choke

Separator
Well

Fig. 1. Illustration of surface gathering systems.

formation assets is performed in a stepwise order: the wells
are always drilled and completed sequentially over time,
among other based on the success of the initial wells, while
the surface equipment and infrastructure is installed in an
early phase. The gas compressors are hence designed and
installed with capacity for a given number of planned wells
based on their expected decline curves. As the rates from
the initially connected wells eventually reach low pseudo
steady-state levels, there will be some excess capacity in
the compressor, and new wells which would earlier be
bypassed are connected to utilize the load capacity of the
compressor. Generally, a lower bound on the total gas rate
is also common, either due to delivery requirements in a
sales contract, or to prevent compressor surge. Note that
gas compression can both be performed by the operators of
the wells, or the gas can be sold to mid-stream companies
which compress the gas before selling it to the customers.

The subsequent peak rate after well shut-ins may be high
with a steep decline, and consequently lead to particularly
high and low total-rates in systems with many wells if the
shut-ins are poorly scheduled. Special care must therefore
be taken to prevent possible violation of total-rate bounds
in a production plan or in the capacity of the compressor.
This may be cast into a feasibility problem for the total
rate with respect to upper and lower bounds. On the other
hand, however, there is often an incentive to maximize
production within the upper and lower bounds which gives
rise to an optimization problem.

The problem of finding optimal shut-in times for a set of
tight formation wells that maximize the production within
the aforementioned bounds can be formulated as a mixed
integer linear program (MILP) by using simplified well
models. For this problem the use of Lagrangian relax-
ation provides an efficient solution technique. By dualizing
complicating linking constraints, the Lagrangian problem
can be easily solved as a set of independent subproblems,
while its optimal value provides a best bound. Still, the
technique requires an efficient method for finding optimal
Lagrangian multipliers, as well as a heuristic for finding
primal feasible solutions based on the solution from solving
the dualized problem. In this paper, we present methods
for both the latter problems.

This paper is part of an on-going research effort to increase
production and recovery of oil and gas systems by applying
process systems techniques [Foss, 2012]. The rest of the
paper is organized as follows: in section 2 we review the
single well and reservoir model together with the primal
MILP formulation. Section 3 includes the main contribu-
tion and describes the Lagrangian relaxation scheme, with
numerical results and concluding remarks in section 4–5.

2. PROBLEM FORMULATION

2.1 Model review

Hydraulically fractured shale and tight gas reservoirs are
mainly modeled using either dual porosity system (see e.g.
Al Ahmadi et al. [2010]), or as fully discretized single-
porosity dual-permeability models [Cipolla et al., 2010].
The former, idealized modeling scheme is often used to
derive static production forecasting tools by assuming
steady-state operations, while the latter scheme typically
leads to complex, numerically demanding models. To ob-
tain a numerically simple model that captures dominat-
ing physics during shut-in operations, a single well and
reservoir proxy model for dry shale-gas wells was derived
in Knudsen et al. [2012]. Using a single layer, cylindrical
geometry, a radially dependent permeability k(r) and the
integral transformation from pressure p to pseudopressure
m(p) [Al-Hussainy et al., 1966],

m(p) = 2

∫ p

0

p′

µ(p′)Z(p′)
dp′, (1)

the reservoir proxy model is formulated as the PDE

φµ(p)c(p)
∂m

∂t
=

1

r

∂

∂r

(
k(r)r

∂m

∂r

)
, (2)

where φ is the porosity, µ(p) is the gas viscosity, Z(p)
is the gas compressibility factor and c(p) is the total
compressibility. The PDE (2) is defined with boundary
conditions and initial conditions, using the usual Neumann
boundary conditions with a producing well in the center
and no-flow conditions at the outer boundary. The result-
ing initial/boundary-value problem is discretized in space
using central difference approximations, and in time using
the backward Euler scheme, or equivalently, a first order
collocation on finite elements, see Knudsen et al. [2012]
for details. In the design of tight-formation gas wells, a
maximum rate is specified based on the surface equipment
together with long-term strategic planning of the wells.
Moreover, a minimum wellhead pressure is required with
respect to the given line pressure. The well rate will ini-
tially, or after a shut-in, deliver a peak or plateau rate
for some time until the wellhead pressure is equal to the
line pressure and the rate starts to decline. Combing these
expected features, a simple aggregated well and wellbore
model was given in Knudsen et al. [2012], leading to the
discrete time proxy model

