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Abstract: Online batch process monitoring has been a challenging task, as batch processes do not operate 
around a nominal steady state operating point. Various monitoring approaches where future batch 
trajectory is filled with average (nominal) batch trajectory have been proposed. Predicting future 
trajectory for a batch process is a difficult task. Recently a multiway principal component analysis 
(MPCA) based approach that does not involve future trajectory prediction was proposed. In this paper a 
new technique based on function space principal component analysis (FSPCA) is proposed for online 
batch process monitoring. The main advantage of the proposed FSPCA based methodology is its ability 
to detect incipient and small to medium magnitude faults and its relevance for uneven length batch 
processes. Efficiency and effectiveness of the proposed algorithm is demonstrated via a fed-batch 
penicillin cultivation process simulation. The diagnostic performance of the proposed approach is 
significantly better compared to MPCA based approaches.  

Keywords: Principal components analysis (PCA), Multiway principal component analysis (MPCA), 
Function space principal component analysis (FSPCA), Fault diagnosis and monitoring 

 
1. INTRODUCTION 

Batch processes are dominant in industries such as, 
biochemical, pharmaceutical, chemical, polymer, food 
industry, etc. Batch processes have a definite start and ending 
with a series of steps or tasks to be performed with fixed 
operating conditions and fixed processing time. Thus, batch 
processes are characterized by time varying variable 
correlation structure and parameters. Therefore, apart from 
high dimensionality and highly correlated measurement, 
batch process monitoring bring in additional complications 
due to the following reasons: i) the batch processes do not 
generally operate around a nominal steady state operating 
point, ii) historical data for batch processes are three 
dimensional, and iii) batches may have varying duration, i.e. 
uneven length batch. The lack of a reliable online monitoring 
mechanism in a batch process would have very significant 
impact on plant economy in terms of time, raw material and 
energy lost in faulty batches. Thus, it is important to monitor 
and maintain product quality for batch processes in an online 
fashion and online batch process monitoring has been an 
active area of research and a wide variety of techniques have 
been proposed for fault diagnosis of batch process. 

Statistical process control (SPC) based monitoring methods 
have been at the forefront when it comes to batch process 
monitoring. Initial attempts towards monitoring batch process 
using multivariate statistical methods were involving 
unfolding of the three dimensional data into two dimensions. 
The unfolding can be carried out in different ways, i.e. batch-
wise unfolding or variable-wise unfolding. Monitoring 
approaches based on both the types of unfolding have been 

proposed in the literature (Lu et al., 2004; Nomikos & 
MacGregor, 1994; Rännar et al., 1998). Once historical data 
of various batches is organized in a two-dimensional matrix, 
conventional principal component analysis (PCA) based 
monitoring charts can be used for batch process monitoring. 
However, simple unfolding can be implemented only for 
batches of fixed duration. For uneven length batch processes, 
methods based on synchronization that require dynamic time 
warping (DTW) or correlation optimized warping (COW) 
(Patel & Gudi, 2009; Tomasi et al., 2004) have been 
proposed. A modified approach based on Multiway PCA 
(MPCA) proposed in (Lee et al., 2004) does not require time 
synchronization and yet works for uneven length batch 
processes. 

Another methodology, to enable data unfolding, is to capture 
dynamics of a batch process by a fixed number of orthogonal 
basis functions. Such a methodology is known as function 
space principal component analysis (FSPCA) and it can be 
used for monitoring of uneven length batch processes (Chen 
& Liu, 2001). However, this FSPCA methodology is 
applicable for offline batch process monitoring. In this paper, 
an online monitoring approach based on FSPCA is proposed 
for monitoring of uneven length batch processes. It has been 
shown that because of function approximation, the proposed 
methodology has better diagnostic performance compared to 
MPCA based approach. Simulations involving fed-batch 
penicillin cultivation process were carried out to demonstrate 
effectiveness of the proposed FSPCA based online batch 
process monitoring approach. 

