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Abstract: Despite the rapid increase in quantity and quality of experimental data in many fields of 
engineering and science, quantitative measurements of many cellular components are still relatively 
scarce. This work deals with estimating the parameters of a double feedback gene-switching model. To 
achieve the goal, a model-based design of experiment (MBDOE) approach for parameter estimation is 
employed. To overcome the problem of convergence in parameter estimation step (due to correlation 
among the parameters), a non-dominated sorting genetic algorithm (NSGA-II) based, multi-objective 
optimization (MOO) based MBDOE has been used. The parameter estimates obtained through the MOO 
based DOE as well as a standard alphabetical DOE technique are then compared with the known true 
values from the literature to highlight the efficacy of the MOO-MBDOE technique.  
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1. INTRODUCTION 

Every cellular system is composed of various macro/micro-
molecules that are essential for its proper functioning. 
Various inter-connections among such molecules are often 
mapped in the form of a complex network which may 
represent different information-processing functions. 
Depending upon the type of information flow considered, 
these networks can be differentiated into genetic networks, 
signal transduction pathways, or metabolic networks. Within 
a complex network, some recurring sub-networks of 
particular function are designated as network motifs. Similar 
to engineering systems that are often built of recurring circuit 
modules, these biological network motifs are observed to 
obey similar principles to carry out key functions (Shen-Orr 
et al., 2002). Among such motifs, it has been found out that 
numerous biological systems comprise positive feedback as a 
key regulatory motif. These loops can have single, double, or 
multiple positive feedback regulatory effect. Some of the 
extensively studied processes are dynamics of a motif 
consisting of interlinked fast and slow positive feedback 
loops, which regulate for e.g., polarization of budding yeast, 
calcium signalling, Xenopus oocyte maturation, etc. 
(Brandman et al., 2005). 

Description of such key regulatory motifs in the form of 
mathematical model can provide essential understanding of 
the complete network and pinpoint the importance of various 
parameters involved in modelling (Kim et al., 2012). Various 
quantitative, mechanistic modelling approaches, in particular, 
differential equation models have been applied to study such 
network motifs. These dynamic models furnish a detailed 
molecular and quantitative understanding of cellular 
information flow for such systems (Barkai and Leibler, 

1997). Eventually, formulation of predictive models for such 
networks can help in studying complex diseases as well. In 
order to develop mechanistic models as in silico proxies for 
biological functions, researchers need to estimate the values 
of important parameters employed in such models. Prediction 
from these mathematical models essentially depends on the 
correct estimation of the unknown model parameters, which 
require collection of samples from in vivo or in vitro 
experiments (Michailidis, 2012).  

An intelligent experiment design often provides better point 
estimates for unknown model parameters with limited 
resources. The work here is focused on the model based 
design of experiments (MBDOE), and subsequent parameter 
estimation of a network motif model. A detailed explanation 
of the model is provided in section 2. Traditional 
experimental designs, namely, D-, A-, and E-optimal designs 
are the most widely used forms of DOE techniques. These 
alphabetical designs provide the optimal moves for 
manipulated variable(s) and the optimal sampling instances 
for data collection. However, these designs often increase the 
correlation among unknown model parameters which can 
result in poor precision and poor point estimates of the 
unknown model parameters; thus violating the inherent 
objective of MBDOE techniques (Franceschini and 
Macchietto, 2008a). To overcome this drawback inherent in 
existing MBDOE techniques, a multi-objective optimization 
(MOO) based framework for MBDOE is employed 
(Maheshwari et al., 2013). The relevant details and 
drawbacks of traditional alphabetical designs, existing 
solutions, and the MOO based solution are detailed in section 
3. In section 4, the parameter estimation results obtained from 
the alphabetical design and the MOO based MBDOE 
framework are compared – the results indicate that the MOO 
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based MBDOE framework outperforms the traditional 
alphabetical designs. In this work, only D-optimal design and 
its MOO counterpart are considered. The parameter estimates 
and their precision were obtained via Monte Carlo 
simulations. Finally, in section 5, conclusions and 
recommendations for future work are provided. 

