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Abstract: This work addresses the application of control systems to the optimization of a monoclonal
antibodies (MAb) production chain. The attention is focused on the maximization of hybridoma fed-
batch culture productivity. The proposed model presents kinetics showing strong nonlinearities through
min-max functions expressing overflow metabolism. A nonlinear model predictive control (NMPC)
algorithm, choosing the best trajectory over a moving finite horizon among different sequences of inputs,
is suggested in order to optimize productivity. Sensitivities of selected objective functions are considered
in a minimax robust version of the NMPC in order to choose the best configuration with respect to
practical operating conditions.
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1. INTRODUCTION

Biopharmaceuticals spare today a lot of attention to any mean
or device improving bioprocess yields. In a production chain
of monoclonal antibodies (MAb), different key-operations are
managed and optimized (i.e., cultivation, purification, filtra-
tion, capture, polishing steps,etc.). This work is focused on
the productivity (compound production in a minimum of time)
optimization of hybridomas expressing these MAb. In de Trem-
blay et al. (1992) and Dhir et al. (2000), optimisation studies
are conducted on the basis of simple macroscopic mass bal-
ance models established from experimental data. In Amribt
et al. (2013), a kinetic model taking into account metabolic
changes is suggested for the strain HB-58 that could be used
for process optimization. Indeed, hybridoma, as cells like yeast
or bacteria, presents metabolic changes in presence of feed-
ing overflow. This metabolic phenomenon, induced when the
rate of glycolysis exceeds the cell respiratory or oxidative
capacity (i.e., the capacity to oxidize substrates), is called
”Overflow metabolism” or ”short-term Crabtree effect”. The
cell metabolism is consequently divided in two pathways: the
oxidative or respirative regime, and the respiro-fermentative
regime when substrate is in excess, leading to the formation
of by-products generally inhibiting the oxidative capacity. To
avoid this undesirable effect, a closed-loop optimizing strategy
is required, which could take various forms including nonlinear
closed-loop strategies based on adaptive, probing, robust or

predictive control respectively as in Pomerleau (1990), Akesson
(1999), Dewasme et al. (2010) and Santos et al. (2012).

Nonlinear model predictive control (NMPC) is suitable es-
pecially for nonlinear fed-batch processes where a trajectory
needs to be followed from the prediction of a nonlinear model.
For these processes NMPC uses the nonlinear dynamic model
to predict the effect of sequences of control steps on the
controlled variables. There is a vast and rich literature with
overviews on NMPC developments, research, and applications
(e.g., Qin and Badgwell (2003), Lee (2011)). Some of these
works address the problem of robust nonlinear model predictive
control of fed-batch processes (e.g. Nagy and Braatz (2003),
Nagy and Braatz (2004)). An overview of more recent devel-
opments on NMPC can be found in Magni et al. (2009) and
references therein.

In this work, a NMPC algorithm comparable to Santos et al.
(2012) is designed in order to optimize the HB-58 culture
productivity taking model uncertainties and practical laboratory
conditions into account.

In section 2, the mathematical model of HB-58 (Amribt et al.
(2013)) is briefly described and optimal closed-loop control
objectives are suggested and discussed. The proposed NMPC
algorithm is presented and performance is assessed in simula-
tion comparing previously selected objective functions. The ro-
bustness facing parameter uncertainties is discussed in section
4. Conclusions and perspectives end this paper in section 5.
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2. HYBRIDOMA CULTURE MODEL AND CONTROL
OBJECTIVES

In the following subsection, the hybridoma HB-58 model of
Amribt et al. (2013) is considered. Control objectives are de-
rived from this model in the next subsection.