The remainder of the paper is organized as follows. First the 
MPCA based approach for online batch process monitoring is 
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discussed in section 2. The FSPCA method along with 
relevant data pre-processing methods such as, batch-wise 
unfolding, basis function and FSA, are explained in section 3. 
The proposed FSPCA methodology for online monitoring is 
explained in detail in section 4. Finally, the simulation case 
study involving a fed-batch penicillin cultivation process 
simulation is presented in section 5, followed by concluding 
remarks in section 6. 

2. MULTIWAY PCA 

Multiway PCA approach, which uses batch-wise unfolding 
for batch process monitoring, was proposed by Nomikos and 
MacGregor (1994, 1995). The MPCA approach involves 
detection of deviations from the mean trajectory by 
subtracting mean of each variable at each time from the 
unfolded data matrix. However, this MPCA approach had 
several difficulties: i) prediction future batch data, ii) 
assumption of constant variance-covariance structure, iii) 
assumption of equal batch duration. To overcome these 
limitations a modified approach based on MPCA was 
proposed by (Lee, et al., 2004). This modified monitoring 
approach is explained briefly in the next subsection. 

2.1 Online batch process monitoring by MPCA 

Historical batch process data is three dimensional in nature. 
These dimensions can be represented by batches (I), variables 
(J) and time (K). First, the three dimensional historical data 
XI×J×K is unfolded batch-wise to obtain XI×JK and variables at 
each time are scaled to zero mean and unit variance. Next, the 
data matrix is rearranged variable-wise giving XIK×J. PCA is 
then applied to this matrix and scores matrix TKI×R and 
loadings matrix PJ×R are obtained, where R is the number of 
principal components retained. Next, the scores at each time, 
(Tk)I×R is obtained and from Tk matrix, the covariance matrix 
at each time, (Sk)R×R, is calculated. Thus, in this approach, the 
covariance matrix is obtained at each time instance and it 
need not be constant. More details on the online batch 
process monitoring by MPCA are given in (Lee, et al., 2004). 

3. FUNCTION SPACE PCA 

As stated earlier, function space analysis based principal 
component analysis had been proposed for offline monitoring 
of uneven length batch processes. In this section FSPCA 
methodology is explained along with involved pre-processing 
methods such as data unfolding, function space analysis, etc.  

3.1 Function space analysis 

For a batch process, each variable in each batch can be 
represented as a time trajectory. The batch-wise unfolding 
would then give a data matrix shown in (1). Each time 
trajectory of variable xj for batch i is represented by fi,j(t) and 
these time trajectories can be of different length. The 
sampling time of the batch process is considered to be k. The 
original process variable can be mapped to new feature 
variables in function space. 
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where, I is the number of batches and J is the number of 
variables. Here, t varies from start of a batch to end of the 
batch, i.e. t = [tstart, tend], i.e. t = tstart : k :tend. The main concept 
behind approximation using function space analysis is 
explained here briefly. 

A set of linearly independent, orthonormal functions can be 
obtained such that they span the function space, i.e. a basis 
for the function space can be obtained (Ramsay & Silverman, 
2005). Many such basis functions are available, e.g. Legendre 
polynomials, Fourier basis function, Bernstein polynomials, 
generalized orthogonal basis functions, etc. By 
approximation theory any function f(t), which is assumed to 
be continuous and square integrable over a range space, can 
be expanded in the basis function as shown in (2). 

 f t( ) ! f̂ t( ) = ci"i t( )
i=0

N#1

$  (2) 

where, !i t( ){ }  is a basis for the function space, {ci}’s are 
coefficients and N is the number of basis functions used for 
approximation of f(t). This f̂ t( )  is called the best 

approximation of f(t) with respect to the basis !i t( ){ } . Any 

basis can be selected depending on the application and nature 
of the function (Ramsay & Silverman, 2005; Reiss & Ogden, 
2007). 

