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Abstract: Microalgae culture is used in various biotechnological applications. Optimisation of the system 
productivity needs reliable sensors. However, physical sensors for biomass and dissolved dioxide carbon 
concentrations are expensive and not accurate, especially for online measurements. In this context, robust 
and efficient software sensors have to be developed. In this paper, an Unscented Kalman filter (UKF) 
methodology is proposed to estimate components concentrations in a photobioreactor. The microalgae 
Chlamydomonas reinhardtii is used as model organism. The aim of this paper is to develop an online 
software estimator that reconstructs the biomass, carbon dioxide and oxygen concentrations in the liquid 
phase, from online measurements of components molar fraction in the output gas provided by a mass 
spectrometer. The proposed estimator is validated through experimental data collected on a lab-scale 
photobioreactor. 
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
1. INTRODUCTION 

Microalgae have a great capacity of consumption of carbon 
dioxide, converting it into biomass and other secondary 
metabolites such as intracellular polysaccharides, proteins, 
pigments etc. Large-scale cultures also find applications in 
energy production (e.g. photobiological hydrogen, biofuel, 
methane) and environmental remediation (e.g. wastewater 
treatment, carbon dioxide fixation and greenhouse gas 
emissions reduction). Microalgae also can absorb heavy 
metals and sequester or degrade many different classes of 
toxic compounds. 

These applications of cultures of microalgae are developed 
under optimal conditions, generally in closed systems 
(photobioreactors). In order to achieve optimal performances, 
these photosynthetic growth processes must be accurately 
monitored and controlled. A fundamental step for the 
implementation of an effective control strategy is to choose a 
reliable model that can effectively describe the biochemical 
dynamics of microalgae. Developed mathematical models 
highlight the influence of light intensity and/or carbon source 
on biomass growth.  

However, due to model and kinetic parameters uncertainty, 
and for control purposes, online estimators have to be 
developed, to overcome the lack of physical sensors (not 
reliable and expensive), especially for biomass concentration. 

Thus, designing a robust state observer represents a real 
challenge in bioprocesses. Several studies have tackled 

biomass estimation for bioprocesses. The main approaches 
are based on asymptotic estimator (Bastin and Dochain, 
1990), extended Kalman filter (Su et al., 2003) and more 
recently interval observers (Rapaport et al. 2005; Goffaux et 
al., 2009). 

In the case of photobioreactors, the widely used estimator is 
the Extended Kalman Filtering (EKF). However, there are 
issues due to the linearization approach in this algorithm, 
especially in case of strong model nonlinearities. This can 
lead to the EKF divergence, making the filter parameter 
tuning a difficult task. Moreover, linearization of the process 
dynamics can be complex to carry on and to implement. An 
alternative is to use the Unscented Kalman Filtering (UKF). 
This observer was first proposed in (Julier and Uhlmann, 
1996). This filter uses a similar approach as the EKF, 
avoiding the linearization procedure. It leads to a better 
robustness and speed of convergence than the EKF (Kandepu 
et al., 2008). This was also demonstrated for (bio)chemical 
processes (Romanenko et al., 2004; Marafioti et al. 2008). 

The aim of this paper is to design an UKF for biomass 
concentration estimation of a microalgae culture in a 
photobioreactor, based on available online measurements. 
More specifically, the paper deals with the estimation of 
microalga C. reinhardtii concentration in a torus 
photobioreactor, based on online measurements of CO2 and 
O2 molar fractions in the output gas. This paper is structured 
as follows: Material and methods used are presented in the 
first section. Then the process description together with its 
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modelling will be given in the second section. Third section 
describes the UKF algorithm and its application to the 
considered problem. The last section will present the results 
displayed, and finally some conclusions and perspectives are 
addressed. 

