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Abstract: The regulation of the biomass specific growth rate is an important goal in many
biotechnological applications. To achieve this goal in fed-batch processes, several control
strategies have been developed employing a closed loop version of the exponential feeding
law, an estimation of the controlled variable and some error feedback term. Moreover, in some
bioprocesses there is more than one feeding flow entering the bioreactor and supplying different
nutrients or substrates. Hence, the problem of estimating multiple substrate consumption rates
together with the specific growth rate of the microorganism becomes relevant. In this context,
the dynamic behavior of fed-batch processes with multiple substrates and Haldane kinetics
is further investigated. In particular, a nonlinear PI control law based on a partial state
feedback with gain dependent on the output error is used. Then, with a recent developed
algorithm for several kinetic rates estimation based on second-order sliding mode (SM) ideas, we
extend the mentioned control strategy to a multi-substrate fed-batch bioprocess. The observer
provides smooth estimates that converge in finite time to the time-varying parameters and
allows independent design of the observer and controller dynamics. The features of the proposed
estimation and control strategies are assessed by simulation in different scenarios.

Keywords: Nonlinear PI control; multiple kinetic rate estimators; process control; high order
sliding modes; bioreactors; multi-substrate fermentation.

1. INTRODUCTION

The expanding biotechnological industry is demanding
more efficient, reliable and safe processes to optimize pro-
duction and improve quality. Control engineers have to
overcome a large number of obstacles to control fed-batch
fermentations. They must deal with complex dynamic
behavior of microorganisms, strong modeling approxima-
tions, external disturbances, nonlinear and even inherently
unstable dynamics, scarce on-line measurements of most
representative variables, etc. In (Smets et al., 2004) a
description of the history and state of the art in the field
of fermentation fed-batch process control is presented.

From a biological standpoint, the control of a biotechno-
logical process would be to make microorganisms reach
a (possibly time-varying) metabolic state at which their
physiological behavior is appropriate for the desired goals:
e.g. production of a given metabolite or protein. These
metabolic states are usually related to growth rate (Ihssen
and Egli, 2004; Gnoth et al., 2008). Also growth rate is
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ernments and European Union (FEDER). The first author thanks
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related to substrate consumption rate. Thus, tuning the
feed rate to achieve either constant substrate concentra-
tion in the broth or constant metabolite production rate
are common strategies in the area (Valentinotti et al.,
2003; Oliviera et al., 2004; Jenzsch et al., 2006).

Current availability of more on-line reliable biomass and
volume measurement devices allow direct control of spe-
cific growth rate. This is especially true for small and
medium scale bioreactors used to produce enzymes and/or
high-added values specialty metabolites. This has enabled
a research line dedicated to develop generic and robust
controllers based on the minimal modeling concept. In
(Picó-Marco et al., 2005), a sliding mode controller ap-
plicable to the regulation of growth-linked fed-batch pro-
cesses is presented. Just on-line measurement of biomass
concentration and volume, as well as an upper-bound on
the growth rate are needed. Other authors have incor-
porated an estimation of the controlled variable to the
control algorithms, obtained from on-line measurement of
biomass concentration (Smets et al., 2004; Gnoth et al.,
2008; Smets et al., 2002; Dabros et al., 2010). Pioneering
work in the field of growth rate observers was performed
in (Bastin and Dochain, 1986).

In (De Battista et al., 2012), a different approach is pro-
posed to design non-linear PI controllers which relies on

Preprints of the 12th IFAC Symposium on Computer Applications in Biotechnology
The International Federation of Automatic Control
16-18, 2013, December. Mumbai, India

Copyright © 2013 IFAC 48



0 5 10 15 20
0

0.1

0.2

0.3

0.4

0.5
µ
,
µ
1
,
µ
2
[1
/
h
]

0 5 10 15 20
0

0.02

λ
1
,
λ
2

0 5 10 15 20
0

0.5

1

s
1
,
s
2
[g
/
L
]

hours

0 5 10 15 20
0

5

x
,
x̂
[g
/
L
]

0 5 10 15 20
0

10

v
[L
]

hours

0 5 10
0

20

40

60

80

100

X
[g
]

v [L]

µ1
µ

µ2

Fig. 1. (Scenario 1) Responses from low initial substrates concentration under nominal conditions, i.e. invariant gains
λri, are known. The two plots at the bottom left show λ and substrate: blue-solid is λ1,s1 and red-dashed is λ2,s2

geometric properties of the process and specification struc-
tures. Ideas and concepts of invariant control and passivity
are combined to achieve PI controllers that outperform
previous developments where some of these ideas were
exploited separately (Picó-Marco et al., 2005; De Bat-
tista et al., 2006). In (Pico-Marco and Navarro, 2008),
an invariant and stabilizing controller is used to control
dual-substrate fed-batch fermenters using only biomass
measurement and growth rate estimation. Thereafter in
(Nuñez et al., 2013), an algorithm for several kinetic rates
estimation based on second-order sliding mode ideas was
presented, providing smooth estimates, which are achieved
in finite-time and without adding dynamics. In this paper,
we use the mentioned previous work to estimate several
substrate consumption rates and extend the nonlinear PI
control (De Battista et al., 2012) for multi-substrate fed-
batch fermentation in order to track desired consumption
rates for each substrate.

