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Abstract: Living cells are continuously monitoring their surroundings and making appropriate decisions 

to enhance chances of survival. Information regarding environmental conditions is processed in 

biochemical and genetic networks, eventually leading to a cellular phenotype. However, for all transfer of 

information, a large number of possible network topologies are available to the cell to choose from. In the 

common bacterium Escherichia coli, frequency of certain topologies far outnumbers others. What decides 

the choice of a particular network over the others? In this work, we work with the simplest transcriptional 

network - an interaction between a regulator, R and its target gene, T - and develop a computational and 

experimental framework to characterize performance of different possible networks in terms of a list of 

objective functions. Our results suggest and we speculate that a group of proteins evolve into a particular 

network topology so as to optimize the most crucial objective function for their particular role in cellular 

physiology. 
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1. INTRODUCTION 

Networks are information processing centres of the cell 

(Fraser et al., 2013). Developments in the last decade or so 

have demonstrated that living cells exhibit a distinct 

preference for certain network topologies over others (Dekel 

et al., 2005; Mangan and Alon, 2003). This results in an over-

representation of these topologies among a large number of 

available options to the cell. Mathematical and experimental 

analysis of these topologies has clearly demonstrated that 

these over-represented topologies outperform their 

competitors when compared against a defined objective 

function (Goentoro et al., 2009; Kaplan et al., 2004). This 

understanding of networks is crucial for design of industrially-

relevant synthetic circuits in living cells.  

The analysis of genetic networks and their relative advantages 

has, however, not included the significance of the biochemical 

parameters associated with the network. Varying the values of 

the biochemical parameters, a network can be designed to 

exhibit vastly different dynamic and steady-state behavior. 

Hence, the role of network topology must be analyzed in 

conjunction with the available biochemical parameter space. 

In this work, we analyze the most simple of the genetic 

interactions in a living cell - a transcriptional regulator, R 

controlling the production of its target gene, T. This 

interaction can be any of the six possible topologies as shown 

in Fig. 1. Why cells chose one topology over the other 

remains an open question.  

In addition, what is the reason for the choice of under-

represented topologies in a certain networks? Do these under-

represented topologies also confer an advantage to the cell in 

certain physiological conditions?   

To answer this question, we employed a computational and 

experimental approach using the common bacterium 

Escherichia coli (E. coli). We analyze the network in terms of 

a series of objective functions that could be physiologically 

relevant for a cell. Our results show that different topologies 

(each analyzed over its entire biochemical space) offer 

specific features/properties to the cell. These properties could 

be advantageous /disadvantageous to the cell depending on its 

precise function in the cellular working. Our results indicate 

that it is this factor that results in choice of a specific topology 

over the other. In addition, this approach provides a 

framework for studying evolution of topology of genetic 

networks. We validate our computational work with 

experimental studies by studying the characteristic features 

from 5 promoters from each of the 6 classes as shown in 

Figure 1. Our experimental results demonstrate that, in 

accordance, with the computational work, the distribution of 

time of activation and cost of response is spread in agreement 

with the computational work. The precise objective function 

which dictates evolution of a individual network will need 

more closer inspection. 

2. METHODS 

2.1 Mathematical Modeling 

All six models as represented in Fig. 1 were modeled using 

Gilliespie algorithm to account for stochasticity (Gillespie, 

1976; Gillespie, 1977). 
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Fig. 1. Transcription Factor and Target Gene Interactions: A) 

R (regulator) activates T (target); B) R activates R and T; C) 

R activates T and represses R; D) R represses T; E) R 

represses T and activates R; and F) R represses R and T. 

Arrows indicate transcriptional activation of the promoter, and 

blunt-ends indicate transcriptional repression of the promoter. 

 

For each model, the dynamics of transition from the target T 

"Off" to "On" and from "On" to "Off" were recorded.  

The assumptions involved in our modeling work are as 

follows: 

i. The regulator R, acts as a dimer to control gene 

expression. This assumption is true for a large 

number of transcription factors in bacteria (Sadamoto 

and Muto, 2013; Yu et al., 2010), 

ii. 500 cells were simulated for each transition in each 

network. This number was considered large enough 

to represent behavior of larger sets of data, 

iii. Gene expression control were assumed to be via Hill 

equation, 

iv. Degradation of R and T was proportional to their 

amounts in the cell, 

v. The parameter values were varied in accordance with 

the observed values from a number of previous 

reports (Rosenfeld et al., 2005; Süel et al., 2006; 

Rosenfled et al., 2007). It was assumed that under 

these values, the entire physiologically relevant 

parameter space is being covered, and 

vi. "Off" conditions were modeled as absence of a signal 

variable, s. Under "On" conditions, the signal 

variable, s, took the value 1, and allowed for R-

independent expression of the regulator at a low 

basal rate. In our simulations, the signal parameter 

represents the environmental conditions that induce 

expression of R. 

