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Abstract: A mathematical model has been developed for an enzymatic process with kinetically
controlled synthesis. Model reduction and detailed system analysis have been undertaken to
examine the main properties of this enzyme reaction system. Optimal experimental design
(OED) is developed to obtain the experimental conditions that will generate the most infor-
mative measurement data for parameter estimation. Both single-input and multiple-inputs
optimisation strategies have been investigated to determine the best intensity levels of control
inputs. The results demonstrate that parameter estimation quality can be improved through
proper model-based experimental design.
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1. INTRODUCTION

Parameter estimation is challenging in model develop-
ment for biological and biochemical systems (Voit, 2000)
due to: (1) lack of quantitative measurements of dynamic
response data and the measurement data is often cor-
rupted with noise; (2) the complex nature of these sys-
tems with high-dimensional, nonlinear and poorly un-
derstood dynamics. In general, performing experiments
to obtain rich data is expensive and time-consuming for
such systems. The problem of designing experiments to
generate efficient measurement data is thus of particu-
lar importance. The term ’optimal experimental design
(OED)’ or ’design of optimal experiment’ refers to design-
ing experiments in such a way that the model parameters
can be estimated from the resulting experimental data
with the best possible statistical quality. This is a subject
area of growing interests particularly in systems biology
where huge experimental efforts are required in model
development. Various methodologies have been devel-
oped and successfully applied to a broad range of systems
(Atkinson et al., 2007; Montomery, 2001; Box et al., 2005).
Several comprehensive reviews on OED and its applica-
tions can be found for general systems (Pronzato, 2008;
Chaloner and Verdinelli, 1995) and biochemical systems
(Franceschini and Macchietto, 2008; Kreutz and Timmer,
2009).

In this work, we investigate an enzymatic process, called
kinetically controlled synthesis catalysed by enzymes, in
which the desired product is actually not the thermo-
dynamically most favourable one. Because of the kinetic
parameters of the enzyme reactions used in this type

of systems, the desired product can however accumu-
late to useful concentrations before declining. One im-
portant kinetically controlled enzymatic synthesis, used
industrially, is the manufacture of semi-synthetic peni-
cillins like ampicillin. In such systems it is important
to optimise conditions to obtain the most cost-effective
operation (which often equates to maximal yields of the
desired product). In the enzyme technology field, exper-
imentation is normally empirical, perhaps guided by an
expert′s qualitative knowledge about the system. There
has also been some use of methods like factorial statistical
design, which produce a predicted response surface from
a planned set of experiments. However, such approaches
make no use of prior knowledge about how the sys-
tem may respond dynamically, either from expert under-
standing or the underlying kinetic model. This motivates
our work to develop a mathematical model and conduct
experimental design using model-based OED strategies.

For many biological and biochemical systems, experi-
mental design for parameter estimation can be consid-
ered from two aspects. One is the design of input pertur-
bations (type, level and duration of input signals) (Asprey
and Macchietto, 2002; Banga et al., 2002; Faller et al.,
2003); the other is to determine when and what kind of
observations should be taken such as the optimal sam-
pling design (Asyali, 2010; Derlinden et al., 2013) and
the measurement set selection problem (Yue et al., 2008;
Brown et al., 2008; He et al., 2010). Design factors include
level of initial conditions; which input and output vari-
ables to be taken; what sampling schedule to follow, etc.
For the kinetically controlled synthesis process studied
in this work, input intensity levels are designed for the
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purpose of getting the best estimation of those crucial
parameters that affect the output product most.

The rest of the paper is organised as follows. In Section 2,
preliminaries on parameter estimation, OED, local sen-
sitivity analysis of differential algebraic equation (DAE)
models are briefly introduced. In Section 3, the model
development of the enzyme reaction system is presented
and model reduction is made following the conservative
analysis. Using the established model, OED of single-
input and multiple-inputs is implemented in Section 4,
with conclusions given in Section 5.

