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Abstract: Metabolomic analysis can indeed enhance the prime variable dataset for the monitoring of 

perfusion cultures by providing a higher resolution view of the metabolic state. Metabolic profiles can 

capture physiological state shifts over the course of the perfusion cultures and indicate a metabolic 

“signature” of the phase transitions, which is not observable from prime variable data. Notably, 

metabolomics provides orthogonal (to prime variables) evidence that all cultures follow this same 

metabolic state shift with cell age, independently of bioreactor scale. Additionally, this analysis can 

increase the information content of process development experiments by helping better understand the 

impact of changes in bioreactor operating conditions on cell physiology. In this context, metabolic 

profiling could be integrated into the monitoring of cell physiology in perfusion cultures. 
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1. INTRODUCTION 

Mammalian cell cultures have been increasingly used for the 

production of complex biopharmaceuticals. As these products 

are of significance for human health, there is a crucial need 

for the development of robust processes that consistently 

produce material of high quality. Therefore, the industry is in 

need of tools for sensitive, high-resolution monitoring of the 

cell culture physiology throughout the entire process. 

Conventionally, the monitoring of mammalian cell cultures 

has been based on a small set of prime variables (i.e. growth 

rate, cell density and viability, product quality, substrate 

consumption and lactate production) and the relevant specific 

rates (Goudar et. al., 2009). However, this monitoring 

approach has limitations more prominently apparent when 

changes in product quality are observed despite no evident 

changes in the prime variable measurements. In addition, 

prime variables alone cannot provide extensive information 

about the culture physiology to allow for better understanding 

and optimization of the culture process based on experiments 

from process development activities, such as bioreactor scale-

down model qualification and design space studies. 

On the other hand, metabolic profiling can inherently provide 

a more extensive perspective of the cellular metabolic state 

than the set of the prime variables (Figure 1). Therefore, the 

multi-compound profiles are expected to be higher sensitivity 

sensors of changes in the metabolic physiology of cell 

cultures than the prime variable dataset. Additionally, 

quantification of the concentration change in many 

intracellular metabolites between different physiological 

conditions could help determine the sources of the relevant 

metabolic variation in cell cultures. In laboratory scale cell 

culture engineering, metabolomics has recently been used for 

the characterization of Chinese hamster ovary (CHO) cells, 

based predominantly on the profiling of the culture medium 

(Chong et. al. 2011; Bradley et. al., 2010) and, lately, of 

intracellular metabolites (Selvarasu et. al., 2012; Dietmair et. 

al., 2012). Our group (Chrysanthopoulos et al., 2010) 

presented the first metabolic profiling analysis of industrial 

scale perfusion cultures of baby hamster kidney (BHK) cells, 

using Gas Chromatography–Mass Spectrometry (GC-MS). 

The study provided strong evidence metabolic profiles could 

sense subtle metabolic changes due to cell age.  

In a recent study (Vernardis et al., 2013), an extensive 

overview of which will be provided in the present analysis, 

our group built on those results and used metabolomics and 

metabolic network analysis to determine characteristic 

metabolic patterns for the different phases of both laboratory 

and manufacturing scale perfusion systems. The main 

objective was to investigate whether comparative 

metabolomics across reactor scales could indeed provide 

information not directly obtained from the prime variable 

measurements as to whether the time course of the metabolic 

physiology is independent of reactor scale. The analysis as 

described below under the name Analysis 1 confirmed this 

hypothesis, which is sequence validates the scale-down 

models, which are a key component in all design space 

studies.    
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Fig.1 The multi-compound metabolic profile provides higher 

resolution perspective of the cellular metabolic physiology than the 

prime variable measurement set. On the right-hand side network, the 

metabolites that are quantified using GC-MS metabolomics are 

shown in blue.  

 

A subsequent design of space (DOE) experiment, which was 

analysed using metabolomics, has been the most extensive 

industrial-scale study of this kind in perfusion cultures. 

Specifically, in this analysis, which will be described below 

under the name Analysis 2, five laboratory-scale reactors 

derived from the same manufacturing scale were subjected to 

various combinations of changes in pH, dissolved oxygen 

(DO), temperature (T) and cell specific perfusion rate (CSPR) 

at various points of the culture time course. Analysing this 

experiment using metabolic profiling will contribute to the 

investigation whether changes in the metabolic physiology 

induced by modifications in the growth environment of the 

cultures may be reversible and under which conditions. This 

is very significant in industrial cell culture engineering, and 

could define metabolomics as a validation tool for the 

consistency of cell culture physiology and process. 

