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Abstract: This paper presents the application of a generalized super-twisting algorithm to
estimate a critical variable needed for implementing real time optimization feedback controllers
in a certain class of bioreactors. A bank of redundant super-twisting observers designed for
equivalent systems under a state transformation is used. The procedure is motivated by the fed-
batch cultivation of a strain of E. coli that has overflow metabolism, where a useful variable to
estimate is the difference between two reaction rates. The results show the applicability of the
procedure and illustrates some compromises between the accuracy and the measurement noise.
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1. INTRODUCTION

Under fed-batch growth, the catabolism of certain strains
of E. coli has a limited energy production for cell growth
and division originating from a limited capacity to oxidize
the main substrate, usually glucose. The excess part of
this nutrient then can follow another metabolic pathway
more commonly known as fermentation, producing a by-
product which is generally a growth inhibitor, e.g. acetate.
This is called overflow metabolism (Crabtree, 1929) and
there exist validated mathematical descriptions of the
phenomenon (Rocha, 2003).

The mathematical model considered here is a simplifica-
tion of the one presented by Dewasme et al. (2011) and
it involves only the biomass (X), the substrate (S), the
dissolved oxygen (O) and CO2 (C) concentrations:

ξ̇ = KρX − ξu+ f, ξ(0) = ξ0, (1)

where ξ = [X,O,C, S]T is the state vector, K ∈ R4×2

contains the pseudo-stoichiometric coefficients, u = Qin/V
is the dilution rate, and f = [0, fOTR,−fCTR, Sinu]

T is
the vector of gas and mass flow rates in and out of
the reactor; fOTR and fCTR are the oxygen and CO2

transfer rates, respectively, while Sin is the inflow substrate
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concentration. The by-product (acetate) is not included in
this model and thus the specific reaction rate vector is only
given by ρ = [r1, r2]

T , where r1(t) is the respiration rate
and r2(t) is the fermentation rate:

r1 = min (rS , r
∗
S) , r2 = max (0, rS − r∗S) . (2)

These definitions of the rates lead to either a respirative
regime, when S(t) < S∗, or a respiro-fermentative regime
when S(t) > S∗. Substrate (glucose) is consumed in any
case with rate rS , which follows a Monod model,

rS = µS

(
S

S +KS

)
. (3)

Although it is not modeled here, acetate is produced in
respiro-fermentative regime, but only slowly consumed
in respirative regime. This by-product is inhibitory for
biomass growth, as its accumulation decreases the critical
consumption rate r∗S as follows:

r∗S = µ∗
S

(
O

O +KO

)(
KiP

KiP + P

)
, (4)

where µ∗
S , KO, and KiP are constants and P (t) is the

product (acetate) concentration. The best strategy for en-
hancing biomass production without accumulating acetate
is thus to operate in the boundary between regimes, i.e.
maintaining S(t) at the critical value S∗, where rS(S

∗) =
r∗S . However, S∗ is not a priori known and furthermore it
may change (decrease) slowly during the fed-batch culti-
vation if acetate accumulates.

For this reason real-time optimization (RTO) schemes
have been proposed by Dewasme et al. (2011) and Vargas
et al. (2012), which use a virtual output that is a linear
combination of the two reaction rates in the process.
Other schemes also assume the measurement of this output
(Santos et al., 2012). This output is given by
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y = r1 − r2 = γT ρ γ = [1,−1]T . (5)

As a function of S, this output reaches a maximum
whenever S = S∗; then y = r∗S . The controllers proposed
manipulate the dilution rate u to keep y(t) near its
optimum value at r∗S .

The problem is that this output cannot be measured
directly. Dewasme et al. (2011) propose an algebraic ap-
proach to estimate it under the assumption of quasi-
steady-state, perfect knowledge of the matrix K, and
measurement or knowledge of all the signals in f(t), but
this approach has three disadvantages: (i) it will not work
during transients, (ii) it is based on the inversion of a 3×3
submatrix of K, so it is very sensitive to the exactness of
the model, and (iii) it estimates the quantity (r1 − r2)X,
so it will also become sensitive to the noise present in X(t)
if we insist on estimating y = r1 − r2.

