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Abstract: Heterogeneity is a common property of biological signalling systems. In most cases,
heterogeneity is described qualitatively, only for some classes of responses have qualitative
measures been proposed. For cell death signalling, this paper is the first to propose a
quantification of heterogeneity. The challenge hereby is the dual aspect of heterogeneity. First,
only part of the cell population may die while the others survive a specific death stimulus.
Second, the time of death can vary from cell to cell.
The proposed heterogeneity measure is based on an L1 measure of the deviation between a
homogeneous response and the population cumulative density function, on a nonlinearly scaled
time. This measure allows for a quantitative study of the dependency of the heterogeneity of
the responses to different stimulus doses or parametric variations. This will for example enable
sensitivity analyses of heterogeneity.
The heterogeneity measure is illustrated by applying it to two different published cell ensemble
models of apoptosis signalling, each having approximately 50 states and over 100 kinetic
parameters. This analysis reveals that heterogeneity is more pronounced at an intermediate
range of doses. In other words, high doses or low ones yield more homogeneous responses in the
cell population.

Keywords: systems biology, polynomial models, robustness, perturbation analysis,
biochemical systems.

1. INTRODUCTION

An important property of biological systems is that the
underlying cells are heterogeneous. Heterogeneity of ap-
optotic signalling system models is usually specified by
varying protein concentrations across the cell population,
[Spencer et al., 2009; Schliemann et al., 2011], as have been
measured experimentally. These distributions affect both
the proportion of cells dying in response to a specific death
stimulus and the distribution of when dying cells actually
die.

This paper proposes a quantitative measure of heterogen-
eity applicable to both experimental and simulation data
of heterogeneous cell population responses.

? This work was supported in part by the Francqui Foundation
and the Belgian Network DYSCO (Dynamical Systems, Control,
and Optimisation), funded by the Interuniversity Attraction Poles
Programme, initiated by the Belgian State, Science Policy Office.

The manuscript is organised as follows. First, Section 2
gives a brief introduction to the biological implication
of the present study as well as of the two mathematical
models used as test cases. Section 3 presents the proposed
measure of heterogeneity, while Section 4 applies it to
both mathematical models. The paper finishes with the
Conclusions in Section 5.

2. BACKGROUND

This section gives a brief description of the modelling
of apoptosis signalling in heterogeneous cell populations
as well as of the two mathematical models the proposed
method is applied to.

2.1 Heterogeneity in biological systems

The advancement of single cell experimental techniques
such as flow cytometry and fluorescent microscopy has
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revealed that cell-to-cell variability is essential for a num-
ber of biological phenomena. Examples include adaptiv-
ity [Gatenby et al., 2009], immune response [Hawkins et
al., 2007], stress response [Yeyati and Heyningen, 2008],
differentiation and development [Tomlin and Axelrod,
2007], cancer cell drug resistance [Cohen et al., 2008;
Gatenby et al., 2009], Salmonella infection [Restif et al.,
2013] and programmed cell death [D’Herde et al., 2000;
J. Schmid et al., 2012; Spencer et al., 2009; Schliemann
et al., 2011].

Several recent papers quantify heterogeneity in biology
systems, using standard deviation or the width of e.g. the
central 90% of the distribution [Brooks and Grigsby, 2013;
Cicone et al., 2013; Maruoka et al., 2013; Cicone et al.,
2013].

However, heterogeneity in signalling leading to pro-
grammed cell death can have two outcomes. First, only a
sub-population may die. Second, the time at which death
occurs varies from cell to cell. Therefore, heterogeneity of
apoptosis cannot be quantified by the standard deviation
of the distribution of time of death. Currently, no quant-
itative measure of heterogeneity of cell death exists.

2.2 Biological modelling

To correctly describe biological systems with cell-to-cell
variability and all-or-none or oscillatory behaviour requires
an appropriate modelling framework, such as cell ensemble
modelling, which combines a large number of individual
models that differ in some key parameters, see Figure 1.
The cell ensemble modelling approach has been already
successfully applied to heterogeneous cultures of E. coli
growth [Domach et al., 1984], yeast metabolic oscilla-
tions [Henson, Müller and Reuss, 2002], apoptosis in a
mammalian cell batch culture [Meshram et al., 2012], as
well as Fas- [Toivonen et al., 2011] or TRAIL-induced
apoptosis [Spencer et al., 2009].