2. NETWORK MOTIF MODEL 

As mentioned in section 1, a motif model is a recurring entity 
in a network. These network motif models often occur with 
single and dual-positive/negative feedback loops. In the dual 
positive feedback loops, two variables mutually activate a 
third variable. Furthermore, the two activating variables 
could be activated by an external stimulus. The schematic of 
such a network motif is presented in Figure 1. Corresponding 
set of model equations for the network motif is represented as 
equation 1. 
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Figure 1: Schematic representation of dual feedback network 
motif. A and B mutually affect O, while S is external stimulus 
affecting A and B alone. 
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The model presented here is normalized and non-
dimensionalized, i.e. O, A, and B are concentrations between 
0 and 1 (Brandman et al., 2005). Here, O is mutually 
activated by A and B, with a nonlinear Hill function (equation 
2), which describes the relationship between the 
concentration of O and the rate of production of A and B. 
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where, n = 3 is the Hill coefficient describing cooperative 
binding and 50ec  is the concentration for half-maximum 
response for the feedback. The activation of O is dependent 
on activation of A and B, which in turn can be activated by 
external stimulus S. Here, the external stimulus S 
simultaneously affect both A and B. The dynamics of motif 
when one of the inner loops is suppressed is also of interest. 
In such scenario, the system of equations reduces to two 
equations for A and O alone (assuming B is suppressed). In 
this work, we have considered the comprehensive motif i.e. 
when both inner loops are activated. 

Like any mathematical model, the present model also 
comprises of a number of model parameters whose 
estimation is required before the motif can be plugged into 
the complete network model. The objective here is to design 
an experiment which, if implemented on the system, will 
provide information rich data for estimating the unknown 
model parameters. In this simulation work, the parameter 
estimates culminating from the experiment are compared 
with the known true values to adjudge the efficacy of 
MBDOE technique. The model parameters with their known 
true values are listed in Table 1 (Kim et al., 2012). 

Table 1: Model parameters with their known values 

Parameter True parameter value 

50ec  0.35 

mink  0.01 
out
mink  

0.001 
out
onk  

2 
out
offk  

0.3 

aτ  0.5 

aτ  0.008 

3. MBDOE TECHNIQUES - DRAWBACK AND 
SOLUTION 

A designed experiment is superior to intuitive experimental 
design for accurately estimating the parameters of dynamic 
systems with minimum resources (Bandara et al., 2009). 
MBDOE techniques are statistical procedures to select the 
best experimental settings corresponding to maximum 
information under pre-defined operational and budget 
constraints. As the name suggests, a mathematical model 
structure is the foremost requirement for MBDOE 
techniques. Additionally, a good initial guess for unknown 
model parameters is also required. The handle available with 
the experimenter is the number of samples, sampling 
instances, initial conditions for system states, permissible 
moves and corresponding switch time for external input, etc. 
Concisely, given the model structure and initial guess for its 
parameters, the aim of the MBDOE approaches is to suggest 
experimental designs that help us achieve a certain objective 
– one objective can be to minimize the parameter variance 
i.e. to make the elements of parameter variance-covariance 
matrix (V) small. Conventional experiment design thus 
involves minimizing a metric of V, or maximizing that of its 
inverse, the Fisher Information Matrix (FIM), which plays 
key role in MBDOE techniques for improvement of 
parameter precision. The MBDOE techniques culminate in an 
optimization problem with objective, 

 ( ) ( )V FIMmin arg max arg∆ = ≡  (3) 

The FIM is (p×p) symmetric matrix and defined as, 
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where, ijσ  is the (i,j)th element of inverse of variance-
covariance matrix of experimental measurements, yn is the 

number of measured states, ˆFIM( , )θ φ  is the information 

matrix with θ̂  as parameter guess and φ  as vector of 
decision variables (here experimental conditions). Gi is s×p 
matrix of first order sensitivity coefficients for ith measured 
state for spn  sampling instances, 

 is
i sp

k

y
G ; s 1,2,..., ;k 1,2,...,n p

 ∂
= = = ∂θ 

 (5) 

Number of real-valued functions is used to quantify the FIM 
or V into a scalar metric. The most common criteria include: 

1. D-optimality criterion maximizes the determinant of 
FIM, or equivalently, minimizes the determinant of the 
matrix V. 

2. A-optimality criterion maximizes the trace of FIM, or 
equivalently, minimizes the trace of matrix V. 

3. E-optimality criterion aims to maximize the smallest 
eigenvalue of FIM, or equivalently, minimizes the 
largest eigenvalue of matrix V. 

The geometrical interpretation of these criteria is provided in 
Figure 2. 

θ1

θ2

D Minimizes 
the volume of  

confidence ellipse

A  Minimizes the 
dimension of 

surrounding geometry

E Minimizes the 
length of major axis

 
Figure 2: Geometrical interpretation of the D-, A-, and E-
optimal design criteria for the case of two parameters. 

