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Abstract: Regulatory on off minimization (ROOM) is a popular metabolic modeling strategy for 
obtaining the fluxes of various metabolic reactions in a mutant.  It is based on minimization of the 
number of flux changes with respect to the wild-type. The ROOM approach involves solving an integer 
programming problem. In ROOM, the number of integer decision variables is equal to the number of 
reactions in the metabolic network under consideration. Typically, metabolic networks of interest are 
genome scale implying that the number of reactions in the network and hence the number of integer 
decision variables is large. The ROOM approach thus has inherent difficulties associated with large scale 
integer programming problems. In the current work, motivated by the emerging area of compressed 
sensing, we propose a reformulation, known as basis-pursuit, of the ROOM algorithm. The proposed 
formulation is an L1 norm minimization problem and is thus convex in nature. The proposed approach is 
used to obtain the flux profiles for various mutants of the Synechocystis species strain PCC 6803. The 
results are compared with the existing ROOM approach. It is observed that the proposed algorithm 
performs better in most cases. Use of compressed sensing based formulation creates exciting possibilities 
of efficiently reformulating various other metabolic network analysis problems.   
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                             1. INTRODUCTION 

Metabolic models are quantitative frameworks for studying 
the metabolism of wild type and mutant organisms. Several 
metabolic modeling techniques exist in literature. Flux 
Balance Analysis (FBA) is a simple and yet a very important 
metabolic modeling strategy for wild type organisms. It is 
based on the assumption that physicochemical principles such 
as the laws of conservation of mass and energy hold true for 
metabolic networks (Kauffman et al., 2003). Further, in FBA, 
it is assumed that organisms have evolved over millennia to 
maximize growth (Varma and Palsson, 1993). However, this 
assumption of maximal growth may not hold true for mutant 
organisms. Studying the metabolism of mutant organisms is 
important since, in such organisms fluxes can get redirected 
towards some desired metabolite due to the genetic 
modifications. For example, a gene deletion will cause the 
flux of the reaction catalyzed by the enzyme coded by the 
gene to become zero, thereby potentially perturbing the 
fluxes in the entire metabolic network. 

Several metabolic modeling strategies have been proposed 
which specifically apply to mutant organisms. Regulatory On 
Off Minimization (ROOM) (Shlomi et al., 2005) is one such 
popularly used strategy. Several studies based on ROOM 
exist in literature. Results of ROOM simulations performed 
on E. coli gene deletion mutants have been found to be in 
close agreement with experimental data on such mutants 
(Chen et al., 2010). The ROOM algorithm has been included 
as a part of the open source software package OptFlux which 

consists of computer programs of several metabolic modeling 
techniques (Rocha et al., 2010).   

The basic premise in the ROOM approach is that the aim of 
the mutant is to minimize the number of significant flux 
changes compared to the wild type organism. This hypothesis 
is reasonable since there is evidence to suggest that the final 
metabolic steady state after a mutation is quite close to that in 
the wild type with major flux changes occurring in only a few 
reactions (Shlomi et al., 2005). Identification of the flux 
profiles of a mutant using ROOM thus involves solving an 
optimization problem where the number of significant flux 
changes compared to the wild type fluxes are minimized in 
the mutant, subject to the fluxes satisfying the conservation 
laws. This then results in an integer programming 
optimization problem. The number of integer decision 
variables in this problem is the same as number of fluxes in 
the metabolic network and can easily vary from a few 
hundreds to a few tens of thousands. The resulting 
optimization problem can then be a large scale integer 
programming problem and will have the inherent difficulties 
associated with solving large scale integer programming 
problems. 