The work is organized as follows. The next section presents
the control problem. In section III the second-order sliding
mode observer together with the invariant control and the
PI correction terms are presented for the case of multi-
substrate fermentation with non-monotonic kinetics. Sec-
tion IV shows the observer and controller performance us-
ing simulation data with realistic noise and perturbations.
Finally, in section V the main conclusions of the work are
given.

2. PROBLEM FORMULATION

Consider biphasic biomass growth. The commonly used
model to describe dual-substrate feb-batch fermentations
accepts the following description in state-space (Bastin
and Dochain, 1990; Dunn et al., 2003; Chang, 2003):

S :


ẋ = f(µ1, µ2)x− (D1 +D2)x

ṡ1 = −y1µ1(s1)x+D1s1in − (D1 +D2)s1
ṡ2 = −y2µ2(s2)x+D2s2in − (D1 +D2)s2
v̇ = (D1 +D2)v = F1 + F2

(1)

where f(·) is the specific growth rate, usually the sum
or the product of its arguments. Additionally, the state
variables are x biomass concentration, si concentration
of substrate in the tank, and v volume. The specific
consumption rates µi are unknown nonlinear function of
substrates. In the following we will center the analysis in
the case of non-monotonic Haldane kinetics, where the
consumption rates have the following form:

µi(si) = µmi
1 + 2

√
ksi/kii

(ksi/si) + 1 + (si/kii)
. (2)

The parameters yi are yield coefficients. The other two
parameters siin are the substrate concentrations in the
corresponding feeding flow. Finally, the Di dilution rates
are equal to the ratios Fi/v. The substrates may play
different roles (see Zinn et al. (2004)). For example in two
common cases:

(1) Both substrates are carbon sources and contribute
both to growth and production.

(2) One substrate is a carbon source mainly affecting
growth and the other one a nitrogen source affecting
production and product characteristics.

In either case there are mainly two goals from the process
point of view:

(1) It is desirable to keep a given specific growth rate
f = µref , and hence consumption rates µ1 and
µ2 corresponding to a desired physiological state
at which the microorganism behaves optimally with
respect to production, does not produce inhibiting
products, etc.
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Fig. 2. (Scenario 2) Responses from very high initial substrates concentration under nominal conditions, i.e. invariant
gains λri, are known. In the bottom left plots, of λ and substrate, blue-solid is λ1,s1 and red-dashed is λ2,s2

(2) It has been reported in for example Kellerhals et al.
(1999) and Xu et al. (2005) that in many instances
the ratio s1/s2 affects the product characteristics, e.g.
in PHB production the bioplastic physical properties.

Both goals could be achieved by regulating the consump-
tion rates for each substrate using F1,2. This constitutes
the main problem addressed in this work.

Note that controller and observer design is subject to the
following constraints:

• The only on-line measurable variables are volume and
biomass and one of the substrates concentration.
• The control signals are nonnegative.
• The yield coefficients y1,2 and the influent substrate

concentration sin are uncertain parameters that,
moreover, may vary during the process.
• The specific consumption rates µi are not precisely

known. We only assume they are Haldane-like non-
monotonous functions, some initial estimation of
the maximum consumption rates (an informed guess
is enough), estimated upper bounds on their time
derivative, and a rough idea of the region (µi(si), si)
where the functions µi(si) live.

Thus, in the next section we extend a non linear PI
controller for growth regulation (De Battista et al., 2012)
to a multi-substrate fermentation and we combine it with
the multiple rate high-order sliding mode observer de-
veloped in (Nuñez et al., 2013) in order to estimate the
consumption rates of each substrate. Then we introduce
the estimates into the controller to adapt the invariant
gains, improving the robustness with respect to model
uncertainties and perturbations.

3. NONLINEAR PI CONTROLLER AND SECOND
ORDER SLIDING MODE OBSERVER

In this section, we present the nonlinear PI controller
for growth regulation developed in (De Battista et al.,
2012). Then we show how to tune the multi-rate observer
developed in (Nuñez et al., 2013) for this particular case.
Having estimates of the multiple consumption rates, allows
us to extend the control to the multi-substrate case.