2. MATERIALS AND METHODS 

The studied microalga was a wild type C. reinhardtii strain 
137AH from a culture collection of French Atomic Energy 
Center (Cadarache, France). The culture medium used for the 
photosynthetic growth of the green alga was an autotrophic 
minimum growth medium (MGM) which consisted in: 
NaHCO3 – 1.68 g·L-1, NH4Cl – 1.45 g·L-1, MgSO4·7H2O – 
0.28 g·L-1, CaCl2·2H2O – 0.05 g·L-1, KH2PO4 – 0.61 g·L-1 
and Hutner’s trace elements – 1 mL·L-1.  
The photobioreactor used in the experiments is a lab-scale 
torus-shape one, illuminated on one side. It has a working 
volume of 1.47 L and a thickness of 4 cm. The incident light 
flux is provided by an electroluminescent diode panel 
calibrated with a LI-COR light meter LI-1400. It is further 
described in (Fouchard et al., 2008). 
The pH was measured with a Mettler Toledo® Inpro 
3253SG/120/Pt100 electrode connected to a Mettler Toledo® 
pH2050e. The temperature was measured by the same 
electrode and automatically compensates the pH.  
The volumetric flows of the input gases (CO2 and N2) and of 
the output mixture of gases were measured by three 
Bronkhörst® HIGH TECH EL-FLOW type flow meters. The 
input flow meters are provided with proportional valves 
which allow the adjustment of the desired gas flow rate in 
percentage of the measuring range. The flow of fresh medium 
is regulated by a diaphragm pump Stepdos® FEM 1.08 on a 
range of 0.01 – 30 mL·min-1. 
  

3. PROCESS DESCRIPTION AND MODELING 

The studied bioprocess consists in photoautotrophic growth 
of the green alga C. reinhardtii under light limiting 
conditions.  

Microalgae are able to absorb CO2 as major substrate and to 
generate O2 as residue from the water oxidation reaction 
induced by the light as source of energy. Once the CO2 

dissolves in water, new ionic species are formed (i.e. 
dissolved carbon dioxide - ܱܥଶ,௔௤, bicarbonate - ܱܥܪଷ

ିand 
carbonate - ܱܥଷ

ଶି) through a series of reactions such as 
hydration, dehydration and protonation. When ܱܥଶ,௔௤ is 
removed from the medium as a result of the photosynthetic 
growth, the equilibrium of the bicarbonate buffer system 
ଶ,௔௤ܱܥ) ൅ ଶܱܪ ↔ ାܪ ൅ ଷܱܥܪ

ି ↔ ାܪ2 ൅ ଷܱܥ
ଶି) will shift 

to the left and the pH will increase. The small volumes of 
CO2 gas injected in the culture will shift back the equilibrium 
and the pH will decrease. 

The dynamic model describes the behavior of microalgae 
cultures with a set of nonlinear algebro-differential equations 
deduced from mass balance considerations on both liquid and 
gaseous phases, assuming well mixed conditions. A radiative 
model, which expresses the light attenuation inside the 
culture was coupled with a kinetic model for describing the 
light-driven processes characterizing microalgae growth. It 
results in using a particular class of models returning local 

photosynthetic responses by expressing the specific growth 
rate as a function of local irradiance in the depth of the 
culture (z). The average photosynthetic response 〈ݎ௑〉 
calculated all over the reactor’s volume was obtained by 
integrating the local photosynthetic responses on the direction 
of the culture depth. 

The mechanistic dynamical model employed for describing 
all these phenomena was developed in (Ifrim, 2012). 

The time evolution of the system can be described through 
five state variables: the biomass concentration (denoted X), 
the dissolved inorganic carbon (DIC) concentration (denoted 

DICC ), the dissolved 2O concentration (denoted 
2OC ) and 

the 2CO and 2O molar fractions in the output gas (denoted 

resp. 2CO
outy  and 2O

outy ). These last are defined by

outoutout GGy /  , where outG  is the total output gas. 

As long as the other nutrients are present in the culture 
medium in excess (nonlimiting concentrations), their 
evolution is not considered, since it is assumed that they have 
no influence on the growth. 

3.1 Mass balance in liquid phase 

The state variables describing the liquid phase have been 
expressed in terms of mass balance equations as follows 
(batch mode): 

ௗ௑

ௗ௧
ൌ  (1) 〈௑ݎ〉

ௗ஼ವ಺಴
ௗ௧

ൌ െ
〈௥೉〉

ெ೉
൅ ஼ܰைమ (2) 

ௗ஼ೀమ
ௗ௧

ൌ
〈௥೉〉.ொ೛
ெ೉

൅ ைܰమ (3) 

where 〈ݎ௑〉 the average volumetric growth rate, MX the C-
mole mass and Qp the photosynthetic quotient. ஼ܰைమ (resp. 