As discussed, the objective of MBDOE techniques is to 
suggest the optimal input moves (perturbations) and optimal 
time point for sampling the outputs which will result in 
maximally informative data for estimating unknown model 
parameters with high degree of precision. However, precision 
should not be the only measure for good quality estimates. 
The de-correlation among model parameters is also 
important, as high correlation may plausibly lead to poor 
point estimates and/or poor precision of model parameters 
(Rodriguez-Fernandez et al., 2006). Correlation among 
parameters can also lead to convergence issues in the 
parameter estimation step. Due to correlation, change in one 
parameter can be offset by changes in others, resulting in a 
situation where various parameter combinations result in 
comparable values of the objective function. This can create 
problems for optimization algorithms because no definite 
direction can be found in which the objective function value 
will improve. This makes it difficult to obtain the unique 
estimates of model parameters, or even leads to inaccurate 
estimates for parameters. Interestingly, maximizing the 

traditional MBDOE objective alone also increases the 
correlation among model parameters (Franceschini and 
Macchietto, 2008b). To overcome this issue, a multi-criteria 
optimization based MBDOE framework is proposed 
(Maheshwari et al., 2013). Before we discuss about MOO 
framework, it is important to understand the scenarios 
wherein correlation can manifest. 

Correlation among parameters can be due to model structure 
(structural identifiability issue) and/or due to experimental 
data (practical identifiability issue). Both identifiability 
aspects can be understood from the simple algebraic models. 

 
2
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where, 1k , 2k , and x are positive. In the first model, 
estimation of the parameter combination 1 2k k  is possible 
from experimental data, but individual estimation of 1k  and 

2k  is impossible even with infinite amount of samples. 
Hence, the model is structurally unidentifiable. In the second 
model, it seems that both the parameters can be estimated. 
However, for smaller ‘ 2xk ’ values, 2x

2e 1 xk k− −  and 
model 2 reduces to model 1, which is already known to be 
structurally unidentifiable. Thus, to estimate both the 
parameters in model 2, samples should be collected for larger 
values of ‘x’. This makes model 2 an example where 
parameter correlation can be due to poor experimental data. 
The issue can, however, be dealt with using intelligent 
experimental design. It may be relatively easier to detect the 
practical/structural correlation for algebraic systems, but such 
insights are difficult to obtain for dynamic systems. 

To address this correlation problem in dynamic systems, a 
number of solutions have been proposed; examples of such 
work include minimizing the correlation measure (Pritchard 
and Bacon, 1978) or anti-correlation designs (Franceschini 
and Macchietto, 2008b). Here, we have considered a different 
approach where both information and correlation criteria are 
accounted in an optimization framework. This culminates in 
an MOO framework where the fist criterion is the 
conventional objective of maximizing an information 
measure, while the second criterion corresponds to 
minimization of correlation among model parameters. The 
correlation measure can be calculated using variance-
covariance matrix itself. The expression for th

ijr element of 
correlation matrix is, 

 ij
ij

ii jj

V

V V
r =  (7) 

The final correlation matrix R and the objective function to 
be minimized ( R ) in MOO based MBDOE framework is, 

 
ij

12 1n

n n
21 2n 2

i 1 j 1

n1 n2

1 .
1 .

R R ; i j
. . . .

. 1

r r
r r

r

r r
= =

 
 
 = ⇒ = >
 
 
 

∑ ∑  (8) 

IFAC CAB 2013
December 16-18, 2013. Mumbai, India

340



 

 

     

 

Among the D-, A-, and E-optimality criteria, the D-optimality 
criterion is popular and has been used previously for 
elucidating the parameter estimates for similar biological 
system (Bandara et al., 2009). Hence, we have studied the 
performance of D-optimal design only. The resulting MOO 
design is referred as DMOO design. Corresponding 
conflicting criteria are, 

 
obj1: FIM

obj2 : R

 max

 min
 (9) 

4. METHOD AND RESULTS 

The definition of experimental design space is an important 
aspect in DOE. The design space is decided based on 
available experimental resources, such as what can be 
measured, how the manipulated variable should be perturbed, 
how many samples can be collected, etc. Here, the following 
design constraints are assumed. 

1. A total of 15 samples can be collected. 
2. Data is measurable for only state ‘O’.  
3. Consecutive samples should have a minimum time 

interval of 5 time units. The maximum allowed time 
interval between consecutive samples is 200 time 
units. The last sampling instance decides the duration 
of experiment; however, the maximum experiment 
duration is restricted to 1200 time units. 

4. The external stimulus is available handle for 
experimenter to perturb the system to elicit the most 
informative data. It is a binary variable which can 
either be 0 or 1, denoting switch off or switch on 
scenario, respectively. 

5. It is assumed that total 5 control moves are allowed 
during the whole experiment duration. Also the 
minimum and maximum time between two control 
moves is 5 and 200 time units, respectively. 