This work presents instead the use of a bank of redundant
super-twisting observers to robustly estimate y(t), using
only the on-line measurements of X, O, and C (using
probes), as well as fOTR and fCTR (using a gas analyzer).
Measurement of S is not needed, nor the knowledge of Sin.
Knowledge of the matrix K is assumed, but if this is not
possible, the methodology can be used to build an estimate
of its underlying structure, given recorded data.

2. STATE TRANSFORMATION

Let us assume that n > m in the matrix K ∈ Rn×m of
system (1) and rank(K) = m. Consider p ≥ 1 solutions
aj , j = 1, . . . , p to the following linear equation:

KTaj = γ. (6)

Then we can build the matrix

AT = [a1 a2 · · · ap] ∈ Rn×p. (7)

Note that each column of the matrix KTAT is equal to
the vector γ and therefore each element of the vector AKρ
becomes y = γT ρ. Define a state transformation

ζ = Aξ, (8)

such that ζ̇ = Aξ̇ = AKρX − Aξu+ Af and thus system
(1) becomes

ζ̇ = lpyX − ζu+Af, ζ(0) = Aξ0, (9)

lp = [1 1 · · · 1]
T ∈ Rp. (10)

System (9) is not diffeomorphic to system (1), because the
transformation (8) is not injective, since A is always rank
deficient, even if p ≥ n. We use the system (9) to design a
bank of p observers to build several estimates of the same
signal, namely ŷ(t). The redundancy in the estimations
will prove to be beneficial.

3. BANK OF SUPER-TWISTING OBSERVERS

We want to estimate y and we may assume that we can
measure ζ, either because the whole state ξ is available or
because we managed to choose A such that ζ = Aξ can be
built with the available measured states (the correspond-
ing entries in each aTj are zero for the unmeasured states).
Let us now choose some ζj , j ∈ {1, . . . , p} and assume that
the dynamics of y may be unknown, but ẏ is bounded, so

we can artificially consider y as an unmeasured state and
propose that

ζ̇j = yX − ζju+ aTj f (11)

ẏ = δy δy(t) ∈ [δ, δ] (12)

To estimate y we can use a variation of the generalized
super-twisting observer (Moreno, 2011) that considers the
explicit contribution of the biomass, as follows:

˙̂
ζj = −ℓ1ϕ1(ζ̃j) + ŷjX − ζju+ aTj f, ζ̂j(0) = aTj ξ̂0 (13)

˙̂yj = −ℓ2ϕ2(ζ̃j), ŷj(0) = ŷ0, (14)

where ζ̃j = ζ̂j − ζj is the observation error. The observer
gains are ℓ1 and ℓ2, and

ϕ1(x) =µ1|x|p1 sign(x) + µ2|x|p2 sign(x), (15)

ϕ2(x) =pµ2
1|x|2p1−1 sign(x)+ (16)

+ (p1 + p2)µ1µ2|x|p1+p2−1 sign(x)+

+ p2µ
2
2|x|2p2−1 sign(x) = ϕ′

1(x)ϕ1(x),

where 1
2 ≤ p1 < 1 ≤ p2 and µ1, µ2 ≥ 0 are design

parameters. The dynamics of the observation error are
given by:

˙̃
ζj = −ℓ1ϕ1(ζ̃j) + ỹjX ζ̃j = ζ̂j − ζj (17)

˙̃yj = −ℓ2ϕ2(ζ̃j)− δy, ỹj = ŷj − y. (18)

This almost has the form of the generalized super-twisting
algorithm, except for the growing influence of X(t) in the
first state estimation. Using Lyapunov arguments similar
to those presented by (Moreno, 2011), we can show that
gains ℓ1 and ℓ2 can be found such that the origin of this
system is asymptotically stable. A sketch of the proof of
this claim is shown in the Appendix.

Choosing µ1 = 0, µ2 > 0 and p2 = 1 leads to a linear high
gain observer, while choosing µ1 > 0, µ2 = 0 and p1 = 1

2
leads to the classical super-twisting algorithm (Moreno,
2011). In fact, following the proof therein, it is possible to
show that if p1 = 1

2 and p2 > 1, then the origin of (17)-(18)
is uniformly and exactly stable, converging in finite-time,
even despite a persisting, but bounded perturbation δy(t).