Amk+1 = mk +Bqk+1, (3a)

m0 = minit, (3b)

qk = min
{
qmax, β

(
m1,k −m(eSpw)

)}
, (3c)

where m ∈ R4 is a vector containing the pseudopressure
in each grid block, q is the gas rate, qmax is the specified
maximum rate, pw is a constant wellhead pressure equal
to the line pressure, and β and S are constants. A is
a tridiagonal matrix. The model was tuned to match a
high fidelity reservoir simulator for the frequency range of
interest in this study, see Knudsen and Foss [2013].

A critical gas rate qgc can be specified as a lower bound
on qk in order to ensure continuous removal of liquids in
the wellbore. The rate qgc is normally calculated by the
model suggested in Turner et al. [1969]. By ensuring that
the well is either shut-in or producing above qgc, the wells
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are kept free from liquid accumulation, while we limit the
valid region of our model and avoid the need to use a
multiphase model for low liquid systems as dry shale and
tight-gas wells.

2.2 MILP formulation

An MILP formulation for tracking a reference rate was de-
rived in Knudsen and Foss [2013], based on the disjunction
that a well must either be shut-in or producing above the
critical rate qgc. An exact linear reformulation of the nons-
mooth well and wellbore model (3c) was derived to obtain
the MILP model. The model can be applied to the problem
described above with only few modifications. Let j ∈ J be
the well index, and k ∈ K be the time index. Furthermore,
let τ1 and τ2 be the minimum number of timesteps a well
must be shut-in and producing, respectively, between each
production and shut-in cycle. A minimum shut-in time
is often required to achieve sufficient pressure build-up
during shut-ins. Minimum production times are typically
required from an operational point of view to avoid too
frequent shut-ins with possible wear and tear of equipment,
and to keep the well up-time high. The bounds of various
forms described in section 1 will be treated as hard bounds
on the total rate. With these considerations, we can define
the following primal MILP model:

Z = max
∑

k∈K\K

∑
j∈J

qjk ∆k, (4a)

s.t.∑
j∈J

qjk ≤ qup
tot, ∀k ∈ K (4b)∑

j∈J
qjk ≥ qlow

tot , ∀k ∈ K (4c)

Ajmjk+1 = mjk +Bjqjk+1, ∀j ∈ J , k ∈ K \K (4d)

mj0 = mj,init, ∀j ∈ J (4e)

qjk ≥ y1
jkqgc, ∀j ∈ J , k ∈ K (4f)

q̃jk = β (mjk1 −mwf) , ∀j ∈ J , k ∈ K (4g)

qjk ≤ y1
jkq

max
j , ∀j ∈ J , k ∈ K (4h)

qjk ≤ q̃jk, ∀j ∈ J , k ∈ K (4i)

qjk ≥ qmax
j

(
y1
jk + y2

jk − 1
)
, ∀j ∈ J , k ∈ K (4j)

qjk ≥ q̃jk − y2
jkq̃

M
j , ∀j ∈ J , k ∈ K (4k)

y1
jk + y2

jk ≥ 1, ∀j ∈ J , k ∈ K (4l)

with the minimum shut-in and production time given by
the constraints [Takriti et al., 2000]

y1
jk−1 − y1

jk ≤ 1− y1
jρ, ∀j ∈ J , k ∈ K, (4m)

ρ ∈ [k + 1,min {k + τ1 − 1,K}]
y1
jk − y1

jk−1 ≤ y1
jρ, ∀j ∈ J , k ∈ K, (4n)

ρ ∈ [k + 1,min {k + τ2 − 1,K}]
where y1

jk, y
2
jk ∈ {0, 1}, q̃M

j := βj (mmax −mwf) is a
big-M type parameter, ∆k is the timestep and mwf :=
m(eSjpw ). Initial conditions for y1

jk, i.e. for k = −1, are

given with (4m)–(4n). Note that we assume that the inlet
pressure to the compressor is kept constant.