2. EXPERIMENTAL PROCESS 

2.1 Analysis 1 

Two experiments, experiment 1 and experiment 2 (Fig.2) 

were applied to study cell age effect. Extensive details can be 

found in Vernardis et. al.,2013. Three laboratory-scale 

bioreactors, L5, L6 and L7, and four manufacturing-scale 

bioreactors were used, connected as shown in Figure 2. 

Manufacturing-scale bioreactors are of an order of magnitude 

larger than the laboratory-scale reactors. Samples were 

collected in the early, middle and late phase of the cultivation 

processes. It has to be noted that the two manufacturing scale 

bioreactors M5a and M5b are derived from the same 

laboratory scale bioreactor L7; M5a was inoculated in the 

early, while M5b in the late phase of the cultures. The 

boundaries of the cultivation phases are currently defined in 

an empirical way by dividing the culture process into three 

equal duration parts, as there is not direct information from 

the prime variable measurements indicating any characteristic 

changes at the phase transitions. Prime variable 

measurements indicate a consistent process throughout the 

culture time course (extensive information on the prime 

variable time profiles could be found in Vernardis et.al, 

2013).  

Fig.2 Experimental design of Analysis 1. Sampling times for each 

reactor are shown at the bottom (the figure is identical to Figure 1 in 

Vernardis et. al., 2013).  

 

2.2 Analysis 2 

Analysis 2 is a large-scale experiment, in which the pH, 

temperature, dissolved oxygen  (DO) and/or perfusion rate 

(CSPR) in the growth environment of the cultures were 

varied over the course of the experiments using a Design of 

Experiments (DOE) strategy. The actual experimental design 

is shown in Figure 3. Four laboratory scale reactors were 

inoculated from one manufacturing scale, M6. L9-L11 were 

inoculated at the early phase of the cultures; L12 was 

inoculated from L11 at the early phase of the cultures too. 

L13 was inoculated at the middle phase of the cultures. pH, 

DO, T and/or CSPR were changed from their standard 

conditions at various points throughout the time course of the 

different cultures, as shown in Figure 3. The sampling times 

for laboratory scale reactor L10 are also shown. L10 

metabolic profiling will be discussed in further detail below. 

Notably, samples were collected in the middle of the 

perturbation phase to allow for the cultures to physiologically 

adapt to the new environmental conditions. As it can be seen 

in Figure 3, in some cases the cultures were brought back to 

the standard conditions. These samples can be used to 

investigate whether the physiology of the cell cultures could 

return to the expected physiology for the particular culture 

age under standard conditions, even if it has been in the 
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meantime perturbed on a single or combination of growth 

environment parameters.  

Fig.3 Experimental design of Analysis 2. The combination of four 

boxes at each of the rows below the name of a laboratory-scale 

bioreactor corresponds to the combination of changes in the growth 

environment parameters in the following sequence: first box from 

the left: pH, second box: DO, third box: T and fourth box: CSPR. x, 

+, - in a box corresponds, respectively, to standard condition 

(white), increase (light blue) or decrease (red) with respect to the 

standard condition in the corresponding parameter. The sampling 

times of reactor L10 are also shown on the right. SC, P1, P2, P3 

depict, respectively, the standard conditions and perturbations 1, 2 

and 3. 

 

2.2 Metabolomic data acquisition and normalization  

The dried polar metabolite extract of each sample was 

obtained from dried biomass samples shipped to 

FORTH/ICE-HT from Bayer based on a methanol/water 

protocol, as described in (Chrysanthopoulos et al 2010; 

Vernardis et. al., 2013). The extracts were derivatized to their 

(MeOx)TMS-derivatives followed by reaction with MSTFA 

and the metabolic profile of each samples was measured at 

least three times using a Saturn 2000 GC-(ion trap)MS 

(Varian, currently Agilent Inc.), as justified in (Kanani et al 

2008, Kanani & Klapa 2007). The peak identification and 

quantification was carried out as before (Chrysanthopoulos et 

al 2010, Kanani et al 2008).  

Metabolomic data validation, normalization and filtering 

were carried out as in (Chrysanthopoulos et al 2010, Spagou 

et al 2011). The relative areas of all identified peaks (RPAs) 

in each profile were estimated from their normalization with 

the 217 marker ion peak area of the internal standard ribitol. 

After normalization and filtering, the metabolic profiles used 

in the multivariate statistical analysis for the extraction of 

biologically relevant conclusions concerned approximately 

70 metabolites in both analyses. 