In this work, we propose an alternate formulation of the 
ROOM algorithm that alleviates the problems associated with 
the traditional formulation. Our proposed formulation is 
motivated by compressed sensing theory. Compressed 
sensing is a new paradigm in measurement and signal 
processing. It refers to a sampling technique in which only a 
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few measurements suffice for the reconstruction of the 
original signal. The number of required samples are much 
fewer than that required by Nyquist/Shannon sampling theory 
(Baraniuk, 2007). The key requirement in this reconstruction 
is that the underlying signal should be sparse. It is shown in 
literature that the unknown underlying signal can then be 
almost always obtained using a convex program (Candes, 
2006). This convex program involves minimization of one 
norm of the sparse signal and can even be recast as a linear 
program known as basis pursuit (Baraniuk, 2007).  In recent 
past, compressed sensing has been applied to a wide variety 
of areas such as imaging (Romberg, 2008), electron 
tomography (Thomas, 2012) and  microarrays (Dai et al. 
2009). Motivated by compressed sensing, our proposed 
approach for the alternate ROOM formulation is based on the 
reasonable premise that the number of fluxes in a mutant 
significantly different from the wild type fluxes is a small 
fraction of the total number of fluxes. This assumption of 
relatively few significant flux changes, however, may not 
always be true such as for lethal mutants. For example, for S. 
cerevisiae, the ROOM algorithm correctly predicted 
experimentally determined lethal genes as lethal only 29% of 
the time (Shlomi et al., 2005). For scenarios where the 
assumption of relatively few significant flux changes holds 
true, the ROOM approach can be used. For such cases, the 
flux change vector is expected to be sparse and we propose to 
obtain it using the known equality constraints on fluxes as a 
proxy for measurements. We thus formulate the ROOM 
algorithm as a linear programming problem.    

We demonstrate the applicability of our proposed approach 
by obtaining flux profiles for mutants of the unicellular 
cyanobacterium  Synechocystis species strain PCC 6803 in 
the context of ethanol production. This organism is selected 
since it is a model organism and can synthesize useful 
organic molecules such as ethanol by virtue of 
photoautotrophic metabolism. In particular, we predict the 
flux profiles corresponding to several mutants obtained by 
deleting single or a pair of genes. We compare our results to 
the standard ROOM approach and show that in several cases 
we obtain profiles which have lesser number of significant 
flux changes compared to the standard approach.  

2. RELEVANT TECHNIQUES 

2.1 The Flux Balance Analysis (FBA) Model  

In this work, we consider the FBA model as described in 
Formulation I (Montagud et al., 2010). In equation (1), Z 
represents the biomass flux and  represents the flux vector 
containing all the fluxes. The biomass flux is maximized 
subject to mass balance and thermodynamic constraints. The 
term S is the stoichiometric matrix. The (i,j)th entry of matrix 
S is the signed stoichiometric coefficient of the ith internal 
metabolite in the jth reaction. It is assumed in FBA that all 
internal metabolites are at steady state. Hence the linear 
equality mass balance constraints . 0S  are enforced. The 
other constraints in equation (1) arise from thermodynamics. 
Irreversible reactions  (corresponding to indices of the set 

irrI ) are constrained to the positive real line whereas 

reversible reactions ( revI ) are left unconstrained. Special 
bounds are put on constrained ( constI ) and uptake reactions 
( uptakeI ). The set I is thus the set of indices of all reactions 
in the metabolic network. The mathematical problem posed 
by equation (1) is thus a linear programming optimization 
problem with  being the vector of decision variables. 

Formulation I: FBA model 

Maximize biomassZ   
subject to, 

. 0S      
0 j   ,   irrj I   

j    , revj I   

,min ,maxj j j    , constj I   

,min ,maxj j j    , uptakej I   

where,  irr rev const uptakeI I I I I     

 2.2  Geometric FBA 

The linear programming problem posed in Formulation I can 
have a unique optimal solution or infinite number of optimal 
solutions. The latter case is referred to as multiple optima. To 
address the issue of multiple optima, we consider a FBA 
algorithm that always obtains an unique solution (Smallbone 
and Simeonidis, 2009). We refer to this algorithm as 
“geometric FBA”. The algorithm uses geometric arguments 
to obtain a solution devoid of internal cycles (Smallbone and  
Simeonidis, 2009). It is important to note that internal cycles 
here refer to cycles in which there is no net reaction. Thus 
redox cycles or futile cycles are not internal cycles as per this 
definition.   