3. LAGRANGIAN RELAXATION

The J wells in the MILP formulation (4) are loosely
coupled in the sense that the only constraints linking them

together are the lower and upper total-rate constraints
(4b) and (4c). A viable solution approach is hence to
use a decomposition technique. Let νk ≥ 0 and λk ≥ 0
be Lagrangian multipliers associated with the constraints
(4b) and (4c), respectively. By dualizing these linking
constraints, we obtain the Lagrangian relaxation

ZLR (λ, ν) = max
∑

k∈K\K

∑
j∈J

qjk ∆k+

∑
k∈K

λk

(∑
j∈J

qjk − qlow
tot

)
+
∑
k∈K

νk

(
qup
tot −

∑
j∈J

qjk

)
. (5)

The Lagrangian relaxation (5) decomposes the primal
problem (4) into |J | independent subproblems,

ZjLR (λ, ν) = max
∑

k∈K\K

(∆k + λk − νk) qjk

+ (λK − νK) qjK (6)

s.t. eq. (4d)–(4n) for given j ∈ J .

The Lagrangian relaxation provides an upper bound on
the primal optimal value Z. By duality theory, then

ZLB ≤ Z ≤ ZLR, (7)

for any λ, ν ≥ 0, where ZLB is the objective value of any
primal feasible solution. Due to the inherent nonconvexity
of the binary variables y1

jk, y
2
jk, we may have a nonzero

duality gap. The least upper bound of the Lagrangian
relaxation is called the Lagrangian dual,

ZD = min
λ, ν

ZLR. (8)

Solving (4) by using Lagrangian relaxation is an iterative
technique consisting of three major parts, illustrated in
Fig. 2. Each of these parts must fulfill certain requirements
for the method to be efficient: the relaxed problem (5)
must be significantly easier to solve than the original
problem, the Lagrangian dual (8) must be solvable in an
efficient and stable manner, and based on the solution
of (5) and (8) it should be possible to generate good
primal feasible solutions using some heuristic. Finally, the
duality gap should be sufficiently small when terminating
the algorithm.

The chosen Lagrangian relaxation (5) clearly renders a re-
laxed problem that is easy to solve, as it leads to separable
subproblems (6). These problems only involve maximizing
the gas rate qjk with given costs νk and λk generated by
solving the Lagrangian dual. The dual variables represent
the cost of violating the constraints (4b)-(4c). Hence, dif-
ferent values of νk and λk lead to different coefficients
in objective function (6) of the Lagrangian subproblems,
which possibly leads to different shut-in schedules y1

jk that
maximizes production for each well while avoiding liquid
loading.

3.1 A Lagrangian heuristic

The solution obtained by solving the Lagrangian (5) is gen-
erally infeasible with respect to the dualized constraints
(4b)-(4c), i.e. it is primal infeasible. A commonly applied
technique to generate primal feasible solutions is to fix
the binary variables from the solution of the Lagrangian
and solve the resulting LP. This is not tractable for (4),
since the binary variables y1

jk represents the actual degrees
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Set max iter N and εl.
Set ZLB = −∞, n = 1

Choose λ1, ν1, γ, and set λ̄ = λ1, ν̄ = ν1

Solve |J | subproblems to
compute ZLR(λn, νn)

While n ≤ N

Construction heuristic from ZLR(λn, νn)

ZLR(λ̄, ν̄)− ZLB < εl ?

no

n = n+ 1

1. The Lagrangian

3. The Dual

Initialization

If n > 1: update λ̄, ν̄ and γ.
Solve Lagrangian Dual to obtain v

and λn+1, νn+1

v < εl?
yes

Terminate

if (ZLH ≡ 0)

Update ZLB

Perform local search

else

2. Lagrangian
heuristic

yes
Terminate

no

no

Fig. 2. Lagrangian relaxation scheme.

of freedom. We can, however, still utilize the solution of
the Lagrangian (5) to heuristically generate primal fea-
sible solutions. The following general scheme is inspired
by Fischetti and Lodi [2008]. Let Vu ⊆ K and V l ⊆ K
be the sets of indices in which the total rate