Approximation of trajectory of any variable of a batch 
process (f(t)) can be obtained in terms of N basis functions 
and corresponding coefficients as follows: 

The basis function matrix !  can be generated as in (3). Then 
least squares estimate of the coefficients can be obtained 
from (4). 
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 ĉ = !T!( )"1!T f t( )  (4) 

where, ĉ is a vector containing estimated coefficients {ci}’s 
given in (2). Selection of the number of basis functions to be 
used for approximation can be obtained based on the 
approximation effectiveness measure defined in (Chen & Liu, 
2001).  
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3.2 Function space PCA 

In this subsection, function space PCA methodology is 
explained in brief. The first step in applying function space 
PCA is to obtain a function approximation for each process 
variable across all batches with same number of basis 
functions (N). Note that the number of basis functions used 
for approximation of each variable may be different and will 
depend on the amount of variability in the variable. After 
function approximations are obtained, a two dimensional data 
matrix for trajectory coefficients can be written as (5). Thus, 
uneven length batch data is approximated using even length 
of coefficient matrix, making it possible to unfold three-
dimensional historical data into a two-dimensional matrix. 

 
 
CI!N = c[ ]I!N1 c[ ]I!N2 ! c[ ]I!NJ

"
#$

%
&'
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where, N = N j
j=1

J

!  and c[ ]I!N j
 is a trajectory coefficient 

matrix for variable j for all batches.  

FSPCA based monitoring procedure takes the matrix C as 
representative historical data and a statistical model is 
obtained by applying PCA on C. Multivariate statistical 
control limits Q and T2 are then obtained for monitoring of 
batches processes. When data for a new batch is available, its 
function approximation is obtained using the same number of 
basis function as used for function approximation of 
historical database. The new array of coefficients is then 
projected on to the principal components retained in the 
statistical model and compared against control limits for Q 
and T2 (See Section 3.3 and 3.4, respectively). If none of the 
control limits are violated, then the product is of desired 
quality. However, if any one of the control limits is violated, 
then the product quality is not satisfactory and further 
analysis is required to ascertain the cause of bad product 
quality. 

3.3 Q limit for FSPCA 

Once a statistical model is build using the normal operation 
coefficient matrix, the next task is to define control limits that 
can be used for the monitoring of batch processes. The limits 
should be drawn for the variability along the principal axes 
retained (k) in the FSPCA model as well as for the variability 
along the principal axes not included (n – k) in the FSPCA 
model. These control limits are called Hotelling’s T2 and Q 
limits respectively. 

Any significant deviation in the direction of (n – k) PCs 
(corresponding to smallest singular values), can be indicative 
of a fault. This deviation, i.e., the residual vector, can be 
calculated for the new measurement x, as in (6). 

 Res = I! PPT( )x  (6) 

where, I is an identity matrix and P is the loadings matrix. 
The value of Q statistic is defined as in (7). 

 Q = ResTRes  (7) 

The control limit for the Q statistic is chosen as 95% 
confidence limit from the normal operating residual values 
(Jackson & Mudholkar, 1979). 

3.3 T2 limit for FSPCA 

Hotelling’s T2 statistic effectively captures normal operating 
region for the multivariate data in PCA. For the statistical 
models that are built using FSPCA, a similar statistic can be 
used to characterize the normal behavior of a batch process. 
The T2 value for a PCA model is defined as in 

 T 2 = xTPD!
"1PTx  (8) 

where, Dλ is a diagonal matrix containing first k eigenvalues 
corresponding to the principal components retained in the 
statistical model. The control limit for the T2 statistic is 
chosen as 95% confidence limit from the normal operating 
scores values (Ku et al., 1995). 

Although, the FSPCA based monitoring procedure is well 
equipped to handle unequal length batch processes, it is 
applicable only for offline monitoring. To overcome this 
limitation, a new online monitoring approach based on 
FSPCA is proposed in this paper. The proposed algorithm is 
discussed in the next section.  

4. PROPOSED ONLINE MONITORING ALGORITHM  

The FSPCA approach for batch process monitoring applies 
batch-wise unfolding to the historical three-dimensional data. 
One major disadvantage of this approach is that sense of time 
is lost due to unfolding and online monitoring is not possible. 
Thus, it is important to incorporate the notion of time while 
monitoring, if online monitoring is to be performed. Here a 
notion of time sliced model is proposed for FSPCA to 
overcome this limitation. Using time sliced model, statistical 
control limit for each time slice can be calculated and these 
control limits can be used for online monitoring and 
diagnosis. This approach of obtaining time sliced model is 
explained in detail in the next subsection. 

