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Abstract: The objective of this paper is to study the effect of intra-patient variations on the personalized 
parameters of the modified exercise minimal model by re-estimating them from the clinical data 
measured after several days of first estimation. Clinical data of eight type 1 diabetic children and 
adolescents have been used for this purpose. For the first estimation of 6 estimable parameters, clinical 
data collected during one of the visits have been employed. Subsequent re-estimation of parameters is 
accomplished using the second clinical visit data, which was collected after 7-35 days from the first visit. 
The results of re-estimation indicate that the estimable parameters corresponding to glucose-insulin 
compartments and meal absorption model are greatly affected by intra-patient variability in most of the 
patients, while the 2 estimable parameters corresponding to exercise compartments are least affected by 
intra-patient variations in 6 out of 8 patients. 
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

1. INTRODUCTION 
Inter- and Intra-patient variations in the glucose homeo-
stasis emphasize the need for development of personalized 
models in diabetics. Since diabetes is a lifestyle disease, 
factors like exercise and meal play a major role in 
determining the blood glucose (G) levels of patients. 
Personalized models incorporating these lifestyle 
interventions along with the insulin interventions will be 
useful in devising optimal patient specific treatment 
strategies that can prevent various short and long term 
complications in diabetics. This indeed will transform the 
conventional reactive treatment practices towards a 
proactive mode.   

Many glucose prediction models have been developed 
since early 1960s. These models can be broadly classified 
as mechanistic or knowledge driven models and empirical 
or data driven models. A comprehensive review of both 
the classes of G prediction models developed for type 1 
diabetics (T1Ds) can be seen in Balakrishnan et al. (2011).  
There is also a special class of models which involve both 
the mechanistic and data driven models, known as hybrid 
models (Balakrishnan et al., 2012, Balakrishnan, 2013, 
Mougiakakou et al., 2006, Zarkogianni et al., 2011).  

Most of the available mechanistic glucose-insulin dynamic 
models have considered only meal and insulin 
interventions in them. There are also few models which 
included the exercise effect on glucose-insulin dynamics 
(Kim et al., 2007, Lenart and Parker, 2002, Roy and 
Parker, 2007). The exercise effect models of Kim et al. 
(2007) and Lenart and Parker (2000) are too complex to be 
tailored as patient specific models. Moreover, these two 
models were only validated for healthy subjects. Although 
the minimal exercise model of Roy and Parker (2007) was 

validated for T1Ds, the model did not consider the cohorts 
of children and adolescents where the T1D population is 
prevalent. Further, it follows a one-size-fits-all assumption 
for the parameters related to glucose and insulin 
compartments. In other words, full minimal exercise 
model was not estimated and validated using the meal, 
insulin and exercise data of diabetics. One common aspect 
in all the exercise effect models is that the exercise 
intensity in these models is quantified using a measure 
called percentage oxygen consumption (ܸܱܲଶ

୫ୟ୶). 
Measurement of ܸܱܲଶ

୫ୟ୶
 requires sophisticated devices 

like treadmills and electronic bicycles, which are not 
affordable in the day-to-day life settings of diabetics. This 
shows the need for alternative exercise markers in these 
models.  

In order to overcome the above mentioned issues, in one of 
our research articles, we have identified, estimated and 
validated personalized mechanistic and hybrid models for 
exercise, meal, and insulin interventions in T1D children 
and adolescents (Balakrishnan, 2013). Rate of Perceived 
Exertion (RPE) has been used as an alternative exercise 
marker. The cross validation results in our recent work 
indicated that the personalized mechanistic models are not 
good in predicting the glucose dynamics after 7-35 days of 
first estimation. We have not re-estimated the mechanistic 
models to study the consequences of intra-patient 
variability on the first estimates of parameters. Hence, the 
major objective of this paper is to investigate the influence 
of intra-patient variability on the personalized parameters 
of the modified exercise minimal model, which we have 
identified and validated recently (Balakrishnan, 2013). 
Clinical data of eight T1Ds have been used from the public 
access database, DirecNet (2005). There were two clinical 
visits where each visit lasted from lunch till dinner; the 
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meals were given as in home settings and exercise was 
performed at around 4:00 pm. Exercise sessions lasted for 
a period of 75 min in 4 phases with 5 min resting period in 
between each phase. G readings were recorded for every 5 
minutes using Continuous Glucose Monitoring Sensors 
(CGMS). A basic difference between both the visits was 
that the basal insulin supply was stopped during exercise 
in one of the visits and continued during exercise in the 
other visit. The details of meal, insulin, exercise and G 
data can be found in the Excel sheets of DirecNet study’s 
(2005) website. 

