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Abstract: The cultivation of animal cells in perfusion allows the production of various 

biopharmaceutical products. In this work, the observability properties of a nonlinear dynamic model of 

these animal cell cultures is assessed using a method based on a natural dynamical interpretation of the 

observability/detectability concepts, leading to the description of the indistinguishable dynamics of the 

system. Following this analysis, a Kalman filter is designed to reconstruct on-line variables which are 

difficult or expensive to measure directly with a hardware sensor. 
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1. INTRODUCTION 

Some animal cell strains, such as CHO cells, can be grown in 

suspension in stirred tank reactors, which appear to be the 

most common practice in industry for large production of 

high value protein products. The efforts for increasing the 

culture productivity in these systems focus on adjusting the 

media composition on the one hand, and the modes of 

operation on the other hand. The most popular operating 

modes in animal cell cultivation are batch, fed-batch and 

perfusion modes (Fig. 1). Batch and fed-batch modes do not 

offer many alternatives for control, as in these cases the feed 

rate is either absent or limited and the growth is inhibited by 

the accumulation of toxic metabolites, which cannot be 

removed. In perfusion mode, fresh medium is fed to replenish 

the consumed nutrients, while an equal volume of spent 

medium is continuously withdrawn from it, allowing for the 

removal of toxic components. Cells are retained or recycled 

back to the reactor by some type of retention device, such as 

sonoperfusion filters. Higher cell concentrations and higher 

productivity are achieved in perfusion cultures than in 

conventional batch cultures. 

 

Fig. 1. Bioreactor layout according to operation regime. 

 

The successful operation of cultures in perfusion mode 

requires tight control, and recent developments consider the 

use of multivariable control to manipulate the feed and bleed 

rates, as well as, the composition of the feed flow (Deschênes 

et al. 2006a,b, Sbarciog et al., 2012). However, the 

development of control strategies usually requires the 

availability of a number of on-line measurements, which can 

be difficult to achieve in practice (availability of the probe, 

costs, processing time, etc). The development of software 

sensors is therefore of paramount importance for the 

implementation of these control strategies. 

In this paper, we consider a nonlinear dynamic model of 

Hybridoma cell cultures producing monoclonal antibodies, 

initially proposed in (De Tremblay et al, 1992, 1993), and 

since then considered in several further works: (Pörtner and 

Schäfer, 1996), (Roubos et al, 1997, 1999), (Nguang et al, 

2001), (Chen et al, 2002), (Sarkar and Modak, 2004), 

(Franco-Lara and Weuster-Botz, 2005). We first analyse the 

observability/detectability properties of this model using a 

method based on a natural dynamical interpretation of the 

observability/detectability concepts (Moreno et al, 2012), 

leading to the description of the indistinguishable dynamics 

of the system. Following this analysis, a Kalman filter is 

designed to reconstruct on-line variables which are difficult 

or expensive to measure directly with a hardware sensor. 

Various sensor configurations are considered, showing 

promising results in simulation. 

The paper is organized as follows. The next section 

introduces the observability/detectability analysis method, 

and illustrates it with an oversimplified ficticious model of an 

animal cell culture. Section 3 deals with a real Hybridoma 
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cell cultivation model, and the observability analysis of this 

more complex system. A Kalman filter is then designed and 

tested in simulation in section 4. Section 5 is devoted to some 

conclusions. 

2. OBSERVABILITY/DETECTABILITY ANALYSIS 

As it is well-known, the possibility of constructing an 

observer is tied to the observability/detectability properties of 

the system’s model. When only the initial conditions are 

unknown, observability corresponds to the (theoretical) 

possibility of estimating the state in a finite time-horizon, 

whereas if the system is only detectable the state estimation 

can only be attained asymptotically. 

The observability/detectability analysis proposed in (Moreno 

et al, 2012) is based on a natural dynamical interpretation of 

the observability/detectability concepts, and is introduced 

using a simple example for the sake of illustration. A 

continuously perfused bioreactor is considered where a 

culture of suspended cells takes place. Besides the feeding of 

substrates, a perfusion filter allows cell retention, whilst a 

small bleed stream lets all components out.  