2.3  Regulatory on off minimization (ROOM) 

Regulatory on off minimization (ROOM) is a modeling 
strategy for mutants which does away with the assumption of 
maximal growth. The ROOM algorithm is described by 
Formulation II (Shlomi et al., 2005). 
 
In Formulation II, the superscript M denotes that the 
metabolic network of  a mutant is under consideration. Also, 
N and 'N refer to the number of reactions in the metabolic 
network of the wild type and the mutant respectively. Thus 
the number of gene deletions is ( ')N N . The variables 

jy are binary variables that can take values of either zero or 
one. The vector MTw  represents the wild type flux 
distribution. From equation (4) in Formulation II, it is 
observed that if the mutant flux value M

jv  lies outside the 

bounds u
jw  and l

jw , the integer variable jy  must necessarily 

assume a value of one. On the contrary, if M
jv  lies within the 

bounds u
jw  and l

jw , then jy can assume a value of zero or 

one. Since the sum of the values of jy is minimized, jy is 

(1) 
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forced to assume a value of zero in the latter case.  and  in 
equation (4) are user specified parameters. Their choice 
determines the bounds u

jw  and l
jw  that are used for labelling 

a flux change as significant or not significant. In this work, 
the values of  and  were taken to be 0.03 and 0.001 
respectively (Shlomi et al., 2005). 
 
Formulation II: ROOM formulation 

Minimize 
'

1

N
j

j
y


                                                   (2) 

subject to,  
. 0M MS    

0 M
j   , M

irrj I   
M
j    ,  M

revj I   

,min ,max
M M M
j j j    , M

constj I   

,min ,max
M M M
j j j    , M

uptakej I   

,max( )u uM Mjj j j jv y v w w    

,min( )l lM Mjj j jjv y v w w                  

| |u MT MT
j j jw w w     

| |l MT MT
j j jw w w     

{0,1}jy   
 

2.4 Compressed sensing theory 

We now briefly discuss the theory of compressed sensing. 
More details can be obtained from literature (for example, 
Baraniuk, 2007). Consider a real valued signal x with P  
elements which in some basis    can be represented as: 

x z          (5) 

In equation (5),  is a PXP  basis matrix and z is the PX1 
vector of weighting coefficients. The signal x  is said to be 
K-sparse if only K of the coefficients in vector z are non-zero 
(Baraniuk, 2007). Thus the information in the signal x can be 
stored in the non-zero elements of z which are less than the 
number of elements in x . Hence the signal x is called a 
compressible signal. The essential idea of compressed 
sensing is to make Q K measurements and then reconstruct 
the entire P dimensional K-sparse signal x  or equivalently 
its representation z in basis   using the available Q  
measurements. These Q  measurements can be represented as 
linear combinations of the P dimensional signal x as: 

y x z z                         (6) 

where   is a QXP matrix. In Equation (6), y is a 1QX vector 
which stores the Q P measurements, resulting in an 
underdetermined system of equations. In equation (6), it is 
important to ensure that for a unique z  there is a unique y . 
This is ensured if the matrix   satisfies the restricted 
isometry property (RIP) (Baraniuk, 2007). The RIP is 
satisfied when all the possible subsets of P columns of the 
matrix   are nearly orthogonal (Candes, 2006). A random 
QXP  matrix is found to satisfy the RIP with high probability 
when log( / )Q cK P K  where c is a small constant 
(Baraniuk, 2007 ). After finding a suitable matrix  , the next 
task is to develop a technique to actually recover the P 
dimensional signal z  from just the Q  measurements. The 
following formulation recovers the signal z :         