The mentioned design constrains results in a design space 
with 2 constraints and 24 decision variables, namely, 5 
moves for external stimulus, 15 sampling instances, and 4 
switching instances for manipulated variables. The resulting 
MOO problem is solved in MATLAB using NGPM (NSGA-
II program in MATLAB) (Lin, 2012). As mentioned in 
section 3, the MBDOE framework requires the initial guess 
for unknown model parameters. In this simulation study, we 
assumed the initial parameter guess at 50% positive deviation 
from true parameter values. The true parameter values are 
presented in Table 1. The MOO problem results in non-
dominated solutions, which are represented in the form of 
Pareto-optimal front. Here, each non-dominated solution 
corresponds to an optimal experimental design. The resulting 
front for DMOO design is presented in Figure 3, wherein the 
extreme point of Pareto-optimal front with maximum 
information-maximum correlation corresponds to D-optimal 
design. It can be observed from Figure 3 that as information 
maximizes, the correlation among model parameters also 
maximizes. The resulting external stimulus profile is shown 
in Figure 3. 

In real experiment settings, once the optimal experimental 
design is obtained, it is used to generate data from the 

experimental system. Here, the experimental set-up is the 
model itself with its true parameter values. To account for the 
noise characteristics of real system, the simulated data is 
corrupted by 10% relative noise. Resulting noisy data is used 
for estimation of “unknown” model parameters. The 
parameter estimates and corresponding precision were 
obtained via Monte Carlo simulations. A total of 50 
parameter estimation runs were performed. The mean of 50 
sets of parameter estimates is designated as obtained 
parameter estimates for optimal design, while standard 
deviation of 50 runs is used to calculate the parameter 
precision. The obtained estimates and corresponding 
parameter precision are presented in Table 2. 
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Figure 3: Pareto-optimal front for DMOO design. The 
selected point corresponds to chosen trade-off for comparison 
with D-optimal design 
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Figure 4: External stimulus profile for D- and DMOO design 

In Figure 4, it can be observed that both D- and DMOO 
design results in visibly similar stimulus profile which will 
result in similar output profile for measured state ‘O’. 
However, the parameter estimates for DMOO design are 
better than that obtained in D-optimal design. The conclusion 
is based on normalized Euclidean distance measure (δ) from 
true parameter estimates (equation 10), which quantifies the 
error in estimation. 
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Table 2: Point estimates and 95% confidence interval with 
D-optimal and DMOO design 

θ D-optimal design DMOO design 

50ec  0.41 ±  0.22 0.40 ±  0.22  

mink  0.0094  ±  0.0046 0.0094 ±  0.0042 
out
mink  

0.0009 ±  0.0012* 0.001 ±  0.0013* 
out
onk  

2.94 ±  1.45 2.85 ±  1.58 
out
offk  

0.40 ±  0.19 0.38 ±  0.16 

aτ  0.46 ±  0.55* 0.47 ±  0.58* 

aτ  0.0085 ±  0.0025 0.0084 ±  0.0023 
* Statistically insignificant parameters 

The smaller the δ, the closer are the obtained estimated 
parameter values to the true parameter values. The δD and 
δDMOO were 37% and 28%, respectively. Despite the similar 
external stimulus profile, the DMOO design results in better 
point estimates. This can be attributed to sampling instances, 
at which the data are sampled and subsequently used for 
parameter estimation. There is a subtle difference between 
sampling instances in both D- and DMOO designs. The 
difference is especially noticeable towards the completion of 
experiment (Table 3). Hence, for similar experimental efforts, 
the DMOO design results in improved point estimates for the 
gene network motif model. 

Table 3: Sampling protocol for D-optimal and DMOO 
designs 

Design 
protocol 

Sampling instances (in mins) 

D-optimal 
design 

5, 13, 71, 76, 81, 233, 238, 342, 446, 
451, 604, 755, 800, 1000, 1200 

DMOO 
design 

5, 10, 73, 78, 83, 235, 240, 345, 449, 
454, 606, 742, 793, 993, 1191 

In Table 2, parameters out
mink  and aτ  are statistically 

insignificant. To improve the precision of those parameters, 
either more samples should be collected or states other than 
‘O’ should be measured. 

5. CONCLUSIONS 

A gene network motif model is a recurring model in global 
gene network. To estimate the parameters of such network 
motif, MBDOE techniques can play an important role. The 
drawback of existing experimental design techniques has 
been highlighted. To overcome the drawback an MOO based 
MBDOE framework is employed. The D-optimal design and 
its MOO based counterpart DMOO are compared for 
parameter estimates. For same experimental efforts, the 

DMOO design results in better point estimates when 
compared with traditional D-optimal design. The 
performance of other alphabetical designs and their MOO 
based counterpart will be assessed in future. 
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