Applying cell ensemble modelling to systems of biochem-
ical reactions modelled by the law of mass action and
neglecting spatial and stochastic effects, leads to a sys-
tems of ordinary differential equations. We will use here
the notation Horn and Jackson, 1972; Feinberg, 1995;
Gatermann and Huber, 2002. A model of a biochemical
signalling network consists of a set of r reactions of the
following form

α1S1 + . . .+ αns
Sns
→ β1P1 + . . .+ βnp

Pnp
,

where Si denotes substrates that are transformed into the
products Pi. The factors αi and βi denote the stoichiomet-
ric coefficients of the reactants. All substrate and product
concentrations are collected intro a vector c ∈ Rn. Let us
denote by x ∈ Rm the vector of complexes, i.e. all left and
right hand sides of the reactions and by B ∈ Rm×n the
corresponding incidence matrix, such that

c = Bx.

By the definition of the complexes, any reaction of the
model maps exactly one complex to another one. The
corresponding incidence matrix is Ia. Then, the model can
be described by

d

dt
c = BIa diag(k)θB(c)

where

θBi(c) = cBi1
1 · cBi2

2 · . . . cBin
n

and ki denotes the reaction rate of the i-th reaction.

2.3 Apoptosis

Apoptosis is an important form of programmed cell death
utilised to remove damaged or unneeded cells within an
organism. Therefore, its regulation is very important and
misregulation of apoptosis can lead to severe patholo-
gies. Reduced apoptosis is for example present in cancer,
autoimmune diseases or viral infections, while enhanced
cell death is observable in neurodegenerative diseases or
AIDS.

The precise timing of the response of cell populations to
an apoptotic stimulus is usually heterogenenous. Below we
present two models incorporating this population hetero-
geneity [Aldridge et al., 2011; Schliemann et al., 2011] In
both, the heterogeneity is quantified in Section 4.

2.4 Aldridge model

Aldridge et al. [2011] propose a model of TRAIL-induced
apoptotic signalling in HeLa cells. The model code is
available as supplementary material of [Aldridge et al.,
2011].

The model consists of 57 species in 2 compartments,
cytoplasma and mitochondrion. These species participate
in 100 reactions, of which 46 are reversible and 54 irre-
versible. Of the 146 flows, 25 are quadratic, i.e. involve
two species, 103 are linear and 18 constant. There is a
permanent turnover of the 17 proteins of the cell. In the
cell population, their production rates are varied across the
population to follow lognormal distributions and simulated
using a cell ensemble model. Each cell is initialised in the
steady state, adjusted to cope with the modified protein
production rates.

Cell death corresponds to a sufficiently large activation of
Caspase-3, and is defined as the time at which the Caspase-
3 substrate PARP drops below a threshold of 50% of its
initial value.

2.5 Schliemann model

Schliemann et al. [2011] proposed a model of TNF-induced
pro- and anti-apoptotic signalling in KYM-1 cells, a human
rhabdomyosarcoma derived cell line. The model code is
available as supplementary material of Schliemann et al.
[2011], as well as on biomodels.org.

The model consists of 47 species, 89 complexes and 106
kinetic parameters (70 irreversible and 18 reversible reac-
tions). Five flows involve three species, 38 are quadratic
and 45 are linear in the species. The remaining ones are
constant flows.

Again, cell death corresponds to a sufficiently large activa-
tion of Caspase-3, i.e. the time point at which the Caspase-
3 substrate PARP drops below half its initial value.

The Schliemann model has a permanent turnover of the
19 proteins of the cell. Their production rates are varied
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Figure 1. Cell Ensemble Model Development. Based on prior knowledge, a single cell model is designed. Its simulations
are compared to single cell experimental data (top). If they do not agree, the model needs to be adjusted by varying
kinetic parameters or modifying the model structure. A cell population model is obtained by simulating an ensemble
of single cell models. The individual cell models are identical, except for the numerical values of some parameters,
which vary from one cell to the other according to some distribution. As for the single cell level, a comparison of cell
ensemble simulations with experimental data (bottom) might require a recalibration of the model, which can be
achieved on the single cell level or on the cell ensemble level. The model development is finished when simulations
and experiments agree on both single cell and cell population level.
One aspect of the population model check is the degree of heterogeneity. The here proposed criterion gives a
quantitative assessment of heterogeneity for model and data analysis.

across the population to follow lognormal distributions
and simulated using a cell ensemble model. Each cell
is initialised in the steady state without caspases, i.e.
adjusted to cope with the modified protein production
rates.

3. MEASURE OF HETEROGENEITY

Analysing heterogeneous cell population models such as
those presented in the previous section is challenging as
the heterogeneity depends on both a Boolean output (life
or death for a certain stimulus) and a continuous one
(time of death). To better quantify heterogeneity of the
cell population response, we needed a measure accounting
for heterogeneity in the sense of survival rate versus death
rate combined with the timing of death.