2. RESEARCH DESIGN AND METHODS 
Overall methodology can be divided into two major parts: 
first estimation and re-estimation. Sub-section 2.1 outlines 
various steps involved in the first estimation of 
personalized parameters and sub-section 2.2 explains the 
steps in the re-estimation of model parameters.  

2.1 First Estimation of Personalized Models 
The first part of methodology involves identification and 
estimation of personalized parameters of glucose-insulin 
dynamic model using the clinical data of the first clinical 
visit. In our recent work (Balakrishnan, 2013), we have 
accomplished a similar objective for 34 T1Ds by using 
80% data obtained from one clinical visit, while the 
remaining 20% data of the same visit were used for same 
day validation. In this sub-section, we have followed the 
same procedures to estimate patient-specific parameters of 
8 T1Ds using the 100% data of the first clinical visit. An 
outline of the steps involved in this process is discussed in 
sub-sections 2.1.1 – 2.1.3. A detailed explanation on this 
can be found in our work (Balakrishnan, 2013).  
 
2.1.1 Modified Exercise Minimal Model 
The original exercise minimal model of Roy and Parker 
(2007) involves nine compartments, whose mathematical 
representation and the nominal parameter values of the 
original model can be found in the cited paper. The 
important modifications on this original model are: 
[A] Introduction of RPE as Exercise Marker:  Roy and 
Parker (2007) employed ܸܱܲଶ

୫ୟ୶ as a marker to quantify 
the exercise intensity. However, as mentioned in the 
introduction part of this paper, measurement of ܸܱܲଶ

୫ୟ୶ 
is not affordable in the routine life settings. RPE can be 
seen as a potential alternative which can be measured via 
simple speech tests. The validity of RPE in children and 
adolescents using pictorial scales has been tested 
successfully in the literature (Roemmich et al., 2006, Utter 
et al., 2002). We have modeled the linear relationship 
between RPE and  ܸܱܲଶ

୫ୟ୶ using the data from 
Roemmich et al. (2006), as:  

 
 

max
2

1 + 13.1;  (Girl)
=

1.2 + 9.6; (Boy)

%RPE
PVO

%RPE





                      (1) 

The intercept values in equation (1) show that the basal 
ܸܱܲଶ

௠௔௫ values vary according to the gender. Hence, the 
8% basal ܸܱܲଶ

௠௔௫
 value used in Roy and Parker’s model 

(2007) will be replaced by gender specific basal values 
(given by the intercepts of equation (1)). More detailed 

explanation on this linear relationship can be found in our 
work (Balakrishnan, 2013). 
[B] Meal and Insulin Absorption Models: The meal 
absorption dynamics of the modified exercise minimal 
model is explained by Hovorka’s meal absorption model 
(Hovorka et al., 2004), which models the pre-intestinal and 
intestinal carbohydrate absorption using a single lumped 
analytical equation. On the other hand, the total insulin 
absorption in a day is given by the sum of basal and bolus 
insulin doses. Since the basal insulin supply in DirecNet 
exercise patients was via insulin pumps, there was a 
continuous availability of exogenous insulin in plasma 
throughout the day. In the case of bolus insulin, the 
absorption kinetics is described by Berger’s kinetic model 
(Berger and Rodbard, 1989, Nucci and Cobelli, 2000).  

2.1.2 A Priori Identifiability Analysis 
Identifiability analysis has often been seen as a pre-
requisite for parameter estimation, which helps in 
identifying the subset of estimable parameters in a model 
structure based on the scaled sensitivity matrix of 
measured state. Yao et al.’s (2003) methodology of a 
priori identifiability analysis is employed here. The 
modified exercise minimal model has 16 parameters in it, 
including the 3 parameters of Hovorka’s meal absorption 
model. This can be represented as:  

1 2 3 4 G max,G

1 1 2 3 4 5 6

p p p p V n t f
θ =

T k a a a a a a

 
 
  

     (2) 

In the current system, G(t) is the only measured state, and 
hence, the scaled sensitivity matrix (Gss) is given by: 

f f f

1 2 6
1 2 60 0 0

1 2 6
1 2 65 5 5

ss

1 2 6
1 2 6

. . .

. . .

. . . . . .

. . . . . .
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t t t t t t
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


  

  

  

   
    
    
   
 

     
 
 
 

   
    

   (3) 

Parameters are ranked iteratively based on the largest 
column sum of the scaled sensitivity matrix. Details of 
steps involved in iterative ranking of parameters can be 
found in Yao et al. (2003).  Once the ranking of all model 
parameters is over, the percentage contribution of each 
ranked parameter is calculated based on the column sum. 
A cut-off limit of 95% has been set to select the possible 
subset of estimable parameters, which is denoted as θest.  

