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Abstract: A based neural networks state observer to estimate biomass, substrate and methane in a 
continuous anaerobic reactor is introduced in this paper. The observer is designed from a recurrent high 
order neural network with a hyperbolic tangent as activation function and an extended Kalman filter as 
learning algorithm. The observer structure is validated via simulations and using experimental data 
obtained from an anaerobic continuous stirred tank at lab scale. This prototype is used to treat real 
slaughterhouse wastewater and it is operated in continuous mode. The obtained results show that the 
proposed observer is able to reproduce adequately the biomethane production and the substrate (related to 
chemical oxygen demand) in the methanogenesis stage; besides, methanogenic bacteria are also well 
estimated but some modifications are required in order to reach better results. 
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1. INTRODUCTION 

Wastes generation is directly related to the human activities. 
Most of industrial processes are based on the transformation 
of raw materials producing a large quantity of wastes. If they 
are not well managed, wastes can induce sever damages on 
the ecosystems and on the human health. A particular case is 
slaughterhouses; the animals sacrifice requires a large volume 
of water and produces different kinds of wastes: fat, blood, 
sludge, bones, and wastewater. Nowadays, some wastes are 
used to synthesize other products or reused in some 
applications; but in many cases, a lot of them are directly 
rejected to the ecosystem without an adequate treatment 
process (Mittal, 2006; Arvanitoyannis and Ladas, 2008). 
Concerning the use of water, according with the Food and 
Agriculture Organization (Quiroga Tapias and García de 
Siles, 1994), the processing of cattle and pigs requires 1000 L 
and 450 L of water per animal, respectively; it is considered 
that 95% of the water becomes wastewater and the other 5% 
is evaporated (Signorini, 2007). Then, it is important to 
implement efficient wastewater treatment processes in order 
to avoid environmental risks. 

It is well known that biological processes offer important 
benefits in wastewater treatment. Specifically, anaerobic 
processes are well situated to treat effluents with high organic 
load: the complex organic molecules are progressively 
degraded in four successive stages (hydrolysis, acidogenesis, 
acetogenesis and methanogenesis) into a biogas mainly 
composed of methane and carbon dioxide (McCarty, 1964a, 
1964b; Salminen and Rintala, 2002); then, this biogas can be 
used as an alternative source of energy. Each stage is 
developed by a different bacteria population forming a 
specific product which is used as input for next one. If the 
micro-organisms cannot transform the corresponding 

components, the subsequent stage is inhibited because there 
is not substrate to the bacterial growth; this situation occurs 
typically in hydrolysis and acidogenesis. Besides, the 
methanogenic bacteria have the slowest growth rate and then 
an eventual exceeding of substrate can block methanogenesis 
stage affecting the methane production and the organic 
wastes transformation. For this reason, methanogenesis is 
considered as the limiting step and it requires special 
attention (Parkin and Owen, 1986; Moletta et al., 1986). 
Moreover, this bioprocess is sensitive to variations on the 
operating conditions, such as pH, temperature, overloads, etc.  

Supervision systems are essential tools in order to detect 
eventual dysfunctional behaviours on the process 
development. In this context, some important variables which 
are necessary for supervision and control of anaerobic 
digestion are hard to measure or immeasurable. For example, 
biomass behaviour and chemical oxygen demand (COD) are 
good indicators of the biological activity inside the reactor. 
However, biomass sensors are quite expensive and they are 
not necessarily designed from an automatic control 
perspective, and then, it is difficult to apply those sensors on 
control systems. Besides, COD measurement is done off-line 
from laboratory analysis which requires more than two hours; 
this delay could affect the reactor performances and could 
induce some problems on the process operation, especially in 
the case of overloads or changes on the operating conditions. 
Observers and softsensors are an interesting alternative in 
order to overcome this situation.  

Different observers have been already reported, such as the 
asymptotical observer, proposed by Bastin and Dochain 
(1990), interval observers (Smith, 1996; Gouze, Rapaport and 
Hadj-Zadok, 2000, Alcaraz-Gonzalez et al. (2004)), and other 
approaches (Deza et al., 1993; Chachuat and Bernard, 2005). 
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Some of them are developed focusing on diagnosis and fault 
detection, such as Lardon, Punal and Steyer (2004), 
Wimberger & Verde (2008). Fuzzy algorithms have been also 
considered as alternatives to design observers and controllers 
for bioprocesses (Ascencio, Sbarbaro and Feyo de Azevedo, 
2004, Carlos-Hernandez et al, 2009). Complete knowledge of 
the system model is usually assumed in order to design 
nonlinear state estimators; nevertheless this is not always 
possible. Moreover, in some cases special nonlinear 
transformations are proposed, which are not often robust in 
presence of uncertainties. An interesting approach for 
avoiding the associated problem of model-based state 
observers is the neural networks approach. Neural observers 
require feasible measures and a training algorithm in order to 
learn the process dynamics; in this case, the model 
knowledge is not strictly necessary (Pozniak et al., 2001; 
Belmonte-Izquierdo et al., 2010; Gurubel et al., 2011).  