De Battista et al. (2012) and Moreno and Guzmán (2011)
also consider explicitly the bilinear term yX, but in both
cases the correction term in the dynamics of ŷ includes
somehowX(t). This makes these approaches very sensitive
to the noise that may be present in X. If we know that
y is not influenced by X, it does not make sense to make
the gain in the correction term depend on this variable.

Using the estimated common ŷj we could also construct
the following exponential observers for the other states in
ζ, i.e. for each i = 1, . . . , (j − 1), (j + 1), . . . , p we propose

˙̂
ζi = −βζ̃i + ŷjX − ζiu+ aTi f, ζ̂i(0) = aTi ξ̂0, (19)

where ζ̃i = ζ̂i − ζi and β > 0 is an additional gain. Upon

convergence of ŷj , the error dynamics are
˙̃
ζi ≈ −βζ̃i and

thus ζ̃i → 0 exponentially. Later we will see that this is
really not so useful.

In the same way that we have chosen some ζj , we could
build a bank of similar observers for each j = {1, . . . , p}.
Each one will provide an estimate ŷj(t) of the same y(t)
and we can use this redundancy to tune the observer, as
will be discussed later.
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4. CHOICE OF THE TRANSFORMATION MATRIX

Each transformed state ζj is a linear combination of the
states in ξ via ζj = aTj ξ, with aj a solution to KTa =
γ. In this section we present a methodology to choose
the aj such that all transformed states are built giving
approximately the same weight to each ξi involved. Given
the rank assumption on K, a solution to system (6) is
given by

aj = a0 +NKbj , (20)

where NK ∈ Rn×(n−m) is a matrix whose columns form a
basis for the nullspace of KT and bj ∈ Rn−r can be any
vector. The vector a0 is any solution to the linear equation
(6), but let us consider the least norm solution:

a0 = (KT )+γ = VKΣ−1
K UT

Kγ. (21)

where (KT )+ is the pseudoinverse of KT , which has been
calculated using a singular value decomposition (SVD):

KT = UK

[
ΣK 0m×(n−m)

]
[VK NK ]

T
, (22)

where UK ∈ Rm×m, VK ∈ Rm×n, and ΣK is a diagonal
matrix with the singular values σ1 ≥ σ2 ≥ · · · ≥ σm. Note
that the columns of NK form a basis for the nullspace
of KT ; since [VK NK ] is orthogonal, then KTNK =
(UKΣKV T

K )NK = 0.

In order to give the same weight to each ξi when defining
the transformed states ζj , we can design A such that its
SVD has equal singular values, leading to a matrixAT with
unity condition number. Notice that (20) implies that

AT = a0l
T
p +NKBT , (23)

BT = [b1 b2 · · · bp] ∈ R(n−m)×p. (24)

If we define u0 = 1
∥a0∥a0 and v0 = 1√

p lp we can write

a0l
T
p = u0σ0v

T
0 with σ0 =

√
p∥a0∥. By the choice (21) of a0

we have that NT
Ka0 = 0 by the orthogonality of [VK NK ].

This implies that [u0 NK ] is an orthonormal matrix, so
now define Σ0 = σ0In−m and consider the decomposition

AT = u0σ0v
T
0 +NKΣ0L̄

T = [u0 NK ]

[
σ0 0
0 Σ0

] [
v0 B̄

]T
,

where B̄ is an orthonormal matrix such that its columns
are also orthogonal to v0. Then this decomposition qual-
ifies as an SVD of AT and B̄ can be found by choosing
some full rank matrix M ∈ Rp×(n−m) and performing
a Gram-Schmidt orthogonalization of the matrix [v0 M ]
with respect to its columns, but care should be taken in the
choice of M so that AT does not have repeated columns.