2.1.3 Parameter Estimation and Uncertainty Calculation 
The parameters identified in sub-section 2.1.2 are 
estimated using the clinical data of 8 DirecNet children 
and adolescents. 100% of clinical data collected during 
one of the visit days have been used for first estimation. 
The objective is to minimize the mean squared error 
(Skrovseth et al.) between the clinical data and model 
predicted values, which can be formulated as:  
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i ns
real pred

est

( ( ) ( ))2
ns

t =t

θ
i=1

G i - G i

Min MSE =
ns - np

s.t.  θ > 0

                 (4)    

where ns and np are the total number of samples and 
number of estimable parameters, respectively. Parameter 
estimation is performed using fmincon solver in Matlab. 
Multistart optimization has been employed, which 
estimates parameters for 25 random initial guesses. The 
lowest MSE found is likely to be the global optimal 
solution, and so the corresponding parameter estimates are 
selected. Statistical significance and precision of the 
obtained point estimates have been evaluated by 
calculating confidence intervals (CIs) of each personalized 
parameter in θest using the kth diagonal term in the 
covariance matrix (Vkk) and t-test. The uncertainty in 
estimated parameters (as Δθest) can be computed as: 

 

   est est

est kk 1-α/2

-1

kkwhere, 
T

sens, sens ,

V * t * ns np

V G G 

  

 
  
 

        (5)                               

Gsens,θest in equation (5) refers to the sensitivity matrix of 
the measured state variable with respect to the estimable 
parameters in θest. 

2.2 Re-estimation of Personalized Models  
The personalized models are simulated for input 
conditions of second visit day using the point estimates 
obtained in sub-section 2.1. The resulting G predictions 
are compared with the real G values  to check the validity 
of the first estimated parameters in predicting G dynamics 
after several days from their initial estimation.  Also, the 
clinical data of the second day visit have been used to re-
estimate the model parameters using multistart 
optimization approach for 25 different initial guesses. In a 
similar manner as that of first estimation, MSE and 
uncertainty values are calculated for re-estimation. The re-
estimation is performed to understand if there are any 
intra-patient variations in the personalized parameter 
estimates after few days from the first estimation. 

 3. RESULTS AND DISCUSSION 

3.1 A priori Identifiability Analysis 
A priori identifiability analysis has revealed that the 
cumulative sum of 6 out of 16 parameters show a 
contribution of up to 96% (which is just above the cut-off 
percentage); while the remaining 10 parameters have 
shown only 4% contribution. Among the 6 estimable 
parameters, 2 of them are related to insulin and glucose 
distribution volumes (p4 and VG, respectively), 1 parameter 
is related to meal absorption dynamics (tmax,G), 2 of them 
are related to exercise effect compartments (a3, and a4) and 
1 parameter is related to insulin disappearance (p2) in 
remote compartment. Inverse of insulin distribution 
volume has been found to be the most estimable parameter 
with a contribution of about 57%, followed by tmax, G, VG, 
a3, a4, and p2. These are identified as the estimable 

parameters (θest) of the modified exercise model and they 
are estimated for each patient as personalized parameters. 
Hence, this analysis has reduced the model from its 
original 16 parameters to 6 parameters. A detailed 
description on the individual percentage contribution of 
the 6 parameters can be seen in our upcoming paper 
(Balakrishnan, 2013) 

3.2 Estimation of Personalized Parameters  
The six estimable parameters are estimated for each 
patient using multistart optimization approach with 25 
different initial guesses. The lowest MSE values 
corresponding to the best parameter estimates appeared at 
least thrice (among 25 solutions) in 8 patients, and are 
illustrated in Fig. 1, which shows that the CGMS data of 
Patients 23 and 31 fits well to the model with a relatively 
low MSE of 17.3 (mg/dl)2, and 17.2 (mg/dl)2, respectively;  
whereas model for patient 29 shows a relatively high MSE 
value among the 8 patients tested. However, qualitative 
comparison of G plots in Fig. 2 shows that the fitted model 
of patient 29 captures the actual trends in a more or less 
similar manner as that of patients 23 and 31. One reason 
for high MSE value in patient 29 could be the fewer 
number of samples (as MSE value is dependent on the 
sample size). Although minor deviations from the actual 
blood glucose values are observed in all these patients, the 
fitted trends are closer to the actual trends in almost all 
these patients (see Fig. 2). One of the major reasons for the 
minor deviations might be the measurement errors 
prevalent in CGMS sensors.  