4.1 Time Sliced FSPCA model 

The first step towards online monitoring using FSPCA is to 
define time slice duration (ts) based on duration of the batch 
process. The time slice duration should be chosen such that it 
is small enough to perform online monitoring and large 
enough to avoid unnecessary computational load. This aspect 
is discussed again in detail later along with a simulation case 
study. An FSPCA model is then obtained for each of the time 
slice duration.  

The historical data for a batch process can be unfolded as 
given in (1). Each fi,j(t) for different batches may have 
different length, while for a given batch (i), the duration will 
be same. A time slice matrix (XS) can be formed by 
substituting t = tstart : k : ts. It is recommended that ts should be 
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an integer multiple of k. A function approximation for batch 
trajectories of time slice matrix is then obtained, as per the 
discussions given in Section 3. Once coefficient CS for the 
time slice matrix XS is obtained, a statistical model is built by 
applying PCA on the coefficient matrix. The statistical 
control limits (Q and T2) obtained here are the control limits 
at time ts. Similarly the control limits for every nts times 
(where n is an integer) need to be calculated for each of the 
corresponding time slice matrix. A step-by-step modeling 
procedure is given below: 

1. Obtain three-dimensional data matrix XI×J×K. 

2. Select a time slice duration ts and set n = 1. 

3. Perform unfolding on the matrix X, to obtain a time slice 
matrix XS = X(nts) of dimension I×(Jnts/k). 

4. Obtain a function approximation of trajectories in the 
time slice matrix XS to generate coefficient matrix CS. 

5. Build a statistical model by applying PCA on the 
coefficient matrix CS. 

6. Calculate control limits for Q and T2 and denote them as 
Q(n) and T2(n). 

7. Increase n by 1. 

8. Repeat from step 2, until nts is greater than the maximum 
batch duration. 

It is important to note here that if nts is greater than duration 
of any batch, then complete batch data should be taken while 
generating the time slice matrix. 

Thus, in this proposed approach an incremental model is built 
for every nts duration and control limit for every time slice 
Q(n) and T2(n) are obtained.  

4.2 Online Monitoring using proposed FSPCA model 

The proposed online monitoring algorithm evaluates plant 
condition at every time slice interval. The online 
measurements are collected for a time slice period and its 
function approximation is obtained using the same number of 
basis functions (N) as used during modeling. The coefficients 
thus obtained are projected onto the time slice FSPCA model 
obtained and residual (Q) and T2 values are calculated. If any 
one of the control limits is violated, it can be indicative of a 
fault and a fault is detected at time nts. A step-by-step 
monitoring procedure is given below: 

1. Set n = 1. 

2. Collect online batch data for nts duration. 

3. Obtain function approximation of each measurement 
trajectory using the same number of basis functions used 
while modeling. 

4.  Project the obtained coefficient vector on to the PCs 
retained in statistical model. 

5. Calculate Q and T2 values. 

6. If any one of the control limits is violated, a fault is 
detected at time nts. 

7. Increase n by 1. 

8. Repeat from step 2, until the end of the batch. 

The proposed online monitoring algorithm is expected to 
perform better for incipient faults as well as faults which are 
non-stationary. To demonstrate effectiveness of the proposed 
FSPCA based online monitoring approach, simulations were 
carried out. These simulation results are summarized in the 
next section. 

5. SIMULATION CASE STUDIES 

Applicability and usefulness of the proposed FSPCA based 
approach for online batch process monitoring is demonstrated 
using a simulation case study involving fed-batch penicillin 
cultivation process.  

The proposed approach is validated on fed-batch penicillin 
fermentation process. The simulations were carried out using 
the PenSim v2.0 simulator (Birol et al., 2002), which is 
available at http://www.chee.iit.edu/~cinar/software.html, 
developed by a research group of Illinois Institute of 
Technology, USA. The fed-batch process schematic is shown 
in Fig. 1. In the PenSim v2.0, there are provisions to change 
the duration of a batch and to introduce various faults. Faults 
can be introduced in aeration rate, agitator speed and 
substrate feed rate. 