ைܰమ) is the volumetric mass transfer rate for CO2 (resp. O2). 
They can be expressed as follows:  

ఌܰ ൌ ݇௅ܽఌ. ቀ
௉

ுഄ
௢௨௧ݕ
ఌ െ  ఌቁ (4)ܥ

where subscript ߝ represents the component (CO2 or O2), 
݇௅ܽఌ the volumetric mass transfer coefficient, ܪఌ	the Henry 
constant at 25°C and P the pressure. 
Moreover, CO2 concentration is not measured and it is 
calculated from the DIC concentration and pH as follows:  

஼ைమܥ ൌ ஽ூ஼/ሺ1ܥ ൅ ଵ10௣ுܭ ൅  ଶ10ଶ௣ுሻ (5)ܭଵܭ

where ܭଵ,ܭଶ are the equilibriums constants (Edwards et al., 
1978). 

3.2 Mass balance in gaseous phase 

Based on the ideal gas law and gas balance, the molar 
fractions of output gases have been expressed as follows:  
ௗ௬೚ೠ೟

಴ೀమ

ௗ௧
ൌ

ோ்

௉௏೒
൫ݕ௜௡

஼ைమܩ௜௡ െ ௢௨௧ݕ
஼ைమ. ௢௨௧ܩ െ ௟ܸ. ஼ܰைమ൯ (6) 

ௗ௬೚ೠ೟
ೀమ

ௗ௧
ൌ

ோ்

௉௏೒
൫ݕ௜௡

ைమ. ௜௡ܩ െ ௢௨௧ݕ
ைమ . ௢௨௧ܩ െ ௟ܸ. ைܰమ൯ (7) 

where R is the universal gas constant, T the temperature, Vg	
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(resp. Vl) is the gas (resp. liquid) volume. Subscript in 
denotes the input gas. Input and output gas flow-rates are 
related by:  

௢௨௧ܩ ൌ ௜௡ݕ
ேమ. ௜௡/ሺ1ܩ െ ௢௨௧ݕ

஼ைమ െ ௢௨௧ݕ
ைమ ሻ (8) 

where Gin	represents the total volumetric flow rate at the PBR 
inlet and	ݕ௜௡

ேమ represents the molar fraction of gazous N2 (an 
inert vector gaz).   

3.3 Growth rate model 
 
The average volumetric growth rate is expressed using a 
Haldane model of the photon flux density into the culture 
medium as follows:  

〈௑ݎ〉 ൌ ଴ߤ〉
ூ

௄಺ାூା
಺మ

಼಺಺

〉 . ܺ ≜
ଵ

௅
׬ ଴ߤ

ூ

௄಺ାூା
಺మ

಼಺಺

ݖ݀
௅
଴ . ܺ (9) 

where KI	 is the half-saturation constant,	 KII the inhibition 
constant and ߤ଴	is related to the maximum specific growth 
rate (Dochain, 2008). z is the considered culture depth, L the 
photobioreactor total depth and I	 the irradiance distribution 
inside the photobioreactor. For the torus one, the analytical 
solution was obtained as follows (Ifrim, 2012):	

ሻݖሺܫ ൌ ଴ݍ2
ሺଵାఈሻ௘ഃሺಽషೋሻିሺଵିఈሻ௘షഃሺಽషೋሻ

ሺଵାఈሻమ௘ഃಽିሺଵିఈሻమ௘షഃಽ
 (10) 

where q0 represents the hemispherical incident light flux,	ߜ is 
the extinction coefficient and ߙ the linear scattering modulus. 

The system model is thus made of five differential equations 
(1-3, 6, 7). Model parameters were identified on experimental 
data issued from batch cultures (Ifrim, 2012) and are given in 
Table 1. 

Table 1.  Model parameters 

Parameter Value Unit 
µ0 0.16 h-1 
 ூ 120 µmol m-2 s-1ܭ
 ூூ 2500 µmol m-2 s-1ܭ
 ௫ 27.8 gC-moleܯ
ܳ௣ 1.1 - 

ሺܭ௅ܽሻைమ 0.9 h-1 
ሺܭ௅ܽሻ஼ைమ 0.8ሺܭ௅ܽሻைమ h-1 

P 1.1013 105 Pa 
T 298.15 K 
R 8.3145 J mol-1 K-1

௟ܸ 1.47 10-3 m3 

௚ܸ 0.12 ∗ ௟ܸ m3 

L 0.04 m 
K1 10ି଺.ଷହ - 
K2 10ିଵ଴.ଷ - 
ைమ 8.384 104 Pa m3mol-1ܪ

 ஼ைమ 2903.8 Pa m3mol-1ܪ
 - 0.996 ߙ
 - 172.69 ߜ

 
Only two states are measured online: molar fractions in the 
output gas of carbon dioxide and oxygen, in addition to 

physical variables (pH, temperature and input and output 
flow-rates). 
 