Only two biological macroreactions comprising substrates 

glucose ( Glc ) and glutamine ( G ln ), living ( Xv ) and dead 

( Xd ) biomass are considered: 

( ) ( )

( )

growth

death

21 31

12 12

Glc G ln ^Xv

Xv Xd

ϕ

ϕ

−ν + −ν  →

−ν  → ν

 

 

This leads to a system of mass balance equations where the 

following symbols represent states, kinetic parameters and 

inputs: 
1x Xv= ; 

2x Glc= ; 
3x Lac= ; 

1u D F / V= = ; 

2 perf perfu D F / V= = ; 
1 21 Xv / Glc 31 Xv / Glnk 1 / Y 1 / Y= ν = = ν = ; 

IN

2k  Glc= ; IN

3k  Gln= ; 
4 maxk = µ ; 

5 Glck k= ; 
6 Glnk k= ; 

7 d ,maxk = µ . 

31 2
4 1 7 1 1 1 2 1

5 2 6 3

xdx x
k x k x u x u x

dt k x k x

 
= − − + 

+ + 

  (1) 

32 2
1 4 1 1 2 2 1

5 2 6 3

xdx x
k k x u x k u

dt k x k x

 
= − − + 

+ + 

   (2) 

3 32
1 4 1 1 3 3 1

5 2 6 3

dx xx
k k x u x k u

dt k x k x

 
= − − + 

+ + 

  (3) 

A dynamical interpretation of the concepts of 

observability/detectability can be obtained considering a copy 

of the system with variables 
iz ,  i  1, 2, 3= . 

31 2
4 1 7 1 1 1 2 1

5 2 6 3

zdz z
k z k z u z u z

dt k z k z

 
= − − + 

+ + 

 (4) 

32 2
1 4 1 1 2 2 1

5 2 6 3

zdz z
k k z u z k u

dt k z k z

 
= − − + 

+ + 

 (5) 

3 32
1 4 1 1 3 3 1

5 2 6 3

dz zz
k k z u z k u

dt k z k z

 
= − − + 

+ + 

 (6) 

and defining deviations 
iε  between the system states 

ix  and 

their homologs 
iz : 

i i ix zε = −  (7) 

Substracting (4-6) from (1-3) leads to 

( )z1
1 1 1 1 1 7 1 1 1 1 2

d
x x k u u

dt

ε
= µ − µ − ε − ε − ε + ε  (8) 

( )z2
1 1 1 1 1 1 1 2 1

d
k x k x u

dt

ε
= − µ + µ − ε − ε  (9) 

( )z3
1 1 1 1 1 1 1 3 1

d
k x k x u

dt

ε
= − µ + µ − ε − ε  (10) 

with 

32
1 4

5 2 6 3

xx
k

k x k x
µ =

+ +
 (11) 

( )
( )

( )
( )
3 32 2z

1 4

5 2 2 6 3 3

xx
k

k x k x

− ε− ε
µ =

+ − ε + − ε
 (12) 

If biomass is measured along time, then it can be assumed 

that 
1 0ε =  and 

1d / dt 0ε = . Thus equations (8)-(10) become: 

z

1 1µ = µ  (13)  

2

1 2

d
u

dt

ε
= − ε  (14) 

3

1 3

d
u

dt

ε
= − ε  (15) 

This method allows us to conclude that asymptotic 

convergence occurs for a dilution ratio 
1u 0> . The system is 

detectable (asymptotic convergence) because: 

2
t
lim (t) 0
→ ∞

ε =  (16) 

3
t
lim (t) 0
→ ∞

ε =  (17) 

Thus, except for the batch mode, system states 
2x  and 

3x  

can be distinguished if 
1x  is measured. 

3. PROCESS MODEL AND ANALYSIS 

A real dynamic model of hybridoma cells producing 

monoclonal antibody is considered (De Tremblay et al, 

1992). It comprises 7 states (biomass, glucose, lactate, 

glutamine, ammonium, monoclonal antibodies, volume), 16 

parameters and describes typical animal cell culture 

phenomena.  