The point estimates corresponding to the least MSE values 
of first estimation are illustrated in Fig. 3 (black circles 
with error bars denoting uncertainty). The point estimates 
of parameters vary from patient to patient, thereby 
confirming the inter-patient variability. Further, these 
estimates (black circles in Fig. 3) are almost the same as 
those of the estimates obtained for 80% of data in our 
recent work (Balakrishnan, 2013), whilst there are 
deviations in the Δθest values when compared to those of 
estimation with 80% data. Mostly, the precision of 
parameter estimates has been improved in case of using 
100% data for estimation, as there is a drop in Δθest values.  

 

Fig. 1 Lowest MSE values (obtained after first 
estimation) corresponding to the best point estimates  
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Fig. 2 Comparison between the actual and model fitted G trends after first parameter estimation 

 

Fig. 3 Personalized point estimates after first estimation (circles) and re-estimation (triangles) of estimated parameters 
with CIs (capped lines: red lines denote the CIs of parameters after first estimation; blue lines represent the CIs of re-

estimated parameters) 

3.3 Re-estimation of Personalized Models 
3.3.1 Simulation using first estimates  
Simulation of personalized models (with the parameters 
estimated using first clinical visit data) for the input 
conditions of second clinical visit has revealed higher MSE 
values, ranging from 750 (mg/dl)2 - 4000 (mg/dl)2, in 7 out of 
8 patients (see red dashed bars in Fig. 5). This is also 

reflected in the G dynamics (shown as blue dashed lines in 
Fig. 4), where huge deviations of predicted values from the 
actual values are observed. Despite these deviations, the 
crests and troughs (i.e., trends) of these predictions in 
majority of the patients (except exercise and post exercise 
phases of Patients 23 and 44) follow the same pattern as those 
of the real trends (represented as green circles in Fig. 4). This 
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shows that the dynamics are captured well but with poor 
accuracy in predicted G values. Such poor prediction is due 
to the gap between the two clinical visits, which is 7 - 35 
days for patients in the DirecNet exercise cohort (2005). 
Hence, it is evident that the point estimates of personalized 

parameters obtained after first estimation are not valid to 
accurately predict the G values after a number of days. This 
reveals the need for frequent re-estimation of parameters for 
accurate prediction of G values along with the trends. 

Fig. 4 Comparison between the actual G (circles), model predicted G using first estimates (blue dashed lines) and model 
fitted G after re-estimation (red continuous lines)   

3.3.2 Re-estimation of personalized models 
Owing to the inaccurate predictions by the personalized 
models in the sub-section 3.3.1, the 6 estimable parameters 
are re-estimated using the second clinical visit data. The 
lowest MSE value corresponding to the best point estimates 
(among the 25 estimates) obtained for 8 patients are shown in 
black bars in Fig. 5. In all these patients, MSE values 
corresponding to the re-estimation are very much lower than 
those obtained without re-estimation (Fig. 5). This can also 
be observed from the qualitative comparison plots of 8 
patients in Fig. 4, which show that the fitted G trends after re-
estimation (red continuous lines) is closer to the real trends 
(green circles) than the trends predicted with first estimates 
(blue dashed lines). Although the fitted G values after re-
estimation are not completely devoid of deviations from the 
real values, these deviations are significantly lower  when 
compared to that of the predictions without re-estimation.  

The point estimates along with the CIs after re-estimation are 
illustrated as triangles with blue error bars in Fig. 3. The 
percentage change in the estimates of each parameter for all 
the 8 patients are shown in Fig. 6. Comparing the point 
estimates obtained after and before re-estimation, it can be 
inferred that there are significant changes (in most of the 
patients) in the point estimates of p4, tmax,G, VG and p2, which 
shows that there is significant effect of intra-patient 
variability on the parameters related to glucose-insulin 

compartments and meal absorption model. This can also be 
understood by the percentage change plot in Fig. 6. In case of 
the two exercise compartment related parameters (a3 and a4), 
there is almost no or small change in their point estimates 
obtained for 6 out of 8 patients (except patients 23 and 32). It 
can also be inferred from Fig. 3 that re-estimation in some 
patients has increased the width of CIs (especially parameters 
p4, tmax,G, VG).  

 

Fig. 5 MSE values calculated based on model predictions 
with and without re-estimation 
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Fig. 6 Intra-patient variability based on percentage change in point estimates of personalized parameters after re-

estimation

REFERENCES

BALAKRISHNAN, N. P., RANGAIAH, G. P. & 
SAMAVEDHAM, L. 2011. Review and Analysis of Blood 
Glucose (BG) Models for Type 1 Diabetic Patients. Industrial & 
Engineering Chemistry Research, 50, 12041–12066. 