 

2.3 Metabolomic data analysis 

 

All applied multivariate statistical analyses were based on 

standardized (RPA) values. The standardized RPA of 

metabolite M in profile j, j

M
RPAst , is equal 

to: M

M
M

M
RPA

j

j

SD

RPA-RPA

=RPAst

  , where j

M
RPA , 

MRPA , 
MRPASD  depict, respectively, the RPA of 

metabolite M in profile j, the mean RPA of metabolite M in 

all profiles and its standard deviation. Hierarchical clustering 

(HCL) (with Euclidean distance metric), principal component 

analysis (PCA) and analysis of differences (ratio) on the 

RPAs between experimental stages algorithms were used as 

implemented in version 4.8.1 of the open source TM4 MeV 

software (Saeed et al 2006, Saeed et al 2003). An extended 

view of the difference in the metabolic activity between two 

sets of samples was obtained by positioning the significant 

metabolites, color-coded appropriately, in the metabolic 

network of the BHK cells. A significantly expanded BHK 

metabolic network than that shown in (Chrysanthopoulos et 

al 2010) was reconstructed based on information from KEGG 

(Kanehisa et al 2012), MetaCyC (Caspi et al 2012) and 

EXPASY (Artimo et al 2012) databases, our metabolomic 

data and relevant literature. 

 

 

3. RESULTS & DISCUSSION 

3.1 Analysis 1: Phase transitions correspond to a 

characteristic shift in the metabolic profile of the 

cultures, which is independent of the bioreactor scale 

The time profiles of the prime variables in Analysis 1 

indicate a consistent cell bank and a robust cultivation 

process between the two experiments comprising the 

analysis, throughout the time course of the culture and across 

bioreactor scales (Vernardis et. al., 2013). On the other hand, 

metabolic profiling analysis of samples at the various phases 

of the cultures revealed characteristic shifts in the metabolic 

physiology at the phase transitions, knowledge that cannot be 

assumed from the prime variable measurements. Figure 4 

shows the heat-map of the metabolic profiles of Experiment 1 

(left side of Figure 2) in Analysis 1 and the derived 

hierarchical tree. Interestingly, the early and late phase of the 

cultures, independently of the bioreactor scale, cluster 

together with respect to their metabolic profiles, while there 

is an overall decrease in the concentration of most 

metabolites in the middle phase.  Metabolic profiling analysis 

of Experiment 2 (Figure 2) confirmed these findings 

(Vernardis et al, 2013). 

This is a very important result as this metabolic shift at the 

phase transitions could be used as a diagnostic tool for 

defining the actual phase of a culture. Moreover, it shows that 

the time course of metabolic physiology changes in the 

perfusion cultures is indeed bioreactor scale independent. 

Finally, this is information that can be provided only from the 

metabolic profiles and not from the set of the prime variables, 

indicating that metabolic profiling could be used in extension 

of the prime variable dataset to monitor the cell culture 

physiology. 

 

 

 

 

 

Early 
 

Middle 
 
Middle 

 

Middle 

 

Late 

 

 
 

IFAC CAB 2013
December 16-18, 2013. Mumbai, India

240



 

 

 

Fig.4 Hierarchical clustering analysis of the metabolic 

profiles of Experiment 1 in Analysis 1 (Figure 2). There is a 

characteristic metabolic shift between the three phases of the 

perfusion cultures. Figure 4 is included as Figure 2A in 

Vernardis et al., 2013. 
 

3.2 Metabolic Network Analysis reveals the biological basis 

of the metabolic shift from the early to the middle phase 

of the perfusion cultures 

Metabolic profiles should be visualized in the context of the 

metabolic network structure for correlations between 

metabolites to be understood and further biological 

conclusions to be derived. We have reconstructed an 

extensive metabolic network of the BHK cell line based on 

the mouse genome-wide metabolic network reconstruction, 

our metabolomic data, metabolic databases and the literature. 

Figure 5 shows the results of SAM analysis of the metabolic 

profiles in Experiment 2 of Analysis 1 between the early and 

late phase in the context of the metabolic network. 

Specifically, the metabolites the concentration of which 

increased or decreased significantly in the middle compared 

to the early phase are shown in red and green, respectively. 

Based on the fold change of the metabolite concentrations 

between the middle and the early phase, the metabolic shift of 

the cultures from the early to the middle phase is 

characterized by an increasing trend in citrate, malate and 

pyruvate (even though SAM analysis does not identify them 

as statistically significant). The particular physiological state 

that emerges in the middle compared to the early phase is 

characterized by (Icard & Lincet, 2012) as a “vicious cycle” 

between citrate, malate and pyruvate. This physiology 

coincided with a rather decreased rate of aerobic glycolysis 

and glutaminolysis required for cell survival and 

proliferation. These changes suggest potentially that the cell 

culture has been well-adjusted to the growth environment and 

more cell resources may be directed to lipid and protein 

synthesis and glycosylation. These differences are not 

directly apparent from the physiological data, including the 

production rate of the recombinant protein, further indicating 

the significance of metabolomics in providing this 

physiological information.   