3.1 Nonlinear PI control

Consider the system (1). We start by applying an invariant
control (Pico-Marco and Navarro, 2008), from where we
obtain the invariant gains λr1,r2. The basic idea is to
take a reference model of exponential growth (compatible
with the control objectives) and make the generated goal
manifold for our system (1) to be invariant. That is, if the
system is driven to the manifold, it will stay on it. This is
achieved with the invariant gains, which can be calculated
from the reference substrates from (1),

sr1 = ks1
µr1

µm1 − µr1
(3)

sr2 = ks2
µr2

µm2 − µr2
(4)

as follows

λr1 =
sr1y2µr2 − sr2y1µr1 + s2iny1µr1

s2ins1in − s2insr1 − s1insr2
(5)

λr2 =
−sr1y2µr2 + sr2y1µr1 + s2iny2µr2

s2ins1in − s2insr1 − s1insr2
(6)

Then we can use these gains as initial conditions for the
adaptation algorithm (nonlinear PI) from (De Battista
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et al., 2012), but extended to a multi-substrate fermen-
tation in the following way (for i = 1, 2):

C :


Fi = λixv

λi = λai

(
1− tanh

(
k

µri
(µ̂i − µri)

))
λ̇ai = −φλ2aix

µ̂i − µri

µri
, λai(t0) = λri, i = 1, 2.

(7)

Where k is the proportional gain of the controller and φ is
the integral gain which determines the speed of adaptation
of λi. Notice we need an estimation µ̂i of the consumption
rates, in order achieve output error injection into the
algorithm. Thus, we will use the previously mentioned
observer for the substrates consumption rates estimation.

Assuming the growth rate of the microorganisms is related
directly with the consumption rates of the substrates in an
additive way

µ = µ1 + µ2, (8)

we will in fact estimate the specific growth rate and the
consumption rate of the measured substrate. Then, we can
simply subtract the estimated consumption rate from the
growth rate in order to obtain the other consumption rate.
Other relationships can be handled easily (e.g. multiplica-
tive consumption rates).

3.2 Multiple rates observer

In order to estimate the specific growth rate and the
consumption rate of the measured substrate we will use
the observer developed in (Nuñez et al., 2013). First con-
sider the following system which describes the measured
variables z in a state-space model of a bioprocess stirred
tank (Bastin and Dochain, 1990):{

ż =KpGp(·)αp −Dz + F

α̇p =Rρ(t),
(9)

where Kp is a pseudo-stoichiometric matrix, D is the
dilution rate, and F is the input flow rate. Gp(·)αp

represents the reaction rates which are linearly combined
by the rows of Kp. The specific reaction rates for each
reactant are αp and Gp(·) is a diagonal matrix. Finally
R = diag{ρ̄i} arranges the bounds of the time derivatives
of the rates αp. Note, that ρ(t) is an unknown vector of
continuous functions where ‖ρ(t)‖∞ 6 1.

Then the second order sliding mode observer O converges
to the specific reaction rates α̂ ≡ αp in finite-time (Nuñez
et al., 2013).

O :


˙̂z =Kp

(
k1Gp(·)Ru+ 2k2GoRABS(σ)1/2SIGN(σ)

)
−Dz + F

u̇ =k1SIGN(σ)

α̂ =Ru
(10)

with

σ = (KpGoR)
−1

(z − ẑ) (11)

where Go is a matrix related to the bounds on Gp(·).
The functions ABS(σ) = diag{|σi|} and SIGN(σ) =
col(sign(σi)) are matrix extensions of the respective scalar
functions.

Comment on stability and convergence. For details on
the stability analysis of the controller and convergence of
the observer see respectively (De Battista et al., 2012;
Nuñez et al., 2013). In combining the two strategies,
the only precaution to take is that the observer should
converge before the process state leaves the domain of
attraction (if it is not global). Anyway, in the practical
industrial operation, there is always a batch open-loop
phase previous to switching the fed-batch phase on. The
observer will converge during this phase.