2. PRELIMINARIES

2.1 Parameter Estimation and Optimal Experimental Design

Consider a general dynamic system described by the
following nonlinear ordinary differential equation (ODE)
and algebraic output equation

Ẋ(t) = fff (X(t),θ,ω(t)) , X(t0) = X0 (1)

Y(t) = h (X(t),θ) + ξ(t) (2)
X ∈ Rn is the state vector with initial condition X0 and
n the number of state variables. Each component of X is
denoted as xi , which normally stands for molecule con-
centrations in a biochemical reaction network. θ ∈ Rm is
the parameter vector with m the number of parameters.
The component of θ is denoted as kj mostly referring to
kinetic reaction rates. f (·) is a column nonlinear func-
tion for states transition, which is often derived from the
underlying biochemical reaction mechanisms. ω is intro-
duced to represent the experimental design parameters.
Y ∈ Rr is the measurement output vector with r(r ≤ n)
being the number of measurement variables, and h(·) the
measurement function reflecting the use of observables.
The signal ξ is assumed to be independently and iden-
tically distributed (i.i.d.), additive, zero-mean Gaussian
noise. Parameter estimation for system (1)-(2) can be ob-
tained by the least-squares algorithm

θ̂ = argmin
θ∈Θ

ψ∑
l=1

(
Y(tl)− Ŷ(θ̂, tl)

)T
Q−1

(
Y(tl)− Ŷ(θ̂, tl)

)
(3)

where Y and Ŷ are the measurement output and the
model prediction output, respectively. Q is the measure-
ment error covariance matrix, the subscript l denotes
sampling time index, ψ is the total number of sampling
points in the dimension of time.

In the scheme of least-squares estimation, the Fisher
information matrix (FIM) quantifies the information
content of the measurement data. Under the assump-
tion that the measurement noises are i.i.d., zero-mean
Gaussian processes, the FIM is a nonlinear function of
the estimated parameters for model (1)-(2) that can be
formulated by local sensitivity matrix. Denoting X =
[x1,x2, · · · ,xn]T , θ = [k1, k2, · · · , km]T , the local sensitivity
matrix is described as

S(t) = ∂X(t)/∂θ =
[
sij (t)

]
n×m

, sij (t) = ∂xi(t)/∂kj (4)

The FIM is represented as a function of the local sensitiv-
ity matrix:

FIM(θ,ω) =
ψ∑
l=1

ST (tl ,θ,ω)Q−1S(tl ,θ,ω). (5)

Following the previous noise assumptions, an OED prob-
lem can be written as a general optimisation problem

ω∗ = argmax
ω∈Ω
Φ (FIM(θ,ω)) . (6)

Ω is the space for the design parameter vector ω, Φ(·)
is a function that reflects the design target. In many OED
problems, Φ(·) is taken from the widely used alphabetical
experimental design criteria that are scalar functions of
FIM, such as:–

• A-optimal, maximising trace(FIM);
• D-optimal, maximising det(FIM);
• E-optimal, minimising λmax(FIM−1), etc.

Here trace(·), det(·) and λmax(·) denote trace, determi-
nant and the maximum eigenvalue of a matrix. These
alphabetical criteria are related to the size and shape of
the confidence hyper-ellipsoid for estimated parameters,
and will give different experimental design results when
choosing different criteria. The design using any of these
three scalarisation criteria turns out to be a convex opti-
misation problem when the FIM is an appropriate func-
tion of the experimental design parameters (Boyd and
Vandenberghe, 2004).

2.2 Sensitivity Calculation for DAE Models

Differentiation of the sensitivity matrix (4) with respect to
θ yields the following sensitivity differential equations:

Ṡ(t) = J(t)S(t) +F(t), S(t0) = S0 (7)
where J = ∂fff /∂X is the Jacobian matrix, F = ∂fff /∂θ is the
parameter Jacobian matrix. The sensitivity matrix S can
be calculated by solving (1) and (7) simultaneously which
involves n× (m+1)-dimension ODEs. The initial values of
S0 are typically zeros unless the system initial conditions
depend on the model parameters. This method is called
direct differential method (DDM) (Varma et al., 1999).

It is common that conservation laws exist in biological
and biochemical networks. For such a system, if all the
ODEs are included in the sensitivity calculation without
separating the independent state variables from the de-
pendent ones, the Jacobian matrix J will be singular and
cause troubles in numerical computation. To avoid this
problem, the components of the state vector X are divided
into independent dynamic state variables and dependent
algebraic (state) variables. Rewrite the system ODEs in
the form of DAEs:{

ẋxxs(t) = fff s(xxxs(t),xxxa(t),θ)
0 = fff a(xxxs(t),xxxa(t),θ)