1

21 41 v 31 51( )Glc ( )G ln ^X Lac Amm
ϕ−ν + −ν → + ν + ν  

2

v d( 1)X X
ϕ− →  

3

13 v 13 v( 1)Glc ( )X X
ϕ− + −ν → ν  

4

14 14 v( )Xv X MAb
ϕ−ν → ν +  

Mass balance equations are given by 
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1 1 1

2 2 18114

3 32 116 17

4 4 193 215

5 5413

6 6

x x x1 1 0 0

x ( x k ) 0k 0 1 0

x x 0 uk 0 k 0d

x ( x k ) 0 uk 0 0 0dt

x x 0k 0 0 0

x x 00 0 0 1

−−    
     − +ϕ− −      

      −ϕ   = × +        − +ϕ−      
      −ϕ     

−        

 (18) 

with the following notation: 
1x Xv= ; 

2x Glc= ; 
3x Lac= ; 

4x Gln= ; 
5x Amm= ; 

6x MAb= ; 
1k = α ; 

2k = β ; 
3k k µ= ; 

4 d,Ammk k= ; 
5 d ,Glnk k= ; 

6 d ,Lack k= ; 
7 Glck k= ; 

8 Glnk k= ; 

9 m ,Glck k= ; 
10 Glck m= ; 

11 d ,maxk = µ ; 
12 maxk = µ ; 

13 51 Amm / Gln Xv / Glnk Y / Y= ν = ; 
14 21 Xv / Glck 1 / Y= ν = ; 

15 41 Xv / Glnk 1 / Y= ν = ; 
16 31 Lac / Glc Xv / Glck Y / Y= ν = ; 

17 33 Lac / Glck Y= ν = ; IN

18k Glc= ; IN

19k Gln= ; IN

1u D F / V= = ; 

2 perf perfu D F / V= = . 

The reaction rates are given by: 

i i 1xϕ = µ  (19) 

2 4
1 12

7 2 8 4

x x
k

k x k x
µ = ⋅ ⋅

+ +
 (20) 

( ) ( )
5

2 11

12 6 3 12 14 5 5 4

k1 1
k

k k x k k x k x
µ = ⋅ ⋅ ⋅

− − +
 (21) 

2
3 10

9 2

x
k

k x
µ =

+
 (22) 

1
4 2 1

3 1

k k
k

µ
µ = +

+ µ
 (23) 

Since 
6x  is has no influence on the remaining states, it is not 

considered any longer in the following.  

A copy of the original system is built.   

( ) ( )

1 2 4

12 1

7 2 8 4

5

11 1

5 412 6 3 12 14 5

1 1 1 2

dz z z
k z

dt k z k z

k1 1
k z

k zk k z k k z

z u z u

 
=  

+ + 

 
−  
 +− − 

− +

 (24) 

2 2 4

14 12 1

7 2 8 4

2

10 1 2 1 18 1

9 2

dz z z
k k z

dt k z k z

z
k z z u k u

k z

 
= −  

+ + 

 
− − + 

+ 

 (25) 

3 2 4

16 12 1

7 2 8 4

2

17 10 1 3 1

9 2

dz z z
k k z

dt k z k z

z
k k z z u

k z

 
=  

+ + 

 
+ − 

+ 

 (26) 

4 2 4
15 12 1 4 1 19 1

7 2 8 4

dz z z
k k z z u k u

dt k z k z

 
= − − + 

+ + 

 (27) 

5 2 4
13 12 1 5 1

7 2 8 4

dz z z
k k z z u

dt k z k z

 
= − 

+ + 

 (28) 

Following the procedure introduced in the previous section, 

the error dynamics can be expressed as: 

( ) ( )z z1

1 1 1 1 1 2 1 2 1 1 1 1 1 2

d
x x x x u u

dt

ε
= µ − µ − ε − µ + µ − ε − ε + ε  (29) 

