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Abstract: Saccharomyces cerevisiae, a eukaryotic model organism, is considered the ideal host for 
microbial production of plant secondary metabolites such as polyketides and alkaloids. However, 
industrial scale production of these valuable products using S. cerevisiae is limited by the availability of 
their precursor, aromatic amino acid tyrosine. Here, we describe a framework which uses a combination 
of computational modeling techniques to design an in silico metabolic engineering strategy that improves 
the flux through the aromatic amino acid pathway (shikimate pathway) in S. cerevisiae. The predicted 
yeast strain can be used as a platform strain for production of any heterologous products which require 
tyrosine, or any other aromatic amino acid pathway metabolites as precursors. The initial genome-scale 
strain design was performed using steady-state constraint-based modeling methods, Optknock and 
GDLS. The resulting design required deletion of multiple genes and was difficult to validate 
experimentally. In order to obtain an experimentally feasible design, a small-scale kinetic model was 
developed using Ensemble Modeling, and was used to prioritize the knockouts predicted by steady-state 
models for experimental validation.  
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1. INTRODUCTION 

Plant secondary metabolites such as polyketides and alkaloids 
are a diverse and important class of naturally-derived 
compounds with applications in pharmaceuticals, nutrition, 
and flavouring. Large-scale production of these valuable 
plant natural products is limited by the slow growth rate of 
some of the producing plants and typically low production 
efficiencies. Chemical synthesis of these compounds is 
challenging because of their complex structures. Therefore, 
there is a great incentive for producing these valuable 
compounds using microbial routes, which can facilitate 
industrial-scale production. Recent advances in recombinant 
DNA technology and synthetic biology have allowed for 
heterologous production of important plant secondary 
metabolites in genetically modified micro organisms (Maury 
et al., 2005, Hawkins et al 2008; Yan et al., 2007; Facchini et 
al., 2012).  

The yeast, S. cerevisiae is considered the ideal choice for 
heterologous production of polyketides and alkaloids 
primarily because its eukaryotic nature facilitates functional 
expression of plant derived enzymes of the alkaloid and 
polyketide pathways (Primrose, 1986; Zabriskie et al., 1986). 
In addition, the experimental techniques required to 
effectively express non-native plant genes are widely 
available for S. cerevisiae. Finally, the GRAS (generally 
regarded as safe) status of S. cerevisiae is attractive 
considering the nutrition and pharmaceutical applications of 
polyketides and alkaloids. 

 

Although several studies (Porro et al., 2005; Dejong et al., 
2006; Ro et al., 2006) have reported that production of plant 
secondary metabolites in S. cerevisiae is feasible, their yields 
are limited by insufficient supply of precursor metabolites 
(Jiang et al., 2005). As a consequence, the current microbial 
production processes of important plant products require 
addition of expensive precursor metabolites as media 
supplements, which can prove to be a major hurdle for 
economic feasibility. Therefore, for economically feasible 
industrial-scale production of these bioproducts, it is 
necessary to increase the flux towards microbial precursors.  

In this study, the objective is to obtain a S. cerevisiae 
³SODWIRUP�strain´ with improved tyrosine pools which can be 
used as a microbial host for production of important 
compounds such as vinblastine, strictosidine, morphine, 
codeine etc. In yeast, like other organisms, tyrosine is 
produced using shikimate pathway which starts from the 
central carbon metabolites phosphoenolpyruvate (PEP) and 
erythrose 4-phosphate (E4P). There is limited work done 
previously on improving the aromatic amino acid production 
in S. cerevisiae as E. coli is the preferred microbe for 
industrial-scale production of aromatic amino acids. To our 
knowledge, Luttik et al.,(2008) and more recently Koopman 
et al., (2012) are the only reported works that focused on 
engineering S. cerevisiae for over-production of aromatic 
amino acids. Their works described the importance of 
removing the feedback inhibition in the shikimate pathway 
and disrupting the aromatic amino acid degradation pathways 
on improving the intracellular aromatic amino acid pools.  
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While the above mentioned efforts did result in improvement 
of the aromatic amino acid pools, their engineering strategies 
were limited only to the shikimate pathway. However, to 
maximize the production of tyrosine, a holistic design that 
would account for the entire genome of the yeast is required. 
The process of performing a genome-scale design is not 
trivial and cannot be performed by observation because of the 
complexity of metabolic networks. This complexity of 
metabolic networks acts as a motivation for using 
computational modeling techniques for designing metabolic 
engineering strategies. In this work, we describe a 
methodology which uses a combination of steady-state and 
dynamic modeling techniques to design an effective 
engineering strategy for improving tyrosine production in S. 

cerevisiae. 