∑
j∈J q

n
jk

obtained by solving the Lagrangian in iteration n violates
the constraints (4b) and (4c), respectively. Quite often the
solution from the Lagrangian is almost primal feasible.
Since its objective value provides an upper bound on Z,
we would like to generate feasible solutions as close as
possible to the solution of the Lagrangian. In analogy with
the phase I problem in the primal Simplex algorithm, we
introduce artificial variables σ+

k , σ
−
k ≥ 0 and define the

following construction heuristic, using the solution of the
Lagrangian (5) as the starting point for the MILP:

ZLH = min
∑
k∈Vu

σ+
k +

∑
k∈Vl

σ−k (9a)

s.t. ∑
j∈J

qjk − σ+
k ≤ q

up
tot, ∀k ∈ Vu (9b)∑

j∈J
qjk + σ−k ≥ qlow

tot , ∀k ∈ V l (9c)∑
k∈K\K

∑
j∈J

qjk∆k ≥ (1 + ε)ZLB (9d)

eq. (4b), ∀k ∈ K \ Vu

(4c), ∀k ∈ K \ V l

(4d) - (4n), ∀j ∈ J , k ∈ K
where ZLB is the best known primal feasible solution, and
with ε ∈ [0, 0.01]. A drawback of adding the objective
cut (9d) is that the starting point from the solution of
the Lagrangian (5) for given λn, νn may in some cases be
infeasible for (9). This is more likely in later iterations.
On the other hand, the similar problem definition without

including the objective cut may produce very poor fea-
sible solutions, since the original objective is completely
discarded in the modified objective (9a). We implement an
adaptive reduction of ε, in which we set εn+1 = 0.5εn each
time the construction heuristic terminates with ZLH 6= 0
within the allocated CPU time.

The solution from (9) is primal feasible if ZLH ≡ 0. When-
ever this occurs, we switch to an improvement heuristic
using Local branching [Fischetti and Lodi, 2003]. Given
a primal (integer) feasible solution ȳ1

jk, ȳ
2
jk, we then solve

the primal problem MILP (4) with the additional local
branching constraint∑

(j,k)∈{(J×K):ȳ1
jk

=1}
(1− y1

jk) +
∑

(j,k)∈{(J×K):ȳ1
jk

=0}
y1
jk +

∑
(j,k)∈{(J×K):ȳ2

jk
=1}

(1−y2
jk) +

∑
(j,k)∈{(J×K):ȳ2

jk
=0}

y2
jk ≤ r,

(10)

where the parameter r is the neighborhood radius. Starting
from the feasible solution ȳ1

jk, ȳ
2
jk, we hence search in a

limited neighborhood of the current solution for solutions
that improve Z by allowing at most r binary variables
to switch from one to zero, given by the first term in
both lines, and from zero to one, given by the second
term. From the recommendations in Fischetti and Lodi
[2003], we set r = 20 and impose a maximum CPU
time of 30 seconds for the improvement heuristic. If no
improved solution is found within the provided time, we
shrink the neighborhood by dividing the radius by two,
continuing until r is less than 5 or an improved solution is
found. Using a local search to improve an feasible solution
obtained by solving (9) may be particularly useful for
the current shut-in scheduling problem, as there may be
several almost similar shut-in patterns that provide almost
the same objective value. Note that the proposed heuristics
for obtaining primal feasible solutions may be combined
and modified in many different ways, such as in which of
the two heuristics the objective cut is added, possibly using
other improvements heuristics, or combining the two into
one heuristic.

3.2 Solving the Lagrangian Dual

Solution techniques for solving the Lagrangian dual can
generally be divided into methods based on subgradients
and methods based on cutting planes. The subgradient
method is easy to implement and widely used, but may
require extensive tuning of the stepsize to obtain good
practical convergence. Further, it lacks a true termination
criteria. The basic cutting plane method has better theo-
retical convergence properties, but may suffer from oscilla-
tions (instability), causing slow convergence for problems
with many dual variables. The problem is also unbounded
for initial iterations. To cope with these limitations, many
authors have suggested improvements of the cutting plane
method, see Frangioni [2005] for a thorough review.