5. ESTIMATION OF K

So far, we have provided a method to design a bank of
super-twisting observers, each one estimating the same
second state, namely y(t), using measurements of the sev-
eral ζj(t); see (13)-(14). Since each ζj depends ultimately
on K, we should therefore expect the estimates ŷj to
be basically the same if K is correct. If instead of the

true K we use K̂ = K + K̃ with K̃ ̸= 0 for the design
and implementation of the bank of observers, differences
between the estimates ŷj(t) are expected. However, we
show now that we can use the redundancy for eliminating
the bias between these estimations.

Solving K̂T âj = γ and using the transformations ζj =
âTj ξ, j = 1, . . . , p, leads to a system with

ζ̇j = yX − âTj K̃ρX − ζju+ âTj f. (25)

There is now a perturbation term âTj K̃ρX and we get the
error system

˙̃
ζj = −ℓ1ϕ1(ζ̃j) + ỹjX + âTj K̃ρX, ζ̃j = ζ̂j − ζj (26)

˙̃yj = −ℓ2ϕ2(ζ̃j) + δy(t), ỹj = ŷj − y. (27)

Because of the nonvanishing perturbation âTj K̃ρX, the
super-twisting algorithm will lead to practical stability in
the sense that ζ̃j and (more importantly) ỹj will now only
converge to a neighborhood of the origin.

Consider the case when ρ(t) = ρ̄ is constant. Practical
application of the super-twisting observer in this case
shows that after some finite convergence time the region
to which error trajectories converge is such that

|ζ̃j(t)| ≤ ϵζ , |ỹj(t)− ȳj | ≤ ϵy, (28)

with ϵζ and ϵy very small, i.e. the error ζ̃j converges to
almost zero, while ỹj converges to some constant value ȳj
(in a practical sense). Since ϵζ is small, then assuming that

ζ̃j remains practically constant after convergence (in finite

time) we can find a practical steady state by setting
˙̃
ζj = 0

in (26). Since ϕ1(ϵζ) ≈ 0 this leads to

ỹj(t) → ȳj = −âTj K̃ρ̄. (29)

Now consider the p observers that also include the expo-

nential part (19), whose states are ζ̂j,i for j, i = 1, . . . , p,

i ̸= j, The dynamics of the observation errors ζ̃j,i = ζ̂j,i−ζi
for these other observers are given by

˙̃
ζj,i = ỹjX + âTi K̃ρX − βζ̃j,i. (30)

Assume that the dynamics of X(t) are much slower than

those of ζ̃j,i(t). Since β > 0 and K̃ is constant, exponen-

tially ζ̃j,i(t) → ζ̄j,iX(t), with

ζ̄j,i =
1

β

(
ȳj + âTi K̃ρ̄

)
=

1

β
(ȳj − ȳi) , (31)

where we have used the equality in (29). Note that ζ̄j,i =
−ζ̄i,j and in fact we gain no more information by using
the additional exponential observers, but nevertheless they
could provide some additional robustness to the identifi-
cation method explained below.

It is clear that if K̃ = 0, the p(p− 1)/2 steady-state errors

ỹj,i = ȳj − ȳi =
(
−âTj + âTi

)
K̃ρ̄ (32)

will all be zero. This leads naturally to the idea of using an
a posteriori numerical optimization procedure to minimize

J(K̂) =

p−1∑
j=1

p∑
i=j+1

|ȳj − ȳi|2 + β

p∑
j=1

p∑
i=1

ζ̃2j,i (33)

or a similar criterion. In this sense, the idea is to collect
data e.g. for one cultivation using an observer with some

K̂. Then, having identified a convergence time Tc, the

numerical optimization searches for the K̂∗ that minimizes
(33) by simulating the implementation of the bank of
observers in open loop with the collected data. The next

cultivation would use K̂∗ in the observer implementation.
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Unfortunately, there is no unique K̂ leading to J = 0. In

fact, this happens for all K̂ with the same SVD structure
as the true K. To see this consider that KT = UKΣKV T

K

and K̂T = UK

(
ΣK + Σ̃K

)
V T
K with Σ̃K = diag(σ̃K); then

K̃ = K̂ −K = VKΣ̃KUT
K . (34)

Using the construction (20) of each aj and the definition
(34) in (32) leads to

ỹj,i = −(bj − bi)
T NT

KVK︸ ︷︷ ︸
=0

Σ̃KUT
K ρ̄ = 0 (35)

for any Σ̃K . This implies that there exist a family of

matrices K̂ for which the observer implementation will
lead to practically ŷj(t) = ŷi(t) after t ≥ Tc for all j ̸= i,
but ŷj(t) ̸= y(t).