2. METHODS 

2.1 Steady-state modeling  

 

In this study, initial strain design was performed using 

steady-state strain design algorithms over the S. cerevisiae 

genome-scale model iMM904 (Mo et al., 2009). Bilevel 

optimization methods, Optknock (Burgard et al., 2003) and 

GDLS (Genetic Design by Local Search)  (Lun et al., 2009), 

which are based on the fundamental steady-state modeling 

methodology called Flux Balance Analysis (FBA) (Orth et 

al., 2010) were used for steady-state strain design. The 

OptKnock strain design algorithm was performed using an 

in-house implementation, searching up to four simultaneous 

reaction deletions with the bioengineering objective of 

maximizing an artificial cytosolic L-tyrosine exchange flux 

and the cellular objective of growth rate maximization. The 

simulation was done using glucose as the limiting substrate 

under aerobic minimal media conditions. Genetic Design by 

Local Search (GDLS) (Lun DS, 2009) was performed using 

an in-house implementation with the same boundary and 

media conditions and either cytosolic L-tyrosine or cytosolic 

chorismate exchange fluxes as the bioengineering objective. 

GDLS was run with a neighbourhood size of 2 and a 

maximum of 10 knockouts. Steady-state simulations were 

done in Matlab using CPLEX ILOG for optimization.  

2.2 Dynamic modeling 

In this work, dynamic modeling approach was used to 
prioritize the knockout predictions made by steady-state 
modeling for experimental validation. The kinetic models of 
S. cerevisiae reported in literature are currently restricted to 
the central carbon metabolism (Rizzi et al., 1997; Teusink et 
al., 2000). These models could not be used for our purpose 
because their reaction networks did not include the target 
reactions suggested by steady-state models. Therefore, a 
small central model which could estimate the dynamic 
behaviour of S. cerevisiae was developed using Ensemble 
modeling (EM) procedure reported by Tran et al., (2008). 

Ensemble modeling has been used previously to improve the 
yields of lysine in Escherichia coli (Contador et al., 2009). 

2.2.1 Development of ensemble models 

The framework for ensemble modeling requires the reaction 
network, reference steady-state flux data, reference steady-
state concentration data and the Gibbs IUHH� HQHUJ\� �û*V��
values for reactions as the input to generate the models. A 
network with sixty three reactions that includes the reactions 
from central carbon metabolism of S. cerevisiae and also the 
reactions suggested by steady-state modeling (Fig. 1) was 
designed. Compartmentalisation in S. cerevisiae was 
accounted by separating the metabolites in cytoplasm and 
mitochondria. Metabolites that are present in both the 
compartments were connected through exchange reactions. 
However, cofactors like ATP, NADPH and NADH were 
assumed to freely transport across the two compartments. The 
û*V� IRU� WKH� UHDFWLRQV� LQ� the network were obtained from 
Jankowski et al. (2008). 

 Fig. 1: Schematic of S. cerevisiae central model used in this 
work along with calculated steady-state flux data. All 
reported fluxes are in (mmol/gDwhr).  