Observer Implementation In order to use this observer
in our particular case, we take the first and second equa-
tions from (1), which are the dynamics of the measured
variables, hereafter z = [x, s1]>,and we rearrange them,
obtaining:

ż =

(
1 0
0 −y1

)(
x 0
0 x

)(
µ
µ1

)
− (D1 +D2) z+

(
0

D1s1in

)
(12)

where αp = [µ, µ1]>. Note that in this factorization Gp =
xI2 and

Kp =

(
1 0
0 −y1

)
. (13)

In order to tune the observer, upper (G1) and lower
(G2) bounds for Gp need to be obtained to calculate

Go = G2+G1

2 , ∆G = G2−G1

2 and δ = ‖G−1o ∆G‖∞.
The presupposed excursion of the biomass x gives us
conservative bounds G1 = 0.2I2 and G2 = 15I2. From
where we get Go = 7.6I2 and δ = 0.9737. With this we
can calculate the suitable gains k1 and k2 (Table 1) to
ensure finite-time convergence, by solving the associated
GEVP problem (details omitted for brevity, see Nuñez
et al. (2013)).

4. SIMULATIONS

In order to test the behaviour of the controller and
observer described in this paper, simulations in three
realistic scenarios have been performed. The model from
(Chang, 2003) has been used with the following parameters
and test conditions.

Table 1. Parameters and test scenarios

Process parameters and test scenarios

µm1[1/h] 0.47 µm2[1/h] 0.5
ks1[g/L] 0.5 ks2[g/L] 0.55
ki1[g/L] 2 ki1[g/L] 2.1
y1a 2.1 y2 2
s1in[g/L] 15 s2in[g/L] 15
V (t0)[L] 0.2 Vf [L] 15
s1(t0)[g/L] [1, 5, 1] s2(t0)[g/L] [0.5, 4, 0.5]
x(t0)[g/L] 0.5

Controller and observer parameters

λri [1, 1, 0.7]λi µr[1/h] 0.33
µr1[1/h] 0.18 µr1[1/h] 0.15
k 3 φ 30
k1 2.9592 k2 2.3038
ρ1 0.25 ρ2 0.2
a Parameter y1 in Scenario 3 grows at 3% per hour since t = 10h.

The controller and observer parameters used in the simu-
lations are also listed in Table 1.

Note that by the assumption (8), the reference value for
the specific growth rate is µr = 0.33.
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Fig. 3. (Scenario 3) Responses from low initial substrates concentration under uncertain conditions. In the bottom left
plots, of λ and substrate, blue-solid is λ1,s1 and red-dashed is λ2,s2

Scenario 1. Low initial substrate concentration. In this
first scenario, the aim is to show the performance of
the controller and observer from low initial concentration
of substrates and under nominal conditions. The proper
invariant gains λri are known (or calculated from the
model parameters). The results are presented in Figure
1.

Scenario 2. High initial substrate concentration. The sec-
ond scenario shows the convergence property of the pro-
posed controller from a high initial substrate concentra-
tion. The initial condition is selected beyond the maxima
of the Haldane functions of both substrates. This is an
inherently unstable region.

In fact, the control has the opposite effect to what is
expected, thus producing a positive feed-back. To avoid
wash-out, λ1 and λ2 are bounded, so that the substrate
concentration inevitably falls below the maxima of the
kinetic rate functions. Once in this region, the controller
stabilizes the process around the goal trajectory. Notice
that setting the bounds on λ1 and λ2 requires having
a rough idea of the region µi(si), si where the functions
µi(si) live, and a lower bound in the yield coefficients. But
it does not require a precise model of the reaction kinetics.

Scenario 3. Robustness against parameter uncertainty.
In this third scenario we evaluate the robustness of the
proposed control and observer with respect to parameter
uncertainty. One of the invariant gains, λr1 is underes-
timated by a 30%. Further, after t = 10h, the yield
coefficient ys1 is increased at the rate of 2% per hour. The
evolution of the process variables is shown in Figure 3.
See that, in the presence of the uncertain and time varying

parameter, the control law is still tracking the desired µr1,2

by adapting the parameter λ1.

5. CONCLUSIONS

In this work we extended the previous proposed nonlinear
proportional-integral control to multi-substrate fed-batch
processes for multiple kinetic rates regulation. This was
possible due to recent development of an algorithm for sev-
eral kinetic rates estimation based on second-order sliding
mode ideas, which allows us to obtain the consumption
rates for each substrate together with the specific growth
rate of the microorganism measuring only biomass and one
of the substrates.

Robustness properties of both strategies are inherited.
The controller provides robustness to model uncertainties
and disturbances, which is one of its main attractive
features. The observer provides noise rejection, and finite-
time convergence of the consumption rates estimates. The
latter allows to independently design the observer and the
controller.

Performance of the system was shown by simulation of
realistic scenarios, with noise, parameters uncertainty, and
high initial substrate concentration, where an increase in
concentration of substrates produces a decrease in growth
rate, and therefore the fermentation is in an intrinsically
unstable region.
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