Here the total duration of a batch was randomly selected 
between 390 to 420 hours. Historical data was generated for 
100 normal batches with sampling time of 0.2 hours. A total 
of 11 measurements were considered available online and the 
list of measured variables is given in Table 1. Small 
variations were added to simulation initial conditions to 
mimic real plant operating condition during normal 
operation. Measurement noise was added to all the variables 
such that signal to noise ratio is 5%. This was done exactly in 
the same manner as reported in (Lee, et al., 2004) so that a 
fair comparison can be made. Statistical models were 
developed using MPCA and the proposed FSPCA approach 
based on these 100 normal batches. The Bernstein 
polynomials (first 15 polynomials) were used as a basis for 
the function space. 

 
Figure 1: The fed-batch penicillin fermentation process 
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Figure 2: Modified MPCA based control charts for a ramp fault in agitator 

speed 
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Figure 3: The proposed FSPCA based control charts for a ramp fault in 

agitator speed 

Solid lines indicate 95% confidence limit and dots are online 
Q and T2 values in Fig. 2 to Fig. 5. 
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Figure 4: Modified MPCA based control charts for a ramp fault in aeration 

rate 
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Figure 5: The proposed FSPCA based control charts for a ramp fault in 

aeration rate 
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Table 1: List of measured variables for the fermentation 
process 

Number Variables 
1. Aeration rate (l h-1) 
2. Agitator speed (W) 
3. Substrate Feed rate (l h-1) 
4. Substrate Feed Temp (K) 
5. Dissolved Oxygen 

Concentration (% saturation) 
6. Culture Volume (l) 
7. Carbon dioxide Concentration 

(mmol l-1) 
8. pH 
9. Bioreactor Temperature (K) 
10. Generated Heat (Kcal) 
11. Cooling Water Flow rate (l h-1) 

Table 2: Faults introduced in fed-batch fermentation process 

Fault Fault 
Type 

Mag. 
of 

Fault 

Fault 
Time 
(h) 

MPCA Proposed 
FSPCA 

Aeration 
Rate 

Step 5.0 30-180 þ þ 
-5.0 70-180 þ þ 

Ramp 0.025 50-90 ý þ 
0.03 70-100 ý þ 

Agitator 
Speed 

Step 5.0 30-100 þ þ 
-5.0 50-90 þ þ 

Ramp 0.13 50-90 ý þ 
0.3 50-90 ý þ 

Substrate 
Feed 
Rate 

Step -15 50-170 þ þ 

The time slice duration was considered to be 1 hour, i.e. 
monitoring of batch process was carried out every hour. It is 
sufficient to monitor this 400-hour batch process condition 
every hour without compromising on diagnostic performance 
along with acceptable computational load and hence the time 
slice duration should be selected based on the nature of the 
batch process. As the proposed FSPCA methodology 
accounts for variability in the data for every time slice period, 
it is expected that it will result in better diagnostic 
performance for incipient faults. 

To evaluate performance of monitoring methodologies based 
on MPCA and the proposed FSPCA, several fault cases were 
also simulated. These fault conditions are listed in Table 2. 
Either a sudden step or a slowly varying ramp type faults 
were introduced in aeration rate, agitator speed and substrate 
feed rate. As can be seen from Table 2, MPCA is not able to 
identify ramp type of faults (marked as ý), i.e. incipient 
faults. Compared to that FSPCA is correctly able to detect all 
faulty operations. The same has been demonstrated using 
monitoring plots shown in Fig. 2 through Fig. 5. Based on Q 
and T2 plots for MPCA and the proposed FSPCA method, it 
can be seen that MPCA is not able to detect a ramp fault in 
agitator speed and aeration rate. On the other hand, the 
proposed FSPCA algorithm is easily able to detect these 
faults. Thus the proposed FSPCA algorithm is better suited 
for detecting slowly varying incipient faults. 

6. CONCLUSION 

In this paper an online monitoring algorithm based on 
FSPCA is proposed. FSPCA employs batch-wise unfolding 
of three-dimensional data and online monitoring cannot be 
performed using conventional FSPCA algorithm. Here, a 
time slice modelling approach is proposed based on FSPCA, 
which is better suited at capturing time varying batch process 
dynamics. It has been shown that FSPCA is better suited for 
monitoring of slow incipient faults compared to modified 
MPCA approach proposed earlier.  
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