(8)

in which xxxs ∈ Rns is the independent state vector and
xxxa ∈ Rna the dependent state vector, obviously, ns + na =
n, i.e., xxx = [ xxxT

s xxx
T
a ]T. fff s is the column vector function

corresponding to the independent state time derivative
and fff a is the column vector function that describes the
conservation laws. If ∂fff a/∂xxxa is not singular, then the
algebraic constraint manifold is regular and there is a
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locally defined function, xxxa = ggg(xxxs,θ), which leads to
fff a(xxxs,ggg(xxxs,θ)) = 0. Then the system described by dif-
ferential equations may be locally expressed by ẋxxs =
fff s(xxxs,ggg(xxxs,θ),θ). The Jacobian matrix is accordingly rep-
resented as:

Js =
∂fff s
∂xxxs
−
∂fff s
∂xxxa

[
∂fff a
∂xxxa

]−1 ∂fff a
∂xxxs

(9)

and the parameter Jacobian matrix is

Fs =
∂fff s
∂θ
−
∂fff s
∂xxxa

[
∂fff a
∂xxxa

]−1 ∂fff a
∂θ

(10)

With this reformulation, the Jacobian matrix Js will not
be singular and the sensitivity matrix can be calculated
using the DDM algorithm.

3. MODEL DEVELOPMENT OF THE ENZYME
REACTION SYSTEM

3.1 System Description and Modelling

In this work, an enzyme reaction system as illustrated in
Fig. 1 is studied. In this system, S is the donor substrate, P
is the leaving group product, N denotes the nucleophile,
Q is the desired product, R is the hydrolysis by-product;
W stands for water whose quantity is taken as constant
due to its large amount; E, ES, E*, EQ and ER are different
forms of enzymes in the reaction system. Among these
components, Q, S, P, N and R are measurable in experi-
ments. It’s difficult to measure different forms of enzymes
since their concentrations are very low. We identify the
initial concentrations of S, N and E as user-controllable
inputs written as S0,N0 and E0, respectively. A number of
the complications such as enzyme inactivation, reactant
instability, effects of pH and temperatures, etc., have been
removed in this exemplar system to simplify the model.

Fig. 1. Exemplar kinetically controlled synthesis system

A number of important enzymatic processes are believed
to follow this reaction scheme, or a closely related one.
They are known as kinetically controlled reactions, in
that the desired product (here Q) is not the thermody-
namically most favourable one (here R) which would pre-
dominate at long times. The chemical reactions can be
written into the following 6 groups.

v1 : E + S
k1−−−⇀↽−−−
k−1

ES

v2 : ES
k2−−−⇀↽−−−
k−2

P +E∗

v3 : N +E∗
k3−−−⇀↽−−−
k−3

EQ

v4 : EQ
k4−−−⇀↽−−−
k−4

Q+E

v5 : E∗ +W
k5−−−⇀↽−−−
k−5

ER

v6 : ER
k6−−→ E +R

Based on these reactions, a set of ODEs can be written
following the mass-balance principle (see (A.1)-(A.10)
given in the appendix).

3.2 Conservation Analysis and Model Reduction

Applying linear algebraic calculation to the ODE model
(A.1)-(A.10), the following conservation constraints can
be obtained.

ES + S + P = C1 (11)
EQ+N +Q = C2 (12)

E +ES +EQ+E∗ +ER = C3 (13)
ES +EQ+ S +Q+R+E∗ +ER = C4 (14)

C1, C2, C3 and C4 are constants determined by the initial
conditions of the states. For this system, P, Q, R, ES, E∗,
EQ and ER are zeros at t = 0. Therefore we have

C1 = C4 = S0, C2 =N0, C3 = E0

The four constraints, (11) - (14), derived from the ODE
model, comply with the following conservation laws.

• Conservation of enzyme

E +ES +EQ+E∗ +ER = E0

• Conservation of leaving group moieties

ES + S + P = S0

• Conservation of transferred group, e.g. acyl

ES +EQ+ S +Q+R+E∗ +ER = S0

• Conservation of nucleophile moieties

EQ+N +Q =N0

From the above conservation analysis, the original 10-
ODEs model can be further reduced to 6 ODEs and 4
algebraic equations. There are more than one way to
select the independent states set. The only constraint
here is that E∗ and ER must stay in separate groups.
Considering the pseudo steady-state operation that is
normally taken to handle this type of systems, in which
the dynamics of S, P, N, Q and R are kept in the ODEs,
we choose {E∗,S,P ,N ,Q,R} as the independent variable
set and {ES,EQ,ER,E} as the dependent variable set. This
will bring the following DAE model with 6 ODEs
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dE∗

dt
= −(k5W + k−5)E∗ − k2S + (k−5 − k2)P + (k−5 − k−3)N

−k−3Q − k−5R− k−2E
∗P − k3E

∗N + k2S0

+(k−3 − k−5)N0 (15)
dS
dt

= (−k1E0 + k1S0 − k−1)S − k−1P − k1(S +Q+R)S

+k−1S0 (16)
dP
dt

= −k2(S + P )− k−2E
∗P + k2S0 (17)

dN
dt

= −k−3(N +Q)− k3E
∗N + k−3N0 (18)

dQ
dt

= −k4(N +Q)− k−4(S +Q+R)Q+ k4N0

−k−4(E0 − S0)Q (19)
dR
dt

= k6(−E∗ + P +N −R)− k6N0 (20)

and 4 algebraic equations.