2.1 Bioreactor model

The following macroscopic reactions are extracted from the
reduced metabolism network of HB-58 (Amribt et al. (2013)):

Glucose consumption : G
ϕG→ aX + bL (1a)

Glutamine consumption : Gn
ϕGn
→ cX + d N (1b)

Glucose overflow : G
ϕOver−G
→ 2L (1c)

Glutamine overflow : Gn
ϕOver−Gn

→ N +
1

2
L (1d)

where X , G, Gn, L and N are, respectively, the concentrations of
biomass, glucose, glutamine, lactate and ammonia. a, b, c and d
are the stoichiometric coefficients, and ϕi (i = G,Gn,Over −
G,Over − Gn) the reaction rates given by the following dis-
continuous overflow kinetic model recalling the bottleneck of
Sonnleitner and Käppeli (1986):

ϕG = min(ϕG1,ϕG max) (2a)

ϕGn = min(ϕGn1,ϕGn max) (2b)

ϕOver−G = max(0,ϕG1 −ϕG max) (2c)

ϕOver−Gn = max(0,ϕGn1 −ϕGn max) (2d)

where each rate corresponds to the following Monod-type con-
sumption rates ri (i = G1,Gn1,G2,Gn2) times the concentra-
tion of viable biomass Xv as in:

ϕG1 = rG1 Xv = µGmax1
G

KG +G

Gn

KGn1 +Gn
Xv (3a)

ϕGn1 = rGn1 Xv = µGnmax1
Gn

KGn+Gn

KN

KN +N
Xv (3b)

ϕG max = rG max Xv = µGmax2Xv (3c)

ϕGn max = rGn max Xv = µGnmax2Xv (3d)

where µimax j (i = G,Gn, j = 1,2) are the maximum values
of the specific rates and KG, KGn1 and KGn are the saturation
coefficients. KN is the ammonium inhibition constant over the
oxidation of glutamine.

Sonnleitner’s kinetic model was first applied to the baker’s
yeast strain called Saccharomyces cerevisiae and is based on
the idea that the strain metabolism is ruled by its respiratory
capacity. Indeed, during a culture, the cells are likely to change
their metabolism because of their limited oxidative capacity.
When the substrate is in excess (for instance, glucose concen-
tration is above a critical level G > Gcrit and the respective
consumption rate, rG1 > rGmax ), the cells produce a byproduct
(here, L) through the fermentative pathway, and the culture is
said to be in (respiro-) fermentative (RF) regime. On the other
hand, when substrate becomes limiting (for instance, glucose

concentration is below a critical level G < Gcrit and the sub-
strate consumption rate rG1 < rGmax ), the available substrate,
and possibly the byproduct (as a substitute carbon source), if
present in the culture medium, are oxidized (if the strain is able
to oxidize it, which is not the case for HB-58). The culture is
then said to be in respirative (R) regime. This metabolic mech-
anism is also applicable in parallel to glutamine and ammonia.
However, it is important to note that oxygen is not represented
as the system is assumed to be perfectly oxygenated and, con-
sequently, metabolic switches are essentially due to substrate
variations.

Mass balances on each component yield the following differen-
tial equations:

dXv

dt
= aϕG + cϕGn − µdXv −DXv (4a)

dXd

dt
= µdXv −DXd (4b)

dG

dt
=−ϕG −mGXv −ϕOver−G +D(Gin −G) (4c)

dGn

dt
=−ϕGn −ϕOver−Gn +D(Gnin −Gn) (4d)

dL

dt
= bϕG + 2ϕOver−G +

1

2
ϕOver−Gn −DL (4e)

dN

dt
= dϕGn +ϕOver−Gn −DN (4f)

dV

dt
= DV (4g)

where mG is the maintenance coefficient of glucose (note that
maintenance on glutamine is not considered as identification
results obtained in Amribt et al. (2013) led to negligible values
as compared to oxidation and overflow), V the reactor volume,

D = Fin
V

the dilution rate, Fin the inlet feed rate and Gin and Gnin

are the substrate concentrations in the feed medium. Xd repre-
sents the dead biomass concentration and µd the corresponding
rate given by:

µd = µdmax

KGd

KGd +G

KGnd

KGnd +Gn
(5)

The substrate inhibition terms of (5) simply mean that cell death
is limited as long as there are enough glucose and glutamine in
the bioreactor.

The parameter values listed in Table 1 were obtained following
an identification procedure comparable to the one used by
Amribt et al. (2013) using the same data sets and can be
considered as extended results of Amribt et al. (2013). The only
difference with previous results comes from the combination of
sets used for simple and cross validations.