( ) ( )z z2

14 1 1 14 1 1 1 3 1 3 1 1 2 1

d
k x k x x x u

dt

ε
= − µ + µ − ε − µ + µ − ε − ε  (30) 

( ) ( )z z3

16 1 1 16 1 1 1 17 3 1 17 3 1 1 3 1

d
k x k x k x k x u

dt
−

ε
= µ − µ − ε + µ µ − ε − ε  

 (31) 

( )z4
15 1 1 15 1 1 1 4 1

d
k x k x u

dt

ε
= − µ + µ − ε − ε  (32) 

( )z5
13 1 1 13 1 1 1 5 1

d
k x k x u

dt

ε
= µ − µ − ε − ε  (33) 

where 

( )
( )

( )
( )

2 2 4 4z

1 12

7 2 2 8 4 4

x x
k

k x k x

− ε − ε
µ = ⋅ ⋅

+ − ε + − ε
 (34) 

( )( ) ( )( ) ( )
z 5

2 11

5 4 412 6 3 3 12 14 5 5

k1 1
k

k xk k x k k x
µ = ⋅ ⋅

+ − ε− − ε − − ε

 

�  (35) 

Two practical measurement configurations are considered: 

- Living biomass and extracellular glucose 

concentrations are measured on-line; 

- Living biomass only is measured (this can be 

achieved with an impedance probe); 

3.1 Case A – Biomass and glucose measurements 

If we consider that biomass and glucose are being measured 

then 
1 20, 0ε = ε =  and it follows that 

1 2d / dt 0,  d / dt 0ε = ε = . 

Equations (32)-(36) allow us to conclude that 

( )
( )

( )4 44
4 1

8 4 8 4 4

xx
0    x 0

k x k x

− ε
= ⇒ ε = ≠

+ + − ε
 (36) 

3

1 3 1 3
t

d
u sin ce u 0 then  lim (t) 0

dt → ∞

ε
= − ε → > ε =  (37) 

5
1 5 1 5

t

d
u sin ce u 0 then  lim (t) 0

dt → ∞

ε
= − ε → > ε =  (38) 

We conclude that the measurements of 
1x  and 

2x  provide 

sufficient information to ensure detectability (except in batch 

mode). 
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3.2 Case B – Biomass Measurements 

If we consider that only biomass is being measured then 

1 10,  d / dt 0ε = ε = . Equations (32)-(36) lead to 

1 2µ = µ  (39) 

( )2
3 14 2 1 1 2

d
k x u

dt

ε
= −µ − µ − ε  (40) 

( )3
17 3 16 2 1 1 3

d
k k x u

dt

ε
= µ + µ − ε  (41) 

( )4
15 2 1 1 4

d
k x u

dt

ε
= − µ − ε  (42) 

( )5
3 2 1 1 5

d
k x u

dt

ε
= µ − ε  (43) 

where 

z

i i iµ = µ − µ  (44) 

Unfortunately, it is not easy to conclude in a straightforward 

manner about the observability/detectability conditions. 

Computation of the observability map and linearization 

suggests that the system would be locally observable (Fig. 2) 

for illustrative normal operating conditions. The evolution of 

normalized values attained by the determinant is listed on the 

left column and plotted on the right (top) along with the 

states (middle and bottom). 

 

Fig. 2. Evolution of the determinant of the observability 

matrix and concentrations during a normal culture. 

 

4. KALMAN FILTER DESIGN 

Following the previous analysis, a Kalman filter is designed 

considering the two measurement configurations. The 

implemented algorithm extends the use of the filter to 

nonlinear systems by use of a linearization along the state 

trajectory.  

 

System: 

0 0

k k k k

ˆx (t) f (  x(t), u(t) ) (t);        x (t ) x

y(t ) C(t )x (t ) (t )

= + η =

= + ε

�
 (45) 

 

Gaussian white noises: 

(t) N(0, R (t))

( t) N(0, R (t))  

η

ε

η

ε

∼

∼

 (46) 

A continuous-discrete version of the extended Kalman filter 

(EKF) is considered. 

(i) Initialization 

Initially we consider a given initial condition and covariance 

P.  