ES = S0 − S − P (21)

EQ =N0 −N −Q (22)

ER = −N0 +N + P −E∗ −R (23)

E = E0 − S0 + S +Q+R (24)
The model represented by (15)-(24) will be used for
system analysis and experimental design.

3.3 Equilibrium Analysis

The steady states of the dynamic system can be obtained
by taking all the ODEs to be zeros, which immediately
brings that
ES(∞) = E∗(∞) = EQ(∞) = ER(∞) = S(∞) =Q(∞) = 0

The non-zero steady states of P , E,N andR are dependent
on the initial conditions via the conservation laws, i.e.
P (∞) = R(∞) = S0, N (∞) =N0, and E(∞) = E0.

The output of major interest is the product Q, which in-
creases at the first stage of the reaction and then decreases
until reaching a zero steady state. The production of Q
is a balance of kinetic and equilibrium effects. The equi-
librium position will always be essentially all R. In the
model reaction scheme the production of R is completely
irreversible, therefore at infinite time all S and Q will be
converted to R. The kinetic constants are such that R is
not produced quickly. In the early stages, E∗ (produced
from E and S through reactions v1 and v2) will react much
more rapidly with N (leading to Q formation through v3
and v4) than with W (leading to R through v5 and v6).
Hence substantial amounts of Q are formed in the early
stages. But after S is depleted, the reversible reactions
leading to Q (via v4) start to go in reverse. Much of the
E∗ accumulated still reacts with N to go back to Q, for no
net change. But the small fraction of E∗ that does react
with W will go on irreversibly to R. Therefore, overall,
there is a slow but continuing conversion of Q, formed
earlier, to R. Fig. 2 demonstrates the concentration time
profiles of S, Q and R. Nominal parameter values (see
table A.1) are used in this simulation and the nominal
initial conditions are set to be E0 = 1.5e − 5, S0 = 0.8 and
N0 = 0.9, respectively.
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Fig. 2. Time profiles for concentrations of Q, R and S

4. SINGLE INPUT AND MULTIPLE INPUTS OPTIMAL
EXPERIMENTAL DESIGN

4.1 Simulation Set-up and Local Sensitivity Analysis

The kinetic reaction rates of this system are given in ta-
ble A.1 in the appendix. The unit used for concentration
is mol · L−1, and for time is second. In this enzymatic
process, the product quality is expected to be maximised
either through increasing the ratio of Q/S0 or reducing
the time to reach its peak value. The state Q is chosen
as the single state variable in formulating FIM in the
following OED simulation. The simulation measurement
noise is an additive term with a ratio of 5% relative level
and 0.001 absolute level to the original amplitude of the
states during the whole process.

The time profiles of the sensitivity coefficients, ∂Q/∂kj (j =
1, · · · ,11), are given in Fig. 3 to indicate the local paramet-
ric effects to Q at each time point in the reaction process.
To further compare the sensitivities quantitatively, a bar
chart is given in Fig. 4, in which the following index
is used to reflect the overall sensitivities along the time
range (ψ is the number of sampling time points).

OSij =
1
ψ

√√√ ψ∑
l=1

(sij (tl))2 (25)

The sensitivity analysis suggests that k2, k−3 and k−5 are
the most sensitive parameters for this system.