2.2 Control objectives

In Santos et al. (2010) and Santos et al. (2012), practical aspects
behind the choice of the best optimizing criterion are discussed
considering, of course first, the simple formulation of the cur-
rent productivity optimization with respect to the product of
interest (here, we speak about biomass productivity optimiza-

tion represented by P = Xv V
t f

where t f represents the culture

time) but then also the number of measurements, the existence
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Table 1. Parameter values of Amribt et al. (2013)’s
model

µGmax1 1.0006 h−1

µGmax2 0.0283 h−1

µGnmax1 0.1992 h−1

µGnmax2 0.0203 h−1

µdmax 0.0111 h−1

KG 23.235 mM

KGn 0.0004 mM

KN 0.9931 mM

KGn1 0.0005 mM

a 1.1462 105 cells/mM of G

b 1.2939 mM of L/mM of G

c 0.1186 105 cells/mM of G

d 0.3000 mM of N/mM of G

mG 0.0367 mM mL/105 cells

KGd 2.1862 mM

KGnd 0.0020 mM

of the corresponding probes, their price and, eventually, the
possibility to express the optimizing criterion.

In this work, 4 optimizing criteria are considered:

φ1 =−
p

∑
i=1

Xk+i (6a)

φ2 =
p

∑
i=1

∣

∣rG1,k+i − rGmax,k+i

∣

∣ (6b)

+
p

∑
i=1

∣

∣rGn1,k+i − rGnmax,k+i

∣

∣

φ3 =
p

∑
i=1

∣

∣rGn1,k+i − rGnmax,k+i

∣

∣ (6c)

φ4 =
p

∑
i=1

∣

∣rG1,k+i − rGmax,k+i

∣

∣ (6d)

calculated over a time horizon of length p starting at k.

• φ1 considers live biomass concentration and not produc-
tion (Xv V ), assuming small changes in volume during the
culture. In practice, a 1 liter bioreator is indeed initiated
at a level around 30 % of its maximum volume and the
fed-batch culture ends around 70 to 80 % in order to avoid
possible tank overflows. The final volume is then gener-
ally twice or three times the initial one while biomass
concentration goes through different orders, starting, for
instance, at order 0.1 and ending at order 1 or even 10,
depending on the feeding density. In this work, predic-
tive control horizons strictly smaller than the culture time
are used, inducing very small volume variations and es-
sentially biomass concentration variations, justifying the
choice of φ1.

• φ2 represents the distance between any value of rG1 and
rGn1 and their optimal values rGmax and rGnmax, also lim-
iting the production of inhibitory byproduct N. φ2 is then
the expression of the productivity optimum, comparable
to what was obtained in Santos et al. (2012) for E. coli
but extended to two substrates saturating the respiratory
capacity.

Even if this productivity optimum appears as evident as long
as µd remains relatively low (i.e., there are enough glucose

and glutamine in the bioreactor following (5)) in (4a), it is
interesting to see how this optimum is evolving with the am-
monium concentration following (3b). Indeed, this optimum
is not unique as there exists an infinity of pairs (Ncrit ,Gncrit)
which guarantee that (3b) = (3d) while Gcrit depends on Gncrit

as shown in (3a). Following (4f), ammonium is a metabolic
byproduct which is actively produced during glutamine over-
flow but also during glutamine oxidation, which is an essen-
tial reaction for cell survival. This implies that the ammonium
quantity will increase all along the culture and, consequently,
that the optimum productivity will change.

Expressions of the critical substrate concentrations can be ob-
tained by equating (3a) and (3b) respectively with (3c) and (3d),
providing:

Gcrit =
KGµGmax2(KGn1 +Gncrit)

µGmax1Gncrit − µGnmax2(KGn1 +Gncrit)
(7a)

Gncrit =
KGnµGnmax2(KN +Ncrit)

µGnmax1KN − µGnmax2(KN +Ncrit)
(7b)

From (7b) and the general positivity of a concentration, it is
obvious that there is an existence condition of Gncrit on N.
Indeed, Gncrit > 0 implies the following upper bound NU :

N < NU = 8.75 mM (8)

which can be interpreted as a limit of ammonium inhibition
on the cell glutamine oxidative capacity. In other words, if
this limit is exceeded, the cells become unable to reach the
critical rate of glutamine oxidation (3d). Moreover, two critical
concentrations Gcrit and Gncrit lead to two optimal feeding
profiles. Considering that G and Gn are constant, we obtain
respectively from (4c) and (4d):