In economics, Lorenz curve and Gini coefficient are com-
monly used to quantify homogeneity of the wealth distri-
bution [Schader and F. Schmid, 1994]. This is illustrated
in Figure 2. The Gini coefficient quantifies heterogeneity,
it is defined as the area between the Lorenz curve L(·) and
the bisecting line, scaled by the maximal area, i.e.

GC = 2

∫ x100%

0

(
x− L(x)

)
dx.

Thus, a Lorenz curve on the bisecting line yields a Gini
coefficient of 0%. This corresponds to equal wealth distri-
bution. A Gini coefficient of 100% is obtained by a Lorenz
curve that follows the horizontal axis between 0 and 100%
and then jumps to 100%.

For programmed cell death, a homogeneous population has
all deaths occurring simultaneously. Thus, if we plot the
cumulative survival rate of the population, also denoted
the cell viability v(·), versus time, a homogeneous popula-
tion has a step like curve. Any deviation from this is due to
inhomogeneity of the population. To obtain a finite time
axis, the x-axis is compressed using the nonlinear mapping

t 7→ tanh
t

τ

with a positive scaling time τ . Then, find the time of death
of the median cell, t50%. For a homogeneous population,
the cell viability vhom(·) is 100% for t < t50% and 0%
for t > t50%. As measure of heterogeneity, we therefore
propose the L1-norm of the difference between v(·) and
vhom(·), i.e. the area above the cell viability in the interval
(0 t50%) plus the one below in the interval (t50% ∞),
normalised by the maximal area, which is equal to 1

2 :
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Figure 2. Illustration of Lorenz curve and Gini coefficient.
The Lorenz curve is the cumulative share of income
as a function of the cumulative share of people. The
closer the Lorenz curve is to the diagonal, the more
the wealth is evenly distributed.
The Gini coefficient is a number between 0 and 1
quantifying the homogeneity: It is twice the grey
area, i.e. the difference between Lorenz curve and
diagonal. Therefore, a Gini coefficient of 0 corresponds
to an even income distribution, while a 1 stands for
maximal inhomogeneity.

MH = 2

∫ 1
2

0

(
100%− v(ξ)

)
dx+ 2τ

∫ 1

1
2

v(ξ)dx

with ξ = τ atanh(x), or, in a more compact notation,

MH = 2

∥∥∥∥min

{
1− v(ξ), v(ξ)

}∥∥∥∥
L1
(
[0 1]

).
In the original time coordinates

t = τ tanh(x),

the equivalent definition is

MH = 2

∫ τ

0

sech2( tτ )

τ

(
100%− v(t)

)
dt

+ 2

∫ ∞
τ

sech2( tτ )

τ
v(t)dt

This definition ensures that the measure of heterogeneity
lies in the closed interval [0, 1] and that a homogeneous
population has a measure of 0. The parameter τ allows
for a weighting of survival rate versus timing of death
for dying cells in the quantification of heterogeneity. For
populations where at least half the population ultimately
dies, a useful choice for τ is τ = t50%, the time of death of
the median cell.

Figure 3 illustrates graphically the heterogeneity measure.
The plot shows the cell viability v(·) (magenta line) as a
function of time, on a time axis scaled by t 7→ tanh t

t50%
where t50% is the time of death of the median cell.

In a homogeneous population, all cells die simultaneously.
Thus, the cell viability curve of a homogeneous population
is constantly 100% until the common time of death, where
the curve drops directly to 0%. Any deviation from this
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Figure 3. Illustration of the Heterogeneity Measure. The
viability of the median cell is denoted by the solid
black line: before its time of death the cell lives
(100% viable), afterwards it is dead (0% viable). The
percentage of living cells within the cell population
is the magenta line. Obviously, it crosses 50% at the
time of death of the median cell t50%. The abscissa
is a normalised time axis, such that 0 h is a 0, t50%
at 1

2 and ∞ at 1. The difference between median cell
and cell population is highlighted in grey. The sum
of the grey surfaces, normalised by 1

2 , is the measure

of heterogeneity. The scaling of 1
2 is used as this is

exactly the maximal area of the grey surfaces.

step is due to heterogeneity. In Figure 3, these deviations
are highlighted by the grey background. The heterogeneity
measure HM combines a penalty for cells dying earlier than
the median cell as well as for those dying later.

If the majority of cells in the population survives, the
above definition for t50% is not possible. Then, it is
necessary to scale the time axis by a user-defined value,
for example half the time interval of interest.

4. RESULTS

The heterogeneity measure proposed above is now applied
to the two models of ligand-induced apoptosis. First, the
measure is applied to the Aldridge model, then to the
Schliemann model.