4.2 Optimal Experimental Design of Input Intensities

Taking the 3 most sensitive parameters into the estima-
tion scheme, OED algorithms were applied to determine
what are the best values for E0, S0 and N0 to minimise
the parameter estimation errors. The OED was first im-
plemented to each control input individually, and then to
all 3 inputs simultaneously. Following expert advise on
this enzyme reaction system, the design range is set to be:
N0 ∈ [0.01,1],S0 ∈ [0.01,1], and E0 ∈ [1.5e−6,1.5e−4]. For
each input factor, a grid of 100 sampling points is used in
simulation. The optimal values of the initial conditions
calculated by D- and E-optimal design are listed in Ta-
ble 1. The last column in this table is the multiple-inputs
OED results.
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Fig. 4. Time-summation sensitivities using the state Q

To illustrate the design results from the parameter esti-
mation point of view, the 95% confidence interval (CI)
ellipsoids are used for parameter pairs in 2D plots.
The baseline result, i.e. the ellipsoid without OED, is
produced using the nominal initial conditions. For the
single-input OED of N0, the E-optimal design perfor-
mance index is given in Fig. 5, and the CIs for (k−3, k−5)
under D- and E-optimal design are illustrated in Fig. 6.
It can be seen that both D- and E-optimal design reduce
the CIs compared with the case without OED indicating a
smaller upper bound for the parameter estimation errors.
Within this simulation scheme, it turns out that the E-
optimal design of N0 corresponds to the best solution
(smallest CI) among all the results of single input OED.
See Fig. 7 for a comparison.

Table 1. Single-input and multiple-inputs
OED results for E0, S0 and N0

E∗0 S∗0 N ∗0 (E∗0,S
∗
0,N

∗
0)

D-optimal 1.2e − 5 1 0.8 (6e − 6,1,0.21)
E-optimal 1.2e − 5 1 0.15 (4.5e − 6,0.96,0.15)

It is not surprising that the multiple-inputs OED can
achieve an improved result over the single-input OED.
See Fig. 8 for a comparison of CI ellipsoids for (k−3, k−5)
under different OED conditions. It can be seen that the
D- and E-optimal design of multiple-inputs produce the
smallest confidence region, in this case, almost equal
small CIs. It should be noted that the computational cost
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Fig. 5. E-optimal index w.r.t. input level of N0
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of multi-inputs OED is much higher than the single-input
design.
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Fig. 7. CI ellipsoids for (k−3, k−5) at different input levels

5. CONCLUSION AND DISCUSSION

We have presented details on the model development
and system analysis of a kinetically controlled enzymatic
process. Through the local sensitivity analysis, crucial
parameters affecting the output product are identified
and used in OED so as to assess the possible improvement
in parameter estimation quality. Compared with single-
input OED, the multiple-inputs OED stands a better
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chance to reduce the parameter estimation error although
this conclusion is highly dependent on the OED result.

OED of input intensity levels are relatively simple to
implement since the optimisation problem can be eas-
ily solved. Further OED has been carried out for this
system on the measurement selection problem, which is
to determine the best set of measurements to maximise
the parameter estimation quality. An ultimate aim of this
work is to present an OED approach on this sort of sys-
tems, which makes use of the knowledge encapsulated in
the kinetic model. That would involve getting accurate
estimates of those parameters that have large influences
on system behaviour in the region of the optimal condi-
tions, while not wasting experimental effort on much less
sensitive parameters, based on which exploring operation
conditions to achieve the maximum product quality.
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Appendix A. ODE MODEL OF THE ENZYME
REACTION SYSTEM

dE
dt

= −k1 ·E · S + k−1 ·ES + k4 ·EQ − k−4 ·E ·Q

+k6 ·ER (A.1)
dES
dt

= k1 ·E · S − k−1 ·ES − k2 ·ES + k−2 ·E∗ · P (A.2)

dE∗

dt
= k2 ·ES − k−2 ·E∗ · P − k3 ·E∗ ·N + k−3 ·EQ

−k5 ·W ·E∗ + k−5 ·ER (A.3)
dEQ
dt

= k3 ·E∗ ·N − k−3 ·EQ − k4 ·EQ+ k−4 ·E ·Q(A.4)

dER
dt

= k5 ·W ·E∗ − k−5 ·ER− k6 ·ER (A.5)

dS
dt

= −K1 ·E · S + k−1 ·ES (A.6)

dP
dt

= k2 ·ES − k−2 ·E∗ · P (A.7)

dN
dt

= −k3 ·E∗ ·N + k−3 ·EQ (A.8)

dQ
dt

= k4 ·EQ − k−4 ·E ·Q (A.9)

dR
dt

= k6 ·ER (A.10)

Table A.1. Kinetic reaction rate values

Index 1 2 3 4 5 6
Parameter k1 k−1 k2 k−2 k3 k−3

Value 1e5 1e3 100 1e4 5e4 200
Index 7 8 9 10 11

Parameter k4 k−4 k5W k−5 k6
Value 1e3 2e4 5e3 100 500
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