FG =
µGmax2 +mG

Gin −Gcrit

VXv (9a)

FGn =
µGnmax2

Gnin −Gncrit

VXv (9b)

As model (4) only considers an inhibition of ammonium on
the oxidative capacity, any glucose concentration G ≥ Gcrit is
sufficient to reach (3c). One can now wonder if applying FGn

could be sufficient to obtain G≥Gcrit , which, rewritten in terms
of feeding profiles, corresponds to:

FGn ≥ FG (10)

Using (9) in (10), we obtain Gcrit ≥ 2.37 10−4 mM which,
complemented by (8) leads to a lower bound NL = 2.63 mM
such that:

NL < N < NU (11)

It appears anyway that even if the upper bound is independent
of the feed medium composition and is therefore fixed by
the model parameter values, it is not the case for the lower
bound. It is then of interest to consider the evolution of this
lower bound with respect to Gin and Gnin. Starting from (10),
and considering the parameter values defined in Table 1, an
inequation of the second order in Gncrit parameterized by Gin

and Gnin is obtained and solved in Figure 1.
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Fig. 1. Evolution of NL with respect to the medium composition,
i.e., Gin and Gnin. The arrow indicates the increasing
concentrations of Gnin while the circle indicates the NL

value of the current operating conditions (i.e. Gin = 15 mM
and Gnin = 4 mM).

Figure 1 shows the solutions of (10) when coupled to (7b) in
order to get the corresponding NL values. This graph represents
the evolution of NL with respect to different values of Gin and
Gnin. It appears that the media composition plays an important
role in the possibility to optimize the cell growth as there exist
couples (Gin,Gnin) such that NL = NU , i.e., such that (11) is not
respected.

An important conclusion on the way to design the experiments
is drawn and the following theorem holds:

Theorem 2.2.1 Provided that there is a significative but not
excessive ammonium concentration in the bioreactor respecting
(11), FGn(Ncrit ) as defined in (9b), is always an optimal feeding
profile.

• φ3 (6c) and φ4 (6d) are therefore proposed in order to
validate theorem 2.2.1. Indeed, if (11) is respected when
finishing the batch phase, the profile tracking the mini-
mization of φ3 should lead to the same solution as the
profile minimizing φ2 while the one generated by the min-
imization of φ4 should be sub-optimal, following (10), in
terms of biomass productivity over a fixed culture time.

3. NONLINEAR MODEL PREDICTIVE CONTROL

A nonlinear model predictive control (NMPC) strategy compa-
rable to Santos et al. (2012) is applied to maximize the produc-
tion of biomass within a defined time, using the minization of
one of the objective functions defined in (6), together with a pe-
nalization of the control moves in order to avoid too important
feeding variations eventually leading to local minima as in:

ψi = φi +
m

∑
j=1

(Fin,k+ j−1 −F ref
in,k+ j−1) (12)

where i = 1,2,3, p is the prediction horizon, and m is the
control horizon, with m 6 p. Fin is the manipulated variable,
F ref

in = Fin,k+ j−m is the feed rate of reference.

Table 2. Productivities obtained for different ob-
jective functions

Objective function Productivity [107cells/h]

ψ1 3.50

ψ2 3.59

ψ3 3.59

ψ4 3.40

The NMPC problem is then stated as

min.
uuu

ψ (13a)

s.t. ẋ = f (x,u,θ) (13b)

u(t) = u(t j−1+m), t ∈ [t j+m, t j+p] (13c)

xxxL 6 xxx 6 xxxU (13d)

uuuL 6 uuu 6 uuuU (13e)

∆uL 6 ∆u j−1 6 ∆uU , j = 1, · · · ,m (13f)

where (13b) is the process model, x and u are respectively
the vector of state and control variables, and θ is the vector
of parameters. The subscripts L and U stand respectively for
lower and upper. In this case study uuu = {Fin,k, · · · ,Fin,k+m−1}
is the feed rate policy over a control horizon of m sampling
time intervals, and xxx is the augmented vector of the state
predictions {xk+1, · · · ,xk+p}. Linear inequalities (13f) enforce
control move rate constraints over the control horizon.
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Fig. 2. Comparison of the NMPC performances using ψi (i =
1,2,3,4) as objective functions. XvV (alive biomass pro-
duction), G and Gn are in solid line and XdV (dead biomass
production), L and N are in dashed line.