Fig.5 Significant metabolic changes from the early to the 

middle phase of the Experiment 2 in Analysis 1. The 

metabolites the concentration of which is significantly 

decreased from the early to the middle phase according to 

SAM analysis are shown in green. The figure is included as 

Figure 5B in Vernardis et al., 2013.  

 

3.3 Analysis 2: Can cell culture physiology return to its 

expected state at standard conditions even after a series 

of intermediate perturbations? 

Analysis 2 metabolic profiles are analysed based on the 

metabolic physiology shifts that were identified in Analysis 

1. Knowing what the expected metabolic state would be 

under standard conditions in any of the phases of the 

perfusion cell culture, the deviations from this due to any 

intermediate perturbations of any growth environment 

parameters from their standard value could be determined. In 

this study, we demonstrate the results of the analysis of 

samples from reactor L10. All perturbations applied on L10 

are characterized by high pH. The first two perturbations 

taking place in the middle phase of the culture combine a 

higher pH with a lower DO and temperature (P1 and P2). The 

difference between P1 and P2 is, respectively, a lower vs a 

higher than its standard value CSPR. L10 is returned to its 

standard conditions at the end of what is expected as the 

middle phase of the cultures under standard conditions.  

Subsequently, its growth environment is perturbed towards a 

higher than the standard pH, DO and temperature with a 

lower CSPR. The last perturbation is taking place in the late 

phase of the culture. Figure 6 shows the PCA graph of the 

metabolic profiles from all metabolic states of L10. 

According to this graph, the metabolic profiles of the culture 
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at standard conditions in the early and middle phase cluster 

together at a distance from the metabolic profiles 

characterizing the perturbed states. Notably, the culture under 

higher DO and T shows opposite with respect to PC2 profiles 

(P1 and P2) from the case of lower DO and T (P3). 

Moreover, the profiles of P1 and P2 do not differ much, 

indicating a lighter effect of the change in the CSPR under 

the particular perturbations in the other three parameters. The 

difference between the metabolic profiles of the standard 

conditions should be compared to the metabolic shift 

expected between the culture phases as determined in 

Analysis 1. In this way, we could determine whether the 

culture reaches the expected “well-adjusted” middle-phase 

physiology when returning to the standard conditions, despite 

the intermediate perturbations or it resembles more the 

“recently inoculated - early” physiological state.  

 

Fig. 6 PCA graph of reactor L10 metabolic profiles (Figure 

2). SC, P1, P2, P3 depict, respectively, the standard 

conditions, perturbation 1, 2 and 3.  

 

Already, however, it can be concluded that the analysis of the 

DOE experiment using metabolomics could provide valuable 

information about the changes in the metabolic physiology 

that perturbations in the growth environment parameters 

could induce on the culture. Moreover, metabolic profiles 

could validate whether the culture “returns” to its expected 

physiology at standard conditions even after a single or a 

series of intermediate perturbations and which these 

perturbations are. This is very important for the industry, 

especially when it has to prove that the culture process is 

consistent despite small-scale and usually short-term changes 

in the growth environment.  

Comparative metabolomic analysis of all reactors in Analysis 

2 will provide enhanced information regarding the effect of 

changes in the growth environment on the metabolic 

physiology of the perfusion cultures. 

4. CONCLUSIONS 

Metabolic profiling can indeed enhance the prime variable 

dataset for the monitoring of mammalian cell perfusion 

cultures, by providing a higher resolution view of the 

metabolic phenotype. Metabolomic analysis identified the 

metabolic physiology shifts characterizing the phase 

transitions in this type of cultures, providing strong evidence 

that cell age related metabolic activity changes were 

bioreactor scale independent. Multivariate statistical analysis 

of the metabolic profiles indicated an overall decrease in the 

intracellular metabolite concentration during the middle 

phase compared to the early and late phases. In this context, 

metabolic profiling could be integrated into the monitoring of 

cell physiology in perfusion cultures. The acquired results are 

expected to extend well to the CHO and other industrial cell 

lines in the same type of reactors. No significant differences 

in the metabolic physiology are expected between two 

immortal mammalian cell lines from the same organism (i.e. 

BHK and CHO). Additionally, metabolic profiling and 

network analysis can increase the information content of 

process development experiments by helping better 

understand the impact of changes in bioreactor operating 

conditions on cell physiology. We believe that the cell culture 

engineering community should aim at furthering its 

understanding of the metabolic physiology of cancer cells, as 

this knowledge will have a major impact in the design and 

monitoring of optimal cell cultures.  
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