Minimize 0z such that y z                                      (7) 

where 0z represents the number of nonzero elements in 
vector z. The above optimization problem is both numerically 
unstable and NP-complete (Baraniuk, 2007). Therefore, 
getting a solution in a reasonable amount of time is not 
possible with the above problem formulation. An alternative 
optimization based on L1 norm minimization is able to  
recover K-sparse signals and closely approximate 
compressible signals with high probability (Baraniuk et al., 
2007). The optimization based on L1 norm, known as basis-
pursuit problem, is as follows (Baraniuk, 2007): 

Minimize 1
1

P
i

i
z z


  

such that y z                     

The quantity 1z  is the L1 norm of vector z which is a convex 
function of z (Ganguli and Sompolinsky, 2012). Several 
efficient algorithms for solving the above convex 
optimization problem are available in literature (Ganguli and 
Sompolinsky, 2012). The problem posed in equation (8) can 
also be cast as a linear programming problem (Chvatal, 
1983). 

2.5 The proposed alternate ROOM formulation  

Motivated by compressed sensing, we now propose an 
alternative formulation of the ROOM algorithm similar to 
equation (7). In particular, the vector  defined 
as ( )M MTw   can be thought of as a sparse signal as 
mutant fluxes tend to remain close to the corresponding wild 
type values while satisfying the constraint . 0M MS   . The 
proposed alternate ROOM formulation is described by 
Formulation IIIa.  

(8) 

(3) 

'1, 2,..,j N  (4) 
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Formulation IIIa: Alternate ROOM formulation 

Minimize 0  

subject to,  

. .M M MTS S w    
MT
j jw     , M

irrj I   

j    ,  M
revj I   

,min ,max
M MT M MT
j j j j jw w      , M

constj I   

,min ,max
M MT M MT
j j j j jw w      , M

uptakej I   
 
The vector  obtained by solving Formulation IIIa can be 
used to obtain the vector M (the mutant flux distribution) by 
the relation M MTw   , since the vector MTw is known 
from FBA. 
 
Formulation IIIa will thus enable obtaining the flux profile 

Mv which has the minimum deviation from the wild type 
flux distribution MTw , given the mass balance and 
thermodynamic constraints posed by equation (10) which the 
metabolic network of the mutant must obey. However, the 
optimization problem posed in Formulation IIIa is NP-
complete (Baraniuk, 2007). Hence this problem is 
numerically intractable. The stoichiometric matrix MS  in 
equation (10) plays the role of the measurement matrix   in 
equation (7) whereas ( . )M MTS w  assumes the role of 
measurement y  in equation (7). To ensure that Formulation 
IIIa can be solved by reformulating as a basis-pursuit 
optimization problem, the measurement matrix is required to 
satisfy RIP (section 2.4). In equation (10), this stoichiometric 
matrix is not necessarily random in nature. We still expect 
that a basis-pursuit reformulation of Formulation IIIa will 
lead to the same solution as in equation (7) due to the 
following important result encoded as a phase transition in 
compressed sensing. This is briefly discussed next. 

Phase Transition in Compressed Sensing: Recently it has 
been reported (Ganguli and Sompolinsky, 2012) that the 
ability to extract the sparse solution in compressed sensing is 
insensitive to the details of the measurement matrix   and 
the unknown signal z in the limit when Q and P are large. It 
instead depends only on the degree of sampling   and the 
signal sparsity f. The degree of sampling is defined as the 
number of measurements divided by the total number of 
elements in the unknown signal. The signal sparsity is 
defined as the number of non-zero elements in the signal 
divided by the total number of elements in the signal. In 
particular, a phase transition diagram in compressed sensing 
in the f   plane has been reported (Figure 3 in Ganguli 
and Sompolinsky, 2012). If for a given f, the value of   is 
greater than the phase transition value ( )c f , then L1 
minimization typically yields perfect signal reconstruction 
(Ganguli and Sompolinsky, 2012).   