In order to compare the performances of the cost functions (12),
simulations of a batch starting with the following initial and
operating conditions, are performed:

Xv0 = 1.85 105 cells/mL, Xd0 = 0.25 105 cells/mL, G0 =
17.17mM, Gn0 = 2.41mM, L0 = 0.36mM, N0 = 0.23mM, V0 =
0.35L, Gin = 15mM, Gnin = 4mM, p = 3, m = 1 and the final
culture time is fixed to t f = 120 h. For a limited computation
and gain of time, the sampling period is chosen equal to ts = 1 h.

Results are shown in Figure 2 and biomass productivity values
are listed in Table 2. Initial conditions force the controller to
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remain at zero until the glutamine is nearly depleted (around
50 h). At this moment, the batch phase ends and the first strictly
positive inputs are calculated by the controller in order to catch
an exponential trajectory, function of the criterion used among
(6). The best values are obtained for ψ2 and ψ3 confirming
theorem 2.2.1. However, performances of ψ1 are less than 5 %
lower than the best case while less than 10 % for ψ4, which
means that these criteria, failing to lead to the optimum, remain
in a close neighborhood.

4. PRACTICAL CONDITIONS - MINIMAX ROBUST
NMPC

The use of NMPC assumes a perfect knowledge of the model
parameters and the availability of all the state measurements.
Even if having all the probes is achievable in practice (or by
means of observers as in Dewasme et al. (2013)), a perfect
model parameter identification is impossible to achieve and a
more robust version of the NMPC algorithm is then required.
Taking into account results of section 3, only ψ1 and ψ3 are
considered in the following (ψ4 presents the lowest productiv-
ity and ψ2 is comparable to ψ3). Performances of the NMPC
algorithm using ψ1 and ψ3 in the presence of parameter uncer-
tainties are now assessed. This new study could be lead for all
model parameters but following the structure of (6c), it is legit-
imate to think that sensitivity of the optimization with respect
to model uncertainties is essentially due to µGnmax1, µGnmax2,
KGn and KN . To justify this last sentence, note that even if the
general model used to calculate state trajectories is not perfect,
its influence on the states is attenuated by the reinitialization
performed by the new measurements at each sampling period ts
while the influence on the objective function is direct and never
damped.

A robust formulation of the predictive controller is therefore
proposed based on the solution at each sampling period of a
minimax problem:

min.
uuu

max ωi1, · · · ,ωiη (14a)

s.t. (13b – 13f) (14b)

where each cost function, ωi j, j = 1, · · · ,η, defined as in (12),
is evaluated at one of the vertices of the uncertainty parameter
polytope.

µGnmax1, µGnmax2, KGn and KN nominal values are assumed
to be influenced by uncertainties of maximum 15 percents
(i.e., parameter identification is assumed to be well achieved
but naturally tarnished by uncertainties). Table 3 shows the
productivity means, maxima and standard deviations obtained
for parameter variations applied first independently and then, in
combination with others following a series of 14 times 50 runs.

Globally, the sensitivities of the algorithms using different
objective functions reach the same order as the number of
uncertain parameters increases (O(106cells/h)). Anyway, ψ3

still presents higher productivities and also more robustness
with respect to parameter sets in which µGnmax2 does not appear.

The algorithm is mainly sensitive to µGnmax1 and µGnmax2 (see
Table 3) independently of the criterion. Reminding that these
parameters define the metabolic threshold separating both path-
ways, it appears clearly that if µGnmax1 is underestimated, the
productivity will decrease as the true critical level is never
reached, while if µGnmax1 is overestimated, more ammonium
will be produced generating an increase of Gncrit (following

(7b)) and a faster drift of the optimum which is, however, not
so detrimental for the productivity as this optimum (Gncrit ,Ncrit )
is never reached (as always moving) but correctly tracked. As
all vertices of the polytope defined by the maximum parameter
variations are considered before selecting the worst productiv-
ity level as in (14), Figure 3 shows consequently that the mini-
max algorithm using ψ1 as objective function is likely to always
reach a good productivity level if µGnmax1 is overestimated.