4. STATE ESTIMATION 

4.1 Observability analysis 

First, the system observability was checked using 
observability forms introduced in (Gauthier and Kupka, 
1994). The state vector is expressed in the form of two 
partitions, where the second one contains the measured 
variables. In the considered system, the two partitions are 
given by: ݔଵ ൌ ሺܺ, ,஽ூ஼ܥ ଶݔ ሻ and	ைଶܥ ൌ ሺݕ௢௨௧

஼ைమ, ௢௨௧ݕ
ைమ ሻ. 

The observability of the system is then assessed if the 
following condition is fulfilled (Dewasme et al., 2013): 

݇݊ܽݎ
డ௙మ
డ௫భ

ൌ ݉ (11) 

where m	is the number of measurements (m=2) and	 ଶ݂ is the 
dynamics of ݔଶ (i.e ݔሶଶ ൌ ଶ݂ሺݔଵ,  .((ଶݔ

This condition translates that a disturbance of the measured 
states can be propagated to the other states. It was tested in 
the case of the studied problem, and it was assessed that 2CO

and 2O molar fractions in the output gas are sufficient to 

reconstruct the other state variables for the considered 
experimental conditions.  

4.2 Unscented Kalman Filter Algorithm 

Due to systems strong nonlinearities and uncertainties, the 
UKF is used. Unlike the EKF, where the state distribution is 
propagated analytically through the first-order linearization 
of the nonlinear system, UKF is derivative-free.  

The state distribution is represented using a minimal set of 
carefully chosen sampling points, called sigma points. Each 
of these points is then propagated through the nonlinearities, 
the mean and the covariance being extracted from these 
transformed points.  

Let us consider the discrete-time nonlinear model: 

௞ାଵݔ ൌ ,௞ݔሺܨ ௞ሻݑ ൅  ௞ (12)ݒ

௞ݕ ൌ ௞ሻݔሺܪ ൅  ௞ݓ

where x is the state vector (dim(x)=n), u the input, F and H 
are nonlinear functions and vk and wk are process and 
measurement noise, respectively. The algorithm is thus as 
follows: 

Initialization (k=0):  

ො଴ݔ ൌ ଴ሿ, ଴ܲݔሾܧ ൌ ଴ݔሾሺܧ െ ଴ݔො଴ሻሺݔ െ  ො଴ሻ்ሿ (13)ݔ

For ݇ ൌ 1,… ,∞	: 

Step 1: Selection of the sigma points: 

ሺ ௞ࣲିଵሻ଴ ൌ  ො௞ିଵ (14a)ݔ
ሺ ௞ࣲିଵሻ௜ ൌ ො௞ିଵݔ ൅ .ߛ ൫ඥ ௞ܲିଵ൯௜, ݅ ൌ 1, . . . , ݊, (14b) 

ሺ ௞ࣲିଵሻ௜ ൌ ො௞ିଵݔ െ .ߛ ൫ඥ ௞ܲିଵ൯௜ି௡, ݅ ൌ ݊ ൅ 1,… ,2݊ (14c) 
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where ൫ඥP௞ିଵ൯୧ is the i-th column of the square root of the 

covariance matrix of the previous time step (calculated by 
Cholesky factorization). The parameter ߛ	can be interpreted 
as a scaling factor used to move the position of sigma points 
around the mean value. It is given by: ߛ ൌ √݊ ൅  where ,ߣ
ߣ	 ൌ ܽଶሺ݊ ൅ ݇଴ሻ െ ݊	and (a, k0) are parameters to be chosen. 
Generally, a has small values (10ିସ ൑ ܽ ൑ 1). k0 is chosen so 
that  ݇଴ ൒ 0,	to guarantee the semi-positive definiteness of 
the covariance matrix (in general ݇଴ is set to zero). 

Step 2: Prediction. The sigma points are propagated through 
the nonlinear dynamics and the estimation of the predicted 
state is calculated: 

௞ࣲ|௞ିଵ ൌ ሾܨ ௞ࣲିଵ,  ௞ିଵሿ (15)ݑ

ො௞ݔ
ି ൌ ∑ ௜ܹ

ሺ௠ሻ
௜ࣲ,௞|௞ିଵ

ଶ௡
௜ୀ଴  (16) 

The predicted covariance is then computed: 

௞ܲ
ି ൌ ∑ ௜ܹ

ሺ௖ሻଶ௡
௜ୀ଴ ൣ ௜ࣲ,௞|௞ିଵ െ ො௞ݔ

ି൧ൣ ௜ࣲ,௞|௞ିଵ െ ො௞ݔ
ି൧

்
൅ ܳ	 (17) 

where Q	is the process noise covariance matrix. 