Even though an unrestricted optimization may not be
successful in finding the true value of K, it will find the
SVD structure, and this can be used to narrow the search
space. For example, if we know Kmin and Kmax such that
Kmin ≺ K ≺ Kmax, then we can add a penalizing term in

the optimization criterion (33) for K̂’s out of bounds.

6. SIMULATIONS

A more complex model than the one explained in Sec-
tion 1 was used for simulation using Matlab 7.12.0.635
(R2011a). It considers the production of acetate in respiro-
fermentative regime and its low consumption in respirative
regime, which makes S∗(t) become time-varying. A local
PI controller for regulating the dissolved oxygen concen-
tration is used. Details of this model, including the values
of the parameters used, are found in (Santos et al., 2012).

The following input makes S(t) converge to S∗(t)

u∗(t) =
X(t)r∗S(t)

Sin − S∗(t)
. (36)

Since this input is not implementable, other controllers
have been proposed that will approximate it using the
information from the virtual output that we are estimating
(Dewasme et al., 2011; Vargas et al., 2012; Santos et al.,
2012). Therefore, to test the observers we generate the
data by constructing the optimal input u∗(t) as in (36)
and perturb it with a quasi-periodic signal p(t) in order to
mimic what such controllers would do:

u(t) = (1 + p(t))u∗(t). (37)

Since we are assuming that S(t) cannot be measured
and Sin is not known, we eliminate the last state in ξ
and use only a reduced model with the first three states.
Furthermore, we also assume that O(t) is constant and
known (it is regulated by the PI controller) and C(t)
remains at a very low known and constant value (the
solubility of CO2 is very low), so there is no need to
measure them. We do measure on-line the biomass X(t),
as well as fOTR(t) and fCTR(t) and have added white
measurement noise to them with standard deviations of
up to 0.01 g/L for X(t) and 0.015 g/L/h both for fOTR

and fCTR.

Figure 1 shows the results of a simulation where the
dissolved oxygen O(t) is regulated at 2.5 mg/L using a
simple PI controller (which indirectly modifies the fOTR

via the kLa value), while fOTR and fCTR are directly
calculated from the model equations assuming steady
state. Notice the typical exponential growth of X(t) and
the time-varying nature of the maximum y∗ = r∗S and
consequently of the desired setpoint at S∗.
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Fig. 1. Simulations: virtual output y and its optimal value
y∗ (top-left); substrate S, optimal value S∗ and dilu-
tion rate u (top-right); biomass X and dissolved oxy-
gen O (bottom-left); fOTR and fCTR measurements
with noise (bottom-right).

In order to design the bank of observers, we need the
matrix K, which has n = 3 rows and m = 2 columns
and is given numerically by:

KT =

[
0.316 −0.339 0.406
0.040 −0.472 0.757

]
. (38)

An SVD is given by the following matrices and vector:

UK =

[
−0.548 −0.836
−0.836 0.548

]
, σK =

[
1.054
0.255

]
,

VK =

[−0.196 −0.950
0.551 0.100
−0.812 0.297

]
, NK =

[
0.244
0.829
0.503

]
.

(39)

The nullspace is of dimension 1 and the least-norm solution
vector a0 and thus σ0 are given, respectively, by

a0 = [5.0943 −0.3894 −1.8305]
T
, σ0 = 7.6752. (40)

The transformation matrix A is built as indicated pre-
viously. In the observers the ϕ1 function has parameters
p1 = 0.5, p2 = 1, µ1 = 1 and µ2 = 0.2, i.e. a classical
super-twisting observer with an additional linear correc-
tion term. The simulations were made implementing a
discretized version of the observers using a forward Euler
approximation using a sample time of Ts = 6 s.