On the other hand, KGn and KN do not severely alter the final
productivity when using ψ3 as standard deviations concerning
these parameters alone never exceed 5 104 cells/h.

The algorithm using ψ1 as objective function presents standard
deviations of an order of 106 cells/h (i.e., from 0.5 to 1 106

cells/h), regardless of the uncertain parameter set. This means
that a good identification of µGnmax2 is a sufficient condition
of robustness if ψ3 is used as objective function while ψ1

requires a more accurate identification of all the model param-
eters. Moreover, considering that ψ3 basically reaches higher
productivities than ψ1, the choice of the user should be oriented
towards ψ3 in realistic experimental conditions.
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Fig. 3. Productivities obtained during 50 runs where µGnmax1

undergoes variations using ω1.

5. CONCLUSION

In this work, optimization of hybridoma HB-58 fed-batch cul-
ture productivity using a mathematical model assuming over-
flow metabolism is performed. Nonlinearities and discontinu-
ities of such biological kinetic models generally require the
use of advanced controllers able to track unstable trajectories
following exactly the boundary of two metabolic pathways.
NMPC algorithms, optimizing sequences of trajectories over
a finite horizon on the basis of objective cost functions mini-
mization ψ, are able to solve this optimality problem as long as
the minimum of ψ corresponds to the productivity optimum. To
illustrate this idea, four different mathematical criterions have
been chosen and compared in terms of biomass productivity
over a finite culture time. It appears clearly that, even if each of
them leads to a satisfactory productivity level, only two of them
represent the right cost functions to reach the productivity op-
timum: ψ2, representing both metabolic overflows on glucose
and glutamine and ψ3, representing the overflow of glutamine
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Table 3. Productivitiy means, maxima and standard deviations for 14 series of 50 runs considering two
objective functions ψ1 and ψ3 and possible parameter uncertainties (i.e., a total of 1400 runs)

Parameters Prod. mean [107cells/h] Prod. max [107cells/h] Prod. stand. dev. [107cells/h]

ψ1 ψ3 ψ1 ψ3 ψ1 ψ3

µGnmax1 3.42 3.56 3.49 3.57 1.00 10−1 5.58 10−3

µGnmax2 3.31 3.43 3.43 3.59 6.35 10−2 2.3 10−1

KGn 3.41 3.56 3.48 3.57 9.94 10−2 3.35 10−3

KN 3.42 3.56 3.47 3.57 7.92 10−2 3.65 10−3

µGnmax1,µGnmax2 3.41 3.53 3.49 3.59 1.30 10−1 8.73 10−2

µGnmax1,KGn 3.45 3.56 3.5 3.57 7.03 10−2 5.09 10−3

µGnmax1,KN 3.44 3.56 3.5 3.57 9.74 10−2 6.18 10−3

µGnmax2,KGn 3.43 3.54 3.48 3.59 6.71 10−2 9.64 10−2

µGnmax2,KN 3.42 3.55 3.47 3.59 5.90 10−2 9.1 10−2

KGn,KN 3.45 3.56 3.5 3.57 6.52 10−2 5.17 10−3

µGnmax1,µGnmax2,KGn 3.46 3.56 3.51 3.59 4.55 10−2 6.01 10−2

µGnmax1,µGnmax2,KN 3.42 3.55 3.47 3.59 7.92 10−2 9.03 10−2

µGnmax1,KGn,KN 3.45 3.56 3.53 3.57 6.87 10−2 4.37 10−3

µGnmax2,KGn,KN 3.4 3.55 3.49 3.59 1.00 10−1 7.95 10−2

µGnmax1,µGnmax2,KGn,KN 3.45 3.53 3.52 3.59 7.03 10−2 9.46 10−2

only, based on an existence condition on ammonium. Consid-
ering those productivity levels but also practical conditions,
two criterions are chosen: ψ1 and ψ3. Interestingly, the last
criterion requires a minimum of parameter knowledge (i.e., four
parameters) and leads to the productivity optimum. The main
drawback of predictive control is the assumption of a perfect
model and available state measurements which is, in practice,
difficult to set up. Therefore, a minimax algorithm considering
parameter uncertainties (often encountered following identifi-
cation) allows to limit the loss of productivity especially thanks
to the inherent robustness due to the choice of a particular cost
function: ψ3.
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