The number of rows in stoichiometric matrix in metabolic 
modeling will typically be comparable (though less) to the 
number of columns. Thus the degree of sampling  in 
Formulation IIIa is quite close to 1. Further the signal 
sparsity would be quite low as it is expected that only a few 
fluxes in a mutant will be different from the wild type fluxes. 
Thus we expect   to be above the critical value obtained 
from the phase transition diagram. This will be verified in the 
case study to be presented later.  The optimization problem in 
equations (9) and (10) can then be reformulated as a basis-
pursuit problem as: 

Formulation IIIb:L1 reformulation of IIIa 

Minimize 1  

subject to  

equation (10) 

3. CASE STUDY 

We now apply the above mentioned techniques to study the 
metabolism of Synechocystis species strain PCC 6803 
(Montagud et al., 2011). The most recent wild type model as 
communicated to us by the authors was used (Montagud A, 
personal communication, December 14, 2012). This model 
consists of 923 internal metabolites, 62 external metabolites 
and 983 reactions. 

Fu (2009) created a Synechocystis 6803 mutant by inserting 
the genes pdc and adh into the genome of the Synechocystis 
6803 wild type. This resulted in a mutant with an additional 
ethanol producing pathway and this mutant will henceforth 
be referred to as the “Synechocystis mutant”. The number of 
reactions in the Synechocystis mutant is thus 985. The flux 
profile in the Synechocystis mutant was obtained from 
geometric FBA.     

Sengupta et al. (2013) performed exhaustive single and 
double gene deletion simulations on the Synechocystis mutant 
using the ROOM algorithm. For these, the wild type flux 
distribution was the flux profile of the Synechocystis mutant 
as predicted by geometric FBA. For the single gene deletion 
simulations, the Pareto front with the biomass flux and the 
ethanol flux as the two objectives to be maximized was 
obtained and analyzed. The Pareto front represents an optimal 
trade off between the two fluxes. A similar analysis was done 
for the double gene deletion simulations (Sengupta et al., 
2013). All simulations were performed in the autotrophic 
metabolic mode. In each simulation, glucose uptake was 
constrained to zero. In addition, carbon dioxide and 
bicarbonate uptake were each bounded to 1.7 mmol/gDW/hr 
(Montagud et al. 2010).   

In this work, we compare the existing ROOM algorithm with 
the proposed L1 reformulation by performing gene deletion 
simulations on the Synechocystis mutant using both the 
techniques in the photoautotrophic metabolic mode. The L1 

(11) 

(9) 

(10) 
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reformulation (Formulation IIIb) is solved by converting to a 
linear programming formulation (Chvatal, 1983). The 
criterion of deciding whether a flux change is significant or 
not in the proposed L1 reformulation remained the same as in 
the original ROOM algorithm. Thus, the flux change for the 
jth reaction was considered significant if the flux value 
predicted by the proposed L1 reformulation lied outside the 
bounds u

jw and l
jw with  and  being 0.03 and 0.001 

respectively. This is in accordance with equation (4). All 
simulations were performed using the CPLEX solver in  
TOMLAB® version 5.9 optimization suite operating in 
MATLAB® version 7.4 running on Ubuntu 10.04 LTS 
operating system on an Intel Quad Core PC with 3 GB of 
RAM.   

3.1 Single gene deletions 

Systematic exhaustive single gene deletion simulations were 
performed using both the optimization techniques. Amongst 
all such simulations, the number of common deletions for 
which simulations from both strategies converged was 778. 
In these, the maximal number of significant flux changes as 
predicted by the L1 reformulation was 306. Also, for single 
gene deletions, the number of reactions in the metabolic 
network is 984 (one less than 985). Hence the maximum 
value of the signal sparsity f for all the single gene deletion 
cases is (306/984) =0.311. Further, the value of the degree of 
sampling  is (923/984) = 0.938 since the number of internal 
metabolites for the Synechocystis mutant is 923. For f =0.311, 
the phase transition value c  0.7 (Figure 3 in Ganguli and 
Sompolinsky, 2012). Thus the value of  is well above the 
critical value of 0.7 for all the cases considered in this work. 
Hence the model posed by the L1 reformulation is expected 
to lead to solutions that minimize the number of significant 
flux changes for all mutants.   