4.1 Aldridge model

The heterogeneity of the Aldridge model was analysed for
nine different stimulus doses, spanning five orders of mag-
nitude. Figure 4 shows the heterogeneity surfaces graph-
ically. Increasing the dose moves the time of death of the
median cell forward in time. The resulting heterogeneity
measure is however very similar in all cases, see Table 1.

Table 1. Heterogeneity measures of the Ald-
ridge model for nine different doses of stimuli.

The unit mpc stands for molecules per cell.

TRAIL [mpc] HM TRAIL [mpc] HM

10 0.24 1000 0.27
30 0.49 3000 0.27

100 0.33 10 000 0.27
300 0.28 30 000 0.28

100 000 0.28
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Figure 4. Heterogeneity analysis of the Aldridge model stimulated with three different TRAIL concentrations. A-C: The
cell viability of the cell population is plotted versus time as magenta line. The deviation between the population cell
viability and that of the median cell is highlighted by grey areas. The normalised area of grey is the corresponding
heterogeneity measure. A: 100, B: 1000 and C: 10 000 molecules per cell of TRAIL
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Figure 5. Heterogeneity analysis of the Schliemann model stimulated with different concentrations of TNF. A-F: The
cell viability of the cell population is plotted versus time as magenta line. The deviation between the population cell
viability and that of the median cell is highlighted by grey areas. The normalised area of grey is the corresponding
heterogeneity measure. A: 0.10, B: 0.30, C: 1, D: 3, E: 10 and F: 100 ng/ml TNF.

4.2 Schliemann model

The heterogeneity of the Schliemann model is now quan-
tified for TNF stimuli ranging five orders of magnitude, as
depicted in Figure 5. The numerical values of the hetero-
geneity measures can be found in Table 2. For high doses of
TNF, the responses are similarly heterogeneous, with HM
around 0.4. Interesting is a TNF dose around 0.30 ng/ml,
where the heterogeneity is very high. The corresponding
plot (Figure 5B) reveals this is partly due to the high
survival rate in combination with some cells dying at
approximatively half the time of death of the median cell.

For low stimuli such as 0.10 ng/ml, most cells of the
Schliemann model survive, see Figure 5 A, or the star-
marked HM in Table 2. In these cases, the automatic choice
of τ == t50% is not possible. The obtained heterogeneity
measure thus depends on the choice of τ . For very low
τ , the heterogeneity measure is close to 0. Increasing τ
results in larger measures. In the limit of very large τ ,
the heterogeneity measure approaches 2 ∗ (100% − v∞),
where v∞ is the cell viability for very large times. This
shows that for populations with most cells surviving the
heterogeneity measure can take arbitrary values between
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Table 2. Heterogeneity measures of the
Schliemann model for different doses of stimuli.
HM marked by a star ∗ indicate that some,
but less than 50% of the cell population dies.
There, τ = t50% is not possible and has been
replaced by τ = 8.50 h, half the maximal simu-
lation time. A larger τ increases these HM up

to the value in bracket.

TNF[ng/ml] HM TNF[ng/ml] HM

0.01 0 1 0.44
0.03 0.0060∗ (≤ 0.018) 3 0.40
0.10 0.14∗ (≤ 0.35) 10 0.40
0.30 0.62 30 0.39

100 0.39

0 and a maximal one. For v∞ = 50% and very large τ , HM
approaches one.

4.3 Summary

As could be expected from the cell ensemble modelling,
both analysed models show heterogeneous responses. For
relatively large doses of stimulation ligand, the heterogen-
eity of the response does not depend very much on the
specific dose. This is in contrast to the time of death of
the median cell, which decreases with increasing dose.

While the Aldridge model shows a relative low dosage
dependence of the heterogeneity, the Schliemann model
is more heterogeneous for low doses than for high ones.
This is in part due to more cells surviving, but also to a
higher variability of the time of death among dying cells.

5. CONCLUSIONS AND OUTLOOK

This paper proposes a quantitative measure of heterogen-
eity that is applicable to models of apoptosis. By scaling
the time axis onto a finite interval, heterogeneity can be
defined as via integration of cell viability curves. The
heterogeneity can also be calculated based on experimental
cell viability data, thus no mathematical model is re-
quired for calculating heterogeneity. The measure’s free
parameter τ can be automatically fixed if at least half the
population dies by chosing τ as the time of death of the
median cell.

The proposed measure allows for the quantitative analysis
of models and the study of the sensitivity of heterogeneity
in models of apoptosis as well as the impact of perturba-
tions such as knock-outs on the heterogeneity of the system
response.
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