The instabilities of the cutting plane method can be re-
duced by adding proximity control in terms of a trust re-
gion or a stabilization term in the objective function. Many
versions of this approach exist, see Hiriart-Urruty and
Lemarechal [1996]. To solve (8), we adopt a cutting plane
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method with penalty stabilization from Hiriart-Urruty and
Lemarechal [1996]. Let λ1, ν1 be initial multipliers, and let
qnjk, n = 1, 2, .. be the solutions obtained by solving the
Lagrangian for given multipliers λn and νn. Furthermore,
let λ̄, ν̄ ≥ 0 be the prox center or the stability center,
initially set equal to λ1 and ν1, and let ZLR(λ̄, ν̄) be
the objective value of the Lagrangian for the prox center.
To update the Lagrangian multipliers, we then solve the
quadratic program (QP)

ZD = min
η,λ,ν

η +
1

2
γ
(
||λ− λ̄||2 + ||ν − ν̄||2

)
(11a)

s.t.

η ≥
∑

k∈K\K

∑
j∈J

qnjk ∆k (11b)

+
∑
k∈K

λk

(∑
j∈J

qnjk − qlow
tot

)
+
∑
k∈K

νk

(
qup
tot −

∑
j∈J

qnjk

)
, n = 1, 2, ...

where || · || is the Euclidean norm and γ is a scalar penalty
parameter. In the next iteration n+ 1, a new cut is added
to (11) after solving the Lagrangian for λn+1, νn+1. More-
over, η defines a lower bound on ZD, while the subsequent
objective value of the Lagrangian ZLR(λn+1, νn+1) defines
an upper bound on ZD [Frangioni, 2005]. Comparing the
predicted reduction of the gap v := ZLR(λ̄, ν̄)−η ≥ 0 with
the actual decrease of ZLR, we define a step to be serious
if

ZLR(λn+1, νn+1) ≤ ZLR(λ̄, ν̄)−m1v, (12)

for m1 ∈ (0, 1) in which the prox center is updated, i.e.
λ̄ = λn+1 and ν̄ = νn+1, and the best upper bound
is set to ZLR(λn+1, νn+1). Otherwise, the current step
of (11) is declared a null-step, in which the prox center
is left unchanged. The weight γ on the penalty term is
updated by using the safeguarded quadratic interpolation
suggested by Kiwiel [1990]. The gap v serves as a second
termination criteria to the duality gap: if v < εl for some
small tolerance εl ≥ 0, then (11) terminates with optimal
multipliers λ̄, ν̄.

4. COMPUTATIONAL RESULTS

The proposed Lagrangian relaxation scheme for (4) is
tested on numerical examples using different number of
wells |J | and planning horizons |K|. We use the same
realization of the single well model (3) as in Knudsen and
Foss [2013], which was tuned and cross-validated against
a high-fidelity multi-fracture reference model. Each well is
assumed to have been operational for different lengths of
time and hence have different initial conditions. We use
a one-day fixed timestep, and set τ1 = τ2 = 2 days. The
lower and upper bound on the total rate, qlow

tot and qup
tot,

are set relative to the number of wells |J |, since these
are in practice designed according to the field and well
specifications. We set λ1 = ν1 = 0, initial penalty γ = 10,
m1 = 0.05, εl = 0.001 and maximum iterations N = 50.

The algorithm in Fig. 2 is implemented in GAMS v23.7.3,
using CPLEX v12.3 as MILP solver running up to six
threads in deterministic parallel mode. All computations
are performed on a Dell laptop with Intel Core i7 CPU
and 8 GB of RAM. We allow a maximum CPU time of
240 seconds for the construction heuristic. Any possible

infeasibility by the supplied starting point in the construc-
tion heuristic is attempted fixed by a root node repair
heuristic in CPLEX. Since the construction heuristic is the
most demanding in terms of computation time, we switch
directly to local branching using the best feasible point
and a diversification strategy with r = r+ dr/2e whenever
the construction heuristic fails to converge to ZLH ≡ 0 for
four consecutive steps.