BALAKRISHNAN, N. P., RANGAIAH, G. P. & 
SAMAVEDHAM, L. 2012. Personalized blood glucose models 
for exercise, meal and insulin interventions in type 1 diabetic 
children. In:  Engineering in Medicine and Biology Society 
(EMBC), 2012 Annual International Conference of the IEEE, 
Aug. 28 2012-Sept. 1, 2012. 1250-1253. 
 
BALAKRISHNAN, N. P., Development of Predictive Models 
for Diabetics in Routine Life and Emergency Situations. PhD 
Thesis, submitted to Department of Chemical and Biomolecular 
Engineering, National University of Singapore, Singapore, 2013. 
 
BERGER, M. & RODBARD, D. 1989. Computer simulation of 
plasma insulin and glucose dynamics after subcutaneous insulin 
injection. Diabetes Care, 12, 725-736. 

DIRECNET. 2005. Diabetes Research in Children Network 
(DirecNet) public datasets: The Effect of Basal Insulin During 
Exercise on the Development of Hypoglycemia in Children with 
Type 1 Diabetes [Online]. http://public.direc.net/. Available: 
http://direcnet.jaeb.org/Studies.aspx?RecID=161 [Accessed 28th 

January, 2013 2013]. 

HOVORKA, R., CANONICO, V., CHASSIN, L. J., HAUETER, 
U., MASSI-BENEDETTI, M., FEDERICI, M., PIEBER, T. R., 
SCHALLER, H. C., SCHAUPP, L., VERING, T. & WILINSKA, 
M. E. 2004. Nonlinear model predictive control of glucose 
concentration in subjects with type 1 diabetes. Physiological 
Measurement, 25, 905. 

KIM, J., SAIDEL, G. M. & CABRERA, M. E. 2007. Multi-scale 
computational model of fuel homeostasis during exercise: Effect 
of hormonal control. Annals of Biomedical Engineering, 35, 69-
90. 

LENART, P. J. & PARKER, R. S. 2002. Modeling exercise 
effects in type I diabetic patients. Proceedings of the 15th IFAC 
World Congress. 

MOUGIAKAKOU, S. G., PROUNTZOU, A., ILIOPOULOU, 
D., NIKITA, K. S., VAZEOU, A. & BARTSOCAS, C. S. Year. 
Neural Network based Glucose - Insulin Metabolism Models for 
Children with Type 1 Diabetes. In:  Engineering in Medicine and 
Biology Society, 28th Annual International Conference of the 
IEEE, 2006. 3545-3548. 

NUCCI, G. & COBELLI, C. 2000. Models of subcutaneous 
insulin kinetics. A critical review. Computer Methods and 
Programs in Biomedicine, 62, 249-257. 

ROEMMICH, J. N., BARKLEY, J. E., EPSTEIN, L. H., 
LOBARINAS, C. L., WHITE, T. M. & FOSTER, J. H. 2006. 
Validity of PCERT and OMNI walk/run ratings of perceived 
exertion. Med Sci Sports Exerc, 38, 1014-9. 

ROY, A. & PARKER, R. S. 2007. Dynamic modeling of exercise 
effects on plasma glucose and insulin levels. Journal of diabetes 
science and technology, 1, 338-347. 

SKROVSETH, S. O., ARSAND, E., JOAKIMSEN, R. M. & 
GODTLIEBSEN, F. Year. Statistical Modeling of Aggregated 
Lifestyle and Blood Glucose Data in Type 1 Diabetes Patients. 
In: Second International Conference on eHealth, Telemedicine, 
and Social Medicine, 2010. 130-133. 

UTTER, A. C., ROBERTSON, R. J., NIEMAN, D. C. & KANG, 
J. 2002. Children's OMNI Scale of Perceived Exertion: 
walking/running evaluation. Medicine & Science in Sports & 
Exercise, 34, 139-144. 

YAO, K. Z., SHAW, B. M., KOU, B., MCAULEY, K. B. & 
BACON, D. W. 2003. Modeling Ethylene/Butene 
Copolymerization with Multi‐site Catalysts: Parameter 
Estimability and Experimental Design. Polymer Reaction 
Engineering, 11, 563-588. 

ZARKOGIANNI, K., VAZEOU, A., MOUGIAKAKOU, S. G., 
PROUNTZOU, A. & NIKITA, K. S. 2011. An Insulin Infusion 
Advisory System Based on Autotuning Nonlinear Model-
Predictive Control., IEEE Transactions on Biomedical 
Engineering, 58, 2467-2477. 

 

IFAC CAB 2013
December 16-18, 2013. Mumbai, India

348