The governing equations used for the network A are given as 

follows. All other networks were mathematically framed 

similarly. 
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Where, kdR and kdT are the degradation constants for R and T 

respectively; c is the activation constant for transcription of R 

in response to environmental conditions; and a and b are the 

Michealis-Menten constants associated with regulation of 

expression of target T by regulator R. 

Networks B, C, E, and F had 5 parameters each, and networks 

A and D were defined by 3 parameters only (Appendix A). 

Each of the networks B, C, E, and F was simulated for 5 

parameter values each, resulting in 3125 network simulations. 

Networks A and D were simulated for 15 values of each 

parameter. The parameter value range was taken to be 

representative of typical values found in bacterial 

transcription control (Appendix B). Hence, a total of 15
3
 

networks (3375) were simulated for topologies A and D.  The 

model simulation data was then used to characterize the 

performance of each network in terms of the following 

parameters: 

i. Steady state value of the target gene, T and regulator 

R (on transition from "OFF" to "ON" state), 

ii. Steady state value of T and R on transition from 

"ON" to "OFF" state, 

iii. Time of activation, time taken to reach 50% of the 

total change in the value of T (on transition from 

"OFF" to "ON", 

iv. Time of deactivation, time taken to reach 50% of the 

total change in the value of T on removal of the 

activating signal, and 

v. Cost of response, amount of R required to produce 

one unit of target, T, in response to changing 

environmental conditions. 

Averages for each of the above (v) criteria from all networks 

were reported below.  

2.2  Experimental Procedures 

All experiments were conducted in E. coli strain RP437 in 

Luria-Bertani (LB) media at 37°C. Amplification of 

promoters was done using Taq Polymerase DNA Polymerase. 

Kanamycin was used to make a final concentration of 

40μg/ml in all experiments. All reporter plasmids were 

constructed with the fusion of promoter of interest with green 

fluorescent protein (gfp) gene on a medium copy number 

plasmid, pPROBE gfp[tagless] (Miller et al., 2000). 

Fluorescent and absorbance after growth of 14 hours were 

measured on a TECAN Safire2. All experiments were 

conducted in triplicate. The average values and standard 

deviations are reported.  

3. RESULTS 

3.1 Natural Frequency of R and T motif in E. coli  

E. coli has over a hundred transcription factors encoded in its 

genome. These transcription factors further regulate 

expression of a large number of genes. In fact, some of the 

transcription factors are known to have more than 100 target 
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promoters. Overall, this results in a large number of 

transcription factor-target promoter interactions. In addition, a 

number of transcription factors are known to regulate their 

own-expression. Thus to understand the natural frequencies of 

the six possible R-T interactions, we counted all such 

interactions in E. coli. The frequencies are as represented in 

Fig. 2 below. 

 

Fig. 2. Frequencies of regulator, R and target, T interactions in 

E. coli. Total transcription interactions is 1773. Target gene 

information was taken from RegulonDB. A, B, C, D, E, and F 

network structure is as defined in Fig. 1 (Salgado et al., 2013). 

 

These results suggest that certain network topologies are 

preferred by E. coli over others. However, there are still some 

networks which remain in the network topologies with lower 

frequencies. Why has evolutionary pressure not forced these 

networks to move towards the more frequent topologies? To 

characterize each of these networks, we summarize our 

simulation results below. 

3.2 Steady State Analysis 

The transition of the network from an “OFF” to an “ON” 

position was simulated by a signal variable, s, which, in 

inducing conditions took the value 1, and in repressing 

conditions remained at zero.  Our steady state analysis 

demonstrates the various qualitative features associated with 

each of the six topologies under consideration (Fig. 3). For 

network A, transition from OFF to ON results in a wide-

spectrum of response on the R-T plane. However, large 

fractions of the response is expensive (high R, and low T). 