Table 1 summarizes the results for 6, 10, 16 and 25
wells, with planning horizons from 14 to 56 days. The
reported solution times are real (clock) times. We com-
pare the results with solving (4) as one MILP using the
same CPLEX settings but with 60 minutes maximum
computation time. For the problems with 14 days plan-
ning horizon, the fullspace approach is clearly superior
for the 6 well example, while for the example with 16
wells, the Lagrangian scheme terminates with almost the
same duality gap as the fullspace approach but in one-
third of the computation time. The Lagrangian scheme
improves consistently compared to the fullspace approach
for larger problem sizes, both in the number of wells and
the length of the planning horizon. While the Lagrangian
scheme terminates with relatively small duality gaps for
all the large test instances in the lower part of Table
1, the fullspace approach struggles to find any feasible
solutions for many of these sets. The performance of the
proposed Lagrangian scheme is less efficient, however, for
long planning horizons, which is seen for the example
with 56 days planning horizon, where the algorithm is
terminated after 3 hours, but still with a duality gap less
than 3%. In the last row in Table 1, marked with a ∗, we
show average results for the example with 16 wells and a
28 days planning horizon, using 8 different realizations in
terms of different initial well conditions. The results are of
the same magnitude as the corresponding results in row 6
in the table with the single realization.
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q
low
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q
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Fig. 3. The optimized total rate compared to an approach
using fixed shut-in times.

In Fig. 3, the optimized total rate for the example with
16 wells and a 28 days planning horizon is compared with
an approach where each well is shut-in with a fixed shut-
in time of two days each time the well rate falls below
the critical rate qgc. Comparing the curves in Fig. 3, we
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Table 1. Computational results and problem sizes.

Lagrangian scheme Fullspace Problem size

|J | K Duality gap [%] Time [min] #iter Duality gap [%] Time [min] Binary var. Cont. var Constraints

6 14 6.7 23.2 50 2.0 60 180 541 1165
10 14 2.5 20.5 50 1.5 60 300 901 1921
16 14 0.9 23.3 50 0.7 60 480 1441 3055

6 28 3.6 20.3 30 2.5 60 348 1045 2285
10 28 2.1 21.3 21 5.2 60 580 1741 3769
16 28 1.1 20.4 23 1.1 60 728 2785 5995

16 42 1.4 49.5 24 100 60 1376 4172 8935
16 56 2.5 180 47 100 60 1824 5473 11875
25 28 0.3 15.5 15 1.6 60 1450 4351 9334
25 42 0.8 68.7 18 100 60 2150 6451 13912

1̄6∗ 2̄8∗ 1.8 24.5 24 (15† /1.5) (30/60) - - -

† One of the test sets has 100% duality gap at 30 min.

see how the optimized shut-in times avoid the very high
and low “peak” rates, which clearly would cause feasibility
problems for the lower and upper total rate constraints (4).
The relative difference in cumulative production between
the optimized shut-in times and the example with a fixed
shut-in time is negligible, even though the optimized
scheme generates long shut-in times for some of the wells.
This shows that an approach using optimized, possibly
longer, shut-in times is a viable production scheme.

None of the examples in Table 1 terminate with duality
gaps less than εl, i.e. the first termination in Fig. 2.
Although both the duality gap and the cutting-plane
associated gap v are consistently reduced in the iterations,
the major challenge is to reduce the upper bound, i.e.
to solve the Lagrangian dual (8). Limited testing with
other methods for solving the dual, including trust-region
cutting plane methods and the basic subgradient method,
indicates worse performance than the proximal QP (11).
The tightness of the upper bound provided by solving
the Lagrangian (in the case of maximization) may depend
on the chosen relaxation. For the MILP (4), a different
relaxation can be obtained by defining duplicate variables
of mk+1 and applying temporal Lagrangian decomposition,
though leading to a significant increase in the number of
dual variables. Observe that the total lower and upper
rate constraints may very well be time-varying. This would
be particularly meaningful if varying prices and demands
are taken into account in the production planning. There
are also several possible formulations other than (4a)–(4c)
for the problem considered: one possibility would be to
minimize an infeasibility parameter added to the bounds
(4b)–(4c). Finally, note that the scheme can easily be
parallelized using grid computing to further reduce the
computation time.

5. CONCLUDING REMARKS

This paper presents an efficient Lagrangian-based scheme
for shut-in optimization of tight formation well and com-
pressor systems. The proposed scheme is fairly general,
and can possibly be applied to other applications with
capacity type constraints similar to (4b)–(4c).
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