0 0

0 0

t | t 0

t | t 0

m x

P P

=


=

          (47) 

(ii) Continuous Prediction for 
k 1 kt t t− < < :  

k 1 k 1

k 1 k 1

k 1 t | t

T

k 1 t |t

ˆx ( t ) x ( t )

ˆ ˆ ˆx (t) f (  x(t), u(t)  );        x(t ) m

P(t) AP(t) P(t)A R (t);        P(t ) P

ˆf ( x (t), u (t) )
ˆwhere A Jac(x(t), u(t))

x

− −

− −

−

η −

=

= =

= + + =

∂
= =

∂

�

�
 (48) 

(iii) Discrete-time correction at t=tk 

k k 1

k k 1

t | t k

t |t k

ˆm x(t )

P P(t )

−

−

=


=

 (49) 

( )

( )
k k 1 k k 1

k k k k 1 k k 1

k k k k 1 k k 1

1
T T

k t | t k k t |t k

t | t t |t k k k t |t

t | t t |t k k t | t

K (t ) P C (t ) C(t )P C (t ) R (t)

m m K (t ) y(t ) C(t )m

P P K (t )C(t )P

− −

− −

− −

−

ε= +

 = + −


= −

 (50) 

This algorithm is appropriate for bioprocesses, which can 

have low sampling frequencies of the available probes, 

whereas the process models are nonlinear mass balance 

equations. The state estimator can be coupled to a model 

predictive controller, such as the one described in (Sbarciog 

et al, 2012).  

The convergence of the filter is illustrated in the case of 

biomass and glucose measurements in Fig. 3.  

As for the case where only biomass measurements are 

available, the filter appears to perform sufficiently well since 

estimates still converge to the real values even with an 

extremely poor knowledge of initial conditions. 

In reality, an animal cell culture begins with initial conditions 

that are relatively well known: the medium is generally 

prepared beforehand and its concentrations of glucose and 

glutamine fairly well known. On the other hand, before cells 

are inoculated, the concentration of metabolites lactate and 

ammonium are close to zero and the concentration of the 

synthesized bioprotein is zero. 
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Another issue to be addressed is the performance of the filter 

given measurement noise. The figures presented assume a 

small level of noise, which is in fact coherent with the 

performances of probes such as the Fogale, illustrated in Fig. 

5. 

 

Fig. 3. EKF based on biomass and glucose measurements.  

Rη=diag([0 0 0 0 0 0]); Rη=diag([0.1 0.01 30 0.1 0.01 1]); 

P0=diag([10 10 10 10 10 10]). Estimation (magenta) – real 

process variables (blue). 

 

Fig. 4. EKF based on biomass measurements.  

Lowest IC=[12; 2; Xv0; 10; 2; 40]; lower IC=[20; 3; Xv0;  1; 

1; 10]; perfect IC=[25; 4; Xv0;  0; 0;  0]; higher IC=[30; 5; 

Xv0;  1; 1; 10]; highest IC=[38; 6; Xv0; 10; 2; 40]. 
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Fig. 5. Biomass concentration signal given by a Fogale probe 

(Fogale, 2013). 

5.  CONCLUSIONS 

This application-oriented paper addresses two questions.  

The first is the assessment of observability of nonlinear 

dynamic models of cell cultures, in the case of minimal 

measurement configurations. Given the complexity of these 

systems, most available methods such as those presented in 

(Dochain, 1992) fail to be helpful. Canonical forms such as 

those used in bacterial cultures in (Dewasme et al, 2012) are 

also of difficult application. The method proposed in 

(Moreno et al., 2012) has however shown to be useful, even 

though the solution of the differential algebraic system for the 

error dynamics can be delicate in some cases.  

The second is the design of observers for cell cultures using a 

few measurement probes, and in particular the relatively 

recent biomass probes which provide almost time-continuous 

evolution of the biomass with low levels of noise. This has to 

be contrasted with bioanalyzers that automate enzymatic kit 

analyses. Besides not being very frequent, these analyses 

have high operation costs and can present some errors.  
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