EM framework uses a reference steady-state flux data to 
anchor the models. The reference steady-state flux data for 
the network was estimated from the experimental C13 flux 
data (Blank et al., 2005) using the following optimization 
formulation 

  

 
 
 
In the above formulation, Vcal  is the calculated steady-state 
flux data for all the reactions in the network and Vm is the 
corresponding reported flux value in Blank et al (2005). All 
flux values in the formulation have the units of 
(mmol/gDwhr). S is the stoichiometric matrix. The reaction 
bounds are chosen as 0 and 1000 for irreversible (Vcal,irrev), 
and -1000 and 1000 for reversible reactions (Vcal,rev). The 
biomass equation for the reconstructed model was obtained 
from Heer et al. (2009), and was assumed to be composed of:  
 

           Minimize             (Vcal - Vm)
2
 

Subject to            S * Vcal = 0    

                         0< Vcal,irrev <1000 

                         -1000< Vcal, rev <1000 
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Fig. 4: Accumulation of coumarate, the sink for tyrosine, in 

the four strains that were compared. 

From the above data it can be observed that, accumulation 
rates of coumarate in model suggested û$52���PXWDQW�ZHUH�
comparable to that of ARO4FBR mutant reported earlier by 
Luttik et al. However, when removal of feedback inhibition 
was combined with ARO10 gene deletion, which is the 
û$52���$52�

FBR mutant, the intracellular levels 
coumarate were much higher than in either of the above 
cases. Recently Koopman et al., (2012), working on 
production of naringenin in S. cerevisiae, also made similar 
observations. 

While the ARO10 deletion study indicated the importance of 
using steady-state models for designing metabolic 
engineering strategies, there are many limitations to the 
practical implementation of strain designs obtained using 
these models. In particular, because regulatory and metabolite 
concentration information is not accounted in such models, 
many of the design suggestions are either unnecessary or 
biologically infeasible. For example, in this study the model 
predicts that seven deletions are required for completely 
growth-coupled tyrosine production. However, it is 
experimentally tedious, and possibly even lethal, to make a 
mutant with seven gene deletions. Therefore, it is important 
to determine which of the deletions suggested by the steady-
state model are more effective in re-routing the carbon flux 
towards tyrosine, while not having an adverse effect on 
growth. In order to address this, we employed kinetic models 
of metabolism to verify the effects of mutations discovered 
by genome-scale strain design algorithms. 

3. 3 Dynamic modeling results 

In order to determine the most effective subset of reactions 
suggested by steady-state models, the 42 models screened 
from EM were used to make an in silico prediction of the 
metabolic flux distribution when each of the remaining six 
reactions other than ARO10 are deleted. A time period of 
1000 seconds and a step size of 50 was used while simulating 
the deletions in 42 models. The effect of these deletions on 
biomass formation, accumulation of shikimate pathway 
precursors PEP, E4P and also on the accumulation of DAHP, 
the first metabolite of shikimate pathway was monitored (Fig. 
5). In our dynamic model the entire aromatic amino acid 
pathway was not included to reduce the size of the network 
and considered DAHP as a proxy metabolite for the entire 
pathway (Fig. 1).  

The plots below (Fig. 5) show average rate of accumulation 
of PEP, E4P, DAHP and biomass formation predicted for the 
42 models. Based on the above data two deletions were 
selected, one in glycolysis ± gly1 and one in pentose 
phosphate pathway ± ppp, as the targets for subsequent 
experimental validation. The selections were based on the 
ability to increase the shikimate pathway precursor pools, 
PEP and E4P and that of DAHP, while not being lethal to cell 
growth. The actual reaction names were kept confidential in 
this paper because the experimental implementation of these 
deletions is currently in progress. 

 

 

Fig. 5: Estimation of average PEP, E4P, DAHP accumulation 
and biomass formation rates when deletions suggested by 
GDLS are implemented using the forty two dynamic models 
obtained from Ensemble modeling. 

 

4. CONCLUSION 

This work is the first reported study that investigated the 
genome-wide engineering of S. cerevisiae for improved 
tyrosine production. Although steady-state strain design 
algorithms are effective in predicting genetic engineering 
strategies while considering the entire genome of the 
organism, the predicted strategies can sometimes prove to be 
difficult for experimental validation. Therefore, to predict the 
optimal strategy for production of any metabolite with 
complete accuracy, it is desirable to have a detailed genome-
scale dynamic model of metabolism, which is currently 
impractical because of the lack of information on kinetic 
parameters and regulatory network. Under this scenario, the 
modeling procedure discussed in this work provides an 
effective way to make a genome-scale experimental design.  
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