Step 3: Update. By using the predicted sigma points (15) and 
covariance (17), a new set of sigma points is calculated which 
are projected through the observation model. The predicted 
measurements are then given by: 

ࣳ௞|௞ିଵ ൌ ൣܪ ௞ࣲ|௞ିଵ൧ (18) 

ො௞ݕ
ି ൌ ∑ ௜ܹ

ሺ௠ሻ
݅ࣳ,݇|݇െ1

ଶ௡
௜ୀ଴  (19) 

The covariance of the innovation and the cross-covariance 
matrix are then given by: 

௬ܲ෤ೖ௬෤ೖ ൌ ∑ ௜ܹ
ሺ௖ሻଶ௡

௜ୀ଴ ൣ ௜ࣳ,௞|௞ିଵ െ ො௞ݕ
ି൧ൣ ௜ࣳ,௞|௞ିଵ െ ො௞ݕ

ି൧
்
൅ ܴ௡ (20) 

௬ܲೖ௫ೖ ൌ ∑ ௜ܹ
ሺ௖ሻଶ௡

௜ୀ଴ ൣ ࣲ݅,݇|݇െ1 െ ො௞ݔ
ି൧ൣ ࣲ݅,݇|݇െ1 െ ො௞ݔ

ି൧
்
 (21) 

where Rn is the measurement noise covariance. 

The estimations are updated by using the classical Kalman 
filter equations: 

௞ࣥ ൌ ௬ܲೖ௫ೖ ௬ܲ෤ೖ௬෤ೖ
ିଵ  (22) 

ො௞ݔ ൌ ො௞ݔ
ି ൅ ௞ࣥሺݕ௞ െ ො௞ݕ

ିሻ (23) 

௞ܲ ൌ ௞ܲ
ି െ ௞ࣥ ௬ܲ෤ೖ௬෤ೖ ௞ࣥ

் (24) 

Step 4: Repeat Steps 1 to 3 for the next sample. 

The weighting factors used above are calculated as in: 

଴ܹ
ሺ௠ሻ ൌ

ఒ

௡ାఒ
, ଴ܹ

ሺ௖ሻ ൌ
ఒ

௡ାఒ
൅ 1 െ ଶߙ ൅   ߚ

௜ܹ
ሺ௠ሻ ൌ ௜ܹ

ሺ௖ሻ ൌ
ଵ

ଶሺ௡ାఒሻ
 (25) 

where β is used to incorporate prior knowledge of the 
distribution of the state. It is a tuning parameter. 

It can be noticed that in the UKF algorithm, Jacobian 
matrices are not needed as in the EKF one, leading to an 
easier implementation. 

4.3 UKF parameters tuning 

As for the EKF, the UKF has two initialization tuning 
parameters: the process and measurement noise covariance 
matrices (resp. Q and Rn). The second one depends on the 

sensor characteristics and is fixed by errors statistics of the 
measurement devices. The process covariance matrix Q is 
generally unknown and is thus tuned, by a trial-and-error 
method, so that the filter gives good estimation behaviour 
(accuracy, speed and good convergence).  

Choosing the covariance matrix Q is generally a difficult 
task, especially in the case of nonlinear uncertain systems, 
since they do not satisfy the assumptions of normal 
distribution. Several approaches were proposed in literature 
to compute this matrix (by adaptive filtering or by 
optimization approach). In this paper, this matrix was 
determined by taking into account parameter uncertainty in 
the model, by linearization of the nonlinear system dynamics 
around the nominal parameter values (Valappil and 
Georgakis, 2000). 

Let us consider the dynamic system: 

ሶݔ ൌ ݂ሺݔ, ,ݑ ሻߠ ൅  (26) ݒ

ݕ ൌ ,ݔሺܪ θ	ሻ ൅ ݓ  

where θ are the model parameters. 