However, on transition to OFF state, the system response 

collapses, and at steady state the system exhibits a wide 

variety of T amounts over a narrow R range (at very small R 

values). This suggests that network A is an ineffective 

mechanism to switch off networks, while it exhibits a large 

range of steady state ON values. Network B also exhibits a 

poor transition to OFF, owing to the inbuilt positive feedback 

in the network. In addition, networks C, E, and F exhibit a 

large dynamic range of steady state R and T values. Network 

D is able to demonstrate a qualitatively unique response than 

others as it excludes a large fraction of the R-T space in the 

transition to the ON state. On transition to the OFF state, 

however, the entire R-T space is exhibited by the network in 

its response. These variations are likely important in dictating 

the qualitative response of the system, and more importantly, 

decide the fate of the network behaviour in case of mutations 

in the promoter region, which alter the biochemical constants 

associated with the interactions. For instance, the analysis 

suggests that any mutation in network 1 is not likely to lead to 

a system response (in the OFF state) outside the narrow band 

as shown in the Figure above. 

3.3 Cost Analysis 

In addition to the steady state response of the system, an 

important characteristic in quantification of network 

performance is the cost of response. We quantify this by the 

number of R molecules needed to bring about a unit change in 

amounts of T in the cell. A large number of R required for a 

unit change in T is likely to be detrimental to the overall 

cellular behaviour.  

Our results indicate that some network designs are inherently 

“more expensive” than the others. As shown in Fig. 4, we 

note that networks A, B, and C are more expensive than D, E, 

and F. In addition to the differences in the average costs 

associated with the production of T, there is also a great 

variation in the spread of the cost of T over different values of 

the biochemical parameters. For instance, we note that there is 

minimal variation in the cost in networks E and F, when they 

transition from the OFF to ON state. On the other hand, 

network D exhibits a narrow range of cost when transitioning 

from OFF to ON state, but a much wider range of the cost 

values when the cells transition from the ON to OFF state. 

The cells are likely to have evolved network designs keeping 

in consideration the most critical parameter for their 

functioning. For example, if low cost of transition was the 

sole criteria for choice of a network – the likely networks will 

be E and F, since any change in the biochemical parameters in 

these networks does not result in change in the cost of 

production of T.  

 

Overall, our results show that the networks E and F are able to 

produce T with the least number of R molecules. However, 

this comes with the disadvantage that E and F networks are 

able to exhibit poor control over expression of T, as cells 

transition from one environmental condition to another. 

 

3.4 Dynamics of Activation and Deactivation 

In response to the changing environmental conditions, cells 

need to quickly adapt to not only enhance their chances of 

survival but also accomplish complex and critical tasks in 

their life-cycle (Saini and Rao, 2010; Kumar et al., 2013). A 

faster dynamic response from a bacterium would not only 

enable it to adapt better to its new surroundings, but also 

provide a competitive advantage over other competitors. In 

our context, in each of our simulations, we quantified the time 

of response as the time taken by the system to reach 50% of 

its final response upon transition from one state to another. 

For example, if on transition from OFF to ON state, the value 

of T changes from 30 to 100, the time of response corresponds 

to the time taken to reach T = 65, half of the total response 

from 30 to 100. Upon calculation of the response time for 

both the transitions, we plotted the frequencies of particular 

response times as shown in Fig. 5 below. 
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Fig. 3. Steady state regulator (R) vs. target (T) profiles as cells transition from "OFF" to "ON" state (left panel), and as cells 

transition from "ON" to "OFF" state (right panel). Labels A-F correspond to the networks as shown in Fig. 1. 

 

 

Fig. 4. Cost of production of target protein T in various circuits as cells transition from OFF to ON conditions (left panel) and 

from ON to OFF conditions (right panel). Cost is calculated in terms of number of R molecules needed to produce a unit T 

molecule. Labels A-F correspond to the networks as shown in Fig. 1. 

Our results show that in networks A, B, and C – where the 

target T is being activated by regulator R, the spread of 

time of response is greater in the OFF to ON transition, as 

compared to the ON to OFF transition. On the other hand, 

in networks D, E, and F, the spread is greater for the OFF 

to ON transition, as compared to the ON to OFF transition. 

This result is perhaps to be expected as negative regulation 

is known to equilibrate cellular behaviour. 

Variation in the time of response was maximum for the 

activation time in network C. This is contrary to the 

expectation that negative feedback speeds up and reduces 

the cell-to-cell variability in responses in cellular networks. 