Figure 2 shows the result of a bank of p = 7 observers

under perfect system knowledge (with K̂ = K). The
observer gains are ℓ1 = 1.5, ℓ2 = 0.5 and β = 20.
As expected, all observers in the bank converge to the
same signal, the virtual output y(t). The purple line
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shows the mean ¯̂y(t) of the seven observers implemented.
The top figure shows a simulation without noise in the
measurement of X, while the bottom figure shows it when
noise is present. In both cases noise is present in both
fOTR and fCTR. It is interesting to notice that the observer
actually acts as a filter under noise in the measured state,
delaying the estimation, but also damping the influence of
noise coming from f(t). If we increase the noise level in X,
the delay in the estimation also increases. We can increase
the observer gains to diminish the delay, especially ℓ2, but
the noise is less damped and the estimation would become
useless for implementing a controller. There is thus a clear
compromise that would later have to be further studied
when implementing an output-feedback controller.
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Fig. 2. Bank of observers under perfect system knowledge,
without (top) and with noise in X (bottom); the true
y is shown green, while the mean ȳ of all ŷj is shown
purple (same observer parameters).

Figure 3 shows the simulation for the same data set as

above, but using K̂ ̸= K. We restrict K̂ to have elements
between:

Kmin =

[
0.253 0.036
−0.424 −0.636
0.263 0.568

]
, Kmax =

[
0.380 0.044
−0.255 −0.306
0.547 0.946

]
.

The starting K̂0 is chosen at random within these bounds
and the result of applying the bank of observers is shown
on the top graph of figure 3. The same gains and observer
parameters were used as before. As expected, the estimates
ŷj(t) are different and do not converge to the true value
of y(t). Using this matrix as initial estimate, we used the
(unconstrained) fminsearch algorithm under Matlab for
the numerical optimization procedure with a large penal-
ization for matrices outside the sought range. The bottom
graph of figure 3 shows the result after the optimization,

with K̂∗. All the estimates now converge to their mean
¯̂y(t), but not to the true y(t). Notice, however, that the
individual estimates ŷj , j = 1, . . . , 7 are noisy, but their
average has reduced this noise. The advantage of using a
bank of seven observers instead of one is evident.
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Fig. 3. Bank of observers with K̂ ̸= K: using K̂0 before

optimization (top) and using K̂∗ after optimization
(bottom); the true y is shown green, the estimates ŷj
in different colors with thin lines, while their mean ¯̂y
is shown purple.

The SVD K̂T
∗ = ÛKdiag(σ̂K)V̂ T

K is given by

ÛK =

[
−0.657 −0.754
−0.754 0.657

]
, σ̂K =

[
0.991
0.245

]
,

V̂K =

[−0.237 −0.869
0.491 0.278
−0.838 0.409

]
, K̂∗ =

[
0.315 0.037
−0.371 −0.323
0.470 0.692

]
.

It can be verified that the right and left singular vectors of

K̂∗ are very similar to those of the true K shown in (39).

From the point of view of a RTO feedback controller such
as that proposed by Vargas et al. (2012) or Dewasme et al.
(2011), the bias between ŷ(t) and y(t) is not important,
since these controllers use this virtual output to follow
a maximum, so as long as their profiles are similar and
their (local) maxima occur simultaneously (some delay is
inevitable), the implementation of the controllers could be
successful.

We have observed that the noise in X(t) is critical.
Although we still have to use it in the term ŷX we can
eliminate this measurement in the observer design using

only the 2×2 submatrix K̂OC of K̂ that corresponds to the

dynamics of O and C (the last two rows of K̂). However,

we can design only one observer, with aTOC = γT K̂−1
OC and

whose dynamics are basically driven by the inputs from
fOTR and fCTR.

Having identified K̂∗, we use it to get K̂OC and run the
resulting super-twisting observer to estimate a single ŷ.
The gains in this case were manually adjusted for the
same data base and the results are shown in figure 4. The
delay is almost zero (previously due to the noise in X), but
the estimate (in blue) now has the influence of the noise
present in fOTR and fCTR and is not as good as before. We
can reduce this by previously filtering the noise in these
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signals (in purple), but then delay appears. In any case,
the estimation is not as good for the RTO controller, since
the maxima in the signal are not as clearly defined as in
the previous case when we use explicitly the signal X(t)
and a bank of redundant observers.