For the 778 cases, the number of significant flux change 
values as obtained from the proposed L1 reformulation 
algorithm were subtracted from the corresponding values as 
obtained from the orginal ROOM algorithm and the resultant 
values  were plotted in Figure 1. From Figure 1, it is observed 
that barring a few exceptions, the original ROOM algorithm 
has predicted a higher number of significant flux change 
values compared to the proposed approach.   
 
The number of significant flux changes in various pathways 
have been shown for two single gene deletion mutants in 
Table 1. For mutant A, the biomass flux as predicted by both 
the strategies is the same as that in the wild type. Hence it is 
expected that for A, the flux distribution should be very close 
to that in the wild type thereby leading to only a few 
significant flux changes. From Table 1 we note, that for 
mutant A, the proposed reformulation predicts much fewer 
significant flux changes as compared to ROOM and thus 
gives more meaningful results. For mutant B, the biomass 
flux predicted by both the strategies is zero and a large 
number of significant flux changes are thus expected. From 
Table 1, we observe that this is indeed the case and the 
predictions from the two strategies are comparable.  
   

For the sake of comparison, we also report the total time 
taken for running the 778 simulations. For the ROOM 
approach, the total simulation time was 396 seconds whereas 
for the L1 reformulation approach, the same was 310 
seconds. Thus the reformulation required less running time.  
 

Table 1.  Significant flux changes for two mutants 
 

Pathway 

 

Fluxes 

 

A B 

ROOM L1 ROOM L1 

Glycolysis 16 4 2 6 3 

TCA cycle 8 0 0 6 6 

PP Pathway 14 2 1 3 2 

Amino Acid 146 6 0 75 78 

Nucleic Acid 102 13 0 45 35 

Fatty Acid 73 10 0 61 61 

All 985 53 5 317 284 
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Fig. 1. Figure showing the difference in the number of 
significant flux changes  from single gene deletion 
simulations on the Synechocystis mutant (ROOM minus L1). 
 

3.2 Double gene deletions 

For the double gene deletion simulations, the total number of 
possible systematic deletion pairs is high. Thus, we 
considered 554 gene deletion pairs which formed the Pareto 
front for the double gene deletion ROOM simulations 
(Sengupta et al., 2013).  

For the 554 cases, the number of significant flux change 
values as obtained from the proposed L1 reformulation 
algorithm were subtracted from the corresponding values as 
obtained from the orginal ROOM algorithm and the resultant 
values were plotted in Figure 2. From this figure, it is 
observed that the original ROOM algorithm again predicts a 
higher number of significant flux changes when compared to 
the proposed approach in most cases. 

4. CONCLUSION 

ROOM is  a popular metabolic modeling strategy for 
obtaining flux distributions in mutant organisms. In this 
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work, we have proposed a reformulation of the original 
ROOM algorithm. Motivated by compressed sensing, the 
proposed approach results in a L1 norm minimization 
problem which is convex in nature as opposed to the existing 
integer programming formulation. The utility of the proposed 
approach was demonstrated by applying it to analyze flux 
profiles for mutants obtained by single and double gene 
deletions on a mutant strain of the unicellular cyanobacterium 
Synechocystis species strain PCC 6803. In most of the cases, 
fewer number of significant flux changes were obtained as 
compared to the traditional ROOM implementation. Future 
work can be directed towards inspecting the flux values 
obtained from the two strategies and comparing the predicted 
values with actual in-vivo flux estimates obtained from 
metabolic flux analysis using 13C isotopic labelling.  We are 
currently investigating the application of the proposed 
compressed sensing based approach for other type of 
metabolic modeling applications involving minimization of 
significant (non-zero) fluxes. 
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Fig. 2. Figure showing the difference in the number of 
significant flux changes from double gene deletion 
simulations on the Synechocystis mutant (ROOM minus L1). 
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