Covariance of process noise v can be approached by 
linearizing the process dynamics around nominal trajectory 
and nominal parameters values (Valappil and Georgakis, 
2000), leading to:  

ܳ ൌ ቀ
డ௙

డఏ
ቁ
ఏ೙೚೘

. ܳ଴. ቀ
డ௙

డఏ
ቁ
ఏ೙೚೘

்
 (27) 

where Q଴	is the parameter covariance matrix. It can be 
computed along with the identification procedure. In this 
paper, the parameter vector is chosen as: 

ߠ ൌ ൫μ଴,ܯ௫, ܳ௣, ሺܭ௅ܽሻைమ൯ (28) 

Indeed, a sensitivity analysis shows that the considered 
model quality strongly depends on these parameters 
accuracy. In addition, these parameters are found to be the 
most uncertain when determined in the identification 
procedure. 

5.  RESULTS AND DISCUSSION 

The UKF algorithm was implemented and tested on 
experimental data collected from various cultures of the 
considered microalga, in batch mode. In the sequel, two data 
sets are used, corresponding to two cultures, over 200h, with 
different incident light flux: in the first case (culture 1), 
q0=300 µmol m-2 s-1 and in the second one (culture 2), q0=110 
µmol m-2 s-1. Initial conditions of the cultures are similar and 
are given in Table 2. 

Online measurements are collected with a sampling time 
equal to 5 min.  

Since, the dynamical model (1-3, 6, 7) is continuous, it is 
discretized using an Euler scheme. The UKF parameters are 
chosen as follows: a=10-4, k଴ ൌ 0 and β=2 (optimal choice 
for a Gaussian distribution). Measurement and process noise 
covariance matrices are the same in the two cases and are 
chosen constant. Process covariance matrix is computed with 
(27), considering state values at the initial time. 
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Figures 1 to 3 illustrate results obtained in the case of the first 
culture, and figures 4 to 6 for the second one.  

For the first experiment, the estimator has a better 
performance than the identified model in estimating biomass 
concentration (Fig. 1). Indeed, estimated values are close to 
off-line X measurements, whereas model over-estimate 
biomass concentrations. For the DIC and dissolved oxygen 
concentrations (Fig. 2 and 3), model predicted and estimated 
values are similar. However, estimated values are more 
fluctuating, because of periodic injection of carbon dioxide 
for pH regulation. No off-line measurements were available 
to assess the estimation accuracy. 

Table 2.  Initial state values 

Parameter Value Unit 
X(0) 0.2 g L-1 

்ܿூ஼ሺ0ሻ 0.02 mol L-1 
ܿைమሺ0ሻ 0 mol L-1 

௢௨௧ݕ
஼ைమሺ0ሻ 0.005 - 

௢௨௧ݕ
ைమ ሺ0ሻ 0.005 - 

The second experiment enhances the estimator efficiency to 
reconstruct biomass concentrations (Fig. 4). From Fig. 5, it 
can be noticed that both of predicted and estimated DIC 
concentrations are lower than the off-line measurements 
(which are measured for this culture). However, estimator 
seems to converge to real values after 150h. In order to 
improve the estimator behaviour, one solution could be to 
identify, online, the parameters of the DIC concentration 
dynamics. Figure 6 shows that predicted and estimated 
dissolved oxygen concentrations are close, similarly to the 
results in the case of the first experiment.  

 

Fig.1. Time evolution of biomass concentration for culture 1 
(q0=300 µmol m-2 s-1) 

 

Fig. 2. Time evolution of DIC concentration for culture 1 
(q0=300 µmol m-2 s-1) 

 

Fig. 3. Time evolution of dissolved O2 concentration for 
culture 1 (q0=300 µmol m-2 s-1), 

 

Fig.4. Time evolution of Biomass concentration for culture 2 
(q0=110 µmol m-2 s-1)  
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Fig. 5. Time evolution of DIC concentration for culture 2 
(q0=110 µmol m-2 s-1) 

 

Fig. 6. Time evolution of dissolved O2 concentration for 
culture 2 (q0=110 µmol m-2 s-1) 

6. CONCLUSIONS 

The UKF estimation approach gives an accurate online 
estimation of the biomass concentration in a photobioreactor. 
UKF is easier to implement than an EKF algorithm, since it is 
derivative-free. Thus, the system model could be easily 
modified, for example to introduce substrate limitation or 
inhibition in the growth model. 

Ongoing work considers the comparison of the proposed 
estimation strategy to the EKF one, showing that the UKF 
gives either similar or better results than the EKF. This 
comparison study will be continued in order to evaluate the 
UKF efficiency, convergence and robustness. The validation 
of the proposed estimation strategy on other experimental 
data, especially in the case of continuous cultures, will be 
also studied. 
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