0 2 4 6 8 10 12
0.15

0.2

0.25

t (h)

y 
(m

g/
L/

h)

Fig. 4. Single observer without using X; true y shown
green, estimate ŷ shown with (purple) and without
(blue) filtering of the fOTR and fCTR signals.

7. CONCLUSION

For RTO control of certain biotechnological processes,
the on-line knowledge of a signal that has a maximum
at the desired operating point is needed. Using a bank
of redundant super-twisting observers we have proposed
a methodology to estimate this virtual output. Through
simulations in a system with overflow metabolism, the
convenience of this redundancy has been shown.
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Appendix A. PROOF OF CONVERGENCE

Consider the following perturbed system, which corre-
sponds to the observation error dynamics:

ẋ1 = −ℓ1ϕ1(x1) + a(t)x2 + δ1(t, x), (A.1)

ẋ2 = −ℓ2ϕ2(x1) + δ2(t, x), (A.2)

where the measured signal a(t) is positive and bounded,
i.e. ā ≥ a(t) ≥ a > 0 for all t, and ϕ1 and ϕ2 as in (15)-(16).
The class of perturbations considered satisfy,

|δi(t, x)| < gi|ϕi(x1)|, gi > 0, i ∈ {1, 2}. (A.3)

Consider the transformation

z =

[
ϕ1(x1)
x2

]
=⇒ ż = ϕ′

1(x1)
(
Az + δ̃

)
, (A.4)

where A = A0 − LC

A0 =

[
0 a(t)
0 0

]
, L =

[
ℓ1
ℓ2

]
, C =

[
1
0

]
, δ̃ =

[
δ1
1

ϕ′
1(x1)

δ2

]
.

Note that ϕ′
1(x1) = µ1p1|x1|p1−1 + µ2p2|x1|p2−1 ≥ 0 for

all x1. When a(t) ≡ 1, Moreno (2011, Theorem 2) shows
that VQ = zTPz is a strong, robust Lyapunov function for
system (A.1)-(A.2) and the system will be exponentially
stable (and finite-time convergent in some cases) if we can
show that there exist P = PT > 0, gains ℓ1 and ℓ2, θ1 > 0,
θ2 > 0, and ϵ > 0 such that

ATP + PA+ ϵP +R+ PBΘ−1BTP ≤ 0, (A.5)

with

R =

[
θ1g

2
1 + θ2g

2
2 0

0 0

]
, Θ =

[
θ1 0
0 θ2

]
. (A.6)

The matrix B is either B = I, B = [1, 0]T , or B = [0, 1]T

depending on whether δ1 or δ2 are considered or not (the
definitions of Θ and R must change accordingly.

To extend the result of (Moreno, 2011) to the case studied
here, we need to satisfy the algebraic Riccati inequality
(ARE) (A.5) for all a ≤ a(t) ≤ ā. Using the Schur
complement and given some value for a, these ARE’s are
equivalent to the matrix inequalities M(a) ≤ 0:[

AT
0 P + PA0 − CTLTP − PLC + ϵP +R PB

BTP −Θ

]
≤ 0.

(A.7)

Since the family of matrices A0(a) is a convex set with
vertices at A0(a) and A0(ā), so is the family M(a). We can
check the simultaneous feasibility of the family of matrix
inequalities by checking only the feasibility of

diag [M(a),M(ā)] ≤ 0. (A.8)

Replacing the term ϵP with ϵI does not affect its solvabil-
ity, but makes (A.7) and (A.8) a linear matrix inequality
(LMI) in the unknowns P , PL, ϵ and Θ, and thus we can
use known efficient algorithms to solve it.

A very important aspect to notice is the guaranteed
convergence for the class of perturbations defined by (A.3).
These perturbations usually have to vanish at the origin,
e.g. |δ1(t, 0)| ≤ g1ϕ1(0) = 0, but when p1 = 1

2 , then ϕ2(x1)
has a signum function and therefore we allow

−g2
µ2
1

2
≤ δ2(t, 0) ≤ g2

µ2
1

2
. (A.9)

Hence the robustness of the approach.
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