However, our results show that negative feedback perhaps 

makes the cell more susceptible to changes in the response 

time, should it acquire mutations. 

3.5 Experimental Validation 

To test results of our computational work experimentally, 

we developed reporter fusions for five promoters (all from 

E. coli) in each of the six networks designed as shown in 

Fig.1. 

The following promoters were used for this study: Network 

A: arcA, cbl, cra, flhDC, malT, and modE;  Network B: 

marA, gadE, gadX, fucR, hyfR, and idnR; Network C: cynR, 

cysB, oxyR, fnr, fis, and gadW; Network D: allR, arcA, cra, 
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Fig. 5. Time of activation (left panel) and deactivation (right panel) for the networks considered in the present study. Time of 

activation/deactivation is quantified by the time (in arbitrary units, A.U.) taken to reach the 50% of the total response of the 

network from one steady state (OFF/ON) to another (ON/OFF). Labels A-F correspond to networks as shown in Fig. 1. 

dinJ, fadR, and gntR; Network E: ada, araC, idnR, marA, 

cpxR, and csgD; and Network F: fis, galR, ihf, lexA, nac, 

and nagC. Cells carrying each reporter fusion were grown 

overnight in LB media at 37
ᵒ
C and the time of activation, 

time of deactivation, cost of production measured. The 

following formula was used to measure the cost of 

production experimentally: 

 

)(/

)(/

TODRFU

RODRFU
Cost




       (3) 

Where RFU corresponds to the fluorescence in a particular 

samples as compared to a reference. This fluorescence is 

assumed to be proportional to the protein being controlled 

by the promoter fusion. OD is a measure of number of cells 

present in the sample. Hence, RFU/OD is a measure of 

protein amounts per unit cell. As shown in Fig. 6A, we note 

that there is considerable variation in the average time of 

activation for the six networks under consideration. In 

addition, for each network, the standard deviation across 

the average of five promoters is different for the six 

networks. 

As shown in the Figure, both these facets are in agreement 

with the computational predictions as shown in Fig. 5. 

In a similar manner, the cost of production of T when the 

system switches from the OFF to the ON state was 

calculated. To calculate the cost, the fluorescence from the 

R reporter and the T reporter were calculated in both ON 

and OFF state. The cost was then calculated as per equation 

3. Again, consistent our simulations, we note that the cost 

for networks A, B, and C was greater than the cost for D, 

E, and F. The average cost values and the standard 

deviation for the five promoters in each of the six networks 

is as reported in Fig. 6B. 

 

Fig. 6. Average time of activation (A) and cost (B) for the 

six network designs. The error bars represent the standard 

deviation across the five promoters in each network group.   

 

4. CONCLUSIONS 

In this work, we hypothesize that the choice of a network to 

accomplish a simple regulatory task (i.e. regulation of a 

target gene T by a regulator R) is based on several 

considerations. These include the range of dynamic 

response, time of response, cost of response, and the 

susceptibility to response in case of a mutation. In addition 

to the factors considered above, additional factors like 

cellular heterogeneity (both transient and steady-state), 

cell-to-cell variability also likely impact the choice of a 

particular network topology in a regulatory network. To 

fully understand the complexity of choice of a network 

design in a regulatory interaction, we speculate that each 

network will have to be studied in conjunction with the 

specific physiological role that it plays. Future 

experimental work in this direction is likely to develop an 

enhanced understanding of evolution of network structures. 
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Appendix A 
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Appendix B 

 

The variables a, b, p, q and c are chosen from the 

uniformly distributed range of [0,100].  

 

The variables a, b, p, q and c  ϵ [0.0005, 25, 50, 75, 100] 

for networks B, C, E, F. 

 

The variables a, b and c  ϵ [0.0005, 7.1405, 14.2805, 

21.4205, 28.5605, 35.7005, 42.8405, 49.9805, 57.1205, 

64.2605, 71.4005, 78.5405, 85.6805, 92.8205, 99.9605] for 

networks A and D. 

 

The parameter values of the variables are based on the 

representative physiological range observed in a number of 

studies conducted with bacterial promoters and 

transcription regulation (Mitrophanov et al., 2008; 

Rosenfeld et al., 2005; Rosenfeld et al., 2007; Sneppen et 

al., 2010; Süel et al., 2006). 
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