In this paper, a Recurrent High Order Neural Observer 
(RHONO) is proposed in order to estimate biomass, substrate 
and biogas in an anaerobic process for slaughterhouse 
effluents treatment. The observation scheme considers a 
hyperbolic tangent as activation function and an extended 
Kalman filter as learning algorithm. The observer is validated 
in a lab scale process which uses real slaughterhouse 
wastewater and it is operated in continuous mode. An 
important advantage of this observer is the high performance 
and independence of the process model.  

2. MATERIALS AND METHODS 

2.1  Lab scale process description 

The experimental set up considered in this work is based on 
an anaerobic reactor continuously stirred and it is operated in 
continuous mode.  Fig. 1 illustrates this process.  

 

Fig. 1. Anaerobic reactor with immobilized bacteria. 

where S, Sin and Sout represent substrate as the reaction 
medium, input substrate and treated medium respectively; X 
is the biomass, Qin the input flow rate, Qout the output flow 
rate and CH4 and CO2 are methane and carbon dioxide. 

The volume of the glass reactor is 7 L and the prototype is 
equipped with sensors of pH, Temperature, revolutions per 
minute and volume level; the measurements of these 
parameters are collected by a data acquisition system. In 
addition, the produced biogas is measured by liquid 

displacement in a graduated column and the biogas 
composition is analyzed by gas chromatography. The reactor 
is stirred at 150 rpm in order to allow the reaction volume to 
be homogeneous and to keep bacteria fixed on the solid 
support. The input and output flow rates are controlled by 
independent pumps in order to guarantee the same flow rate 
in the influent and the effluent, and then a constant volume 
inside the reactor.  

It is worth to mention that, anaerobic bacteria are fixed in a 
natural zeolite since previous results show the potential of 
this material to be used as support for anaerobic bacteria 
(Diaz-Jimenez et al., 2008). 

2.2  Experimental methodology  

The experiments were performed in two operating modes: 
batch and continuous. On batch mode, input and output flow 
rates are equal to zero; bacteria and substrate stay inside the 
reactor without external manipulation; the experiment is over 
when most of the substrate is transformed and no more 
biogas production is detected. In this work, the batch 
experiments are used for biomass adaptation to the substrate 
and are performed as follows: 4.5 L of wastewater and 500 
mL of zeolite colonized by anaerobic bacteria are filled in the 
reactor at T=37°C. The wastewater is used directly from the 
slaughterhouse without dilution, then, the COD is ranged 
between 4500 to 9000 mg/L depending on the slaughterhouse 
operating conditions. If pH is very acid (around 5), it is 
adjusted around 7 adding a solution of sodium bicarbonate; if 
pH is alkaline no regulation is done. Batch tests are 
developed in 10-15 days duration according with the COD 
removing and biogas production. Concerning the continuous 
mode, the volume inside the reactor is constant; then the 
input and output flow rates are equal and the influents are 
treated continuously. Besides, the operating conditions can be 
modified (the substrate pH, the COD, the input flow rate) if 
required. The continuous mode is considered in this study to 
validate the proposed neural observer. The experiments are 
performed as follows: first, a batch experiment is performed 
in order to reach the steady state; at the end of this batch 
experiment the initial conditions for a continuous experiment 
are reached. After that, the input and output flow rates are 
activated. Considering the reaction volume, a low flow rate is 
selected in continuous operation: Qin=Qout=0.4 L/h. At the 
beginning of continuous regime, it is recommended to 
supervise carefully the biological activity through pH and 
biogas production; the acidity could increase due to the input 
substrate and to the production of acids on acidogenesis 
stage; after that the biological activity leads to steady state 
because of the bacteria adaptation to the operating conditions. 
At this moment, the input COD can be modified.   

2.3  Neural observer structure 

The use of multilayer neural networks is well known for 
pattern recognition and for modelling of static systems; the 
NN is usually trained to learn an input-output mapping. For 
control tasks such as state observers design, some extensions 
of the first order Hopfield model have been proposed in order 
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to include more interactions among the neurons. An example 
of these extensions is the so called Recurrent High Order 
Neural Networks (RHONN). The RHONN are very flexible 
and allows incorporating into the neural model priory 
information about the system structure. Besides, discrete-time 
neural networks are better fitted for real-time 
implementations (Gurubel et al., 2011).  

Let consider a discretized nonlinear system represented by: 
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where k is a real number representing a time sample, x ∈ Rn is 
the state vector of the system, u ∈ Rm is the input vector, y ∈ 
Rp is the output vector, h(xk) is a nonlinear function of the 
system states, dk ∈ Rn is a disturbance vector, F(•) is a smooth 
vector field; hence, the components of (1) can expressed as:  
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A neural observer for previous system can be implemented 
having the form of equations (3): 
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with gi ∈ Rp a like-Luenberger observer gain, ui the external 
input vector to the NN and zi a function of states and inputs to 
each neuron (Sanchez et al., 2008): 
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The extended Kalman Filter is used as training algorithm; the 
main objective is to update on-line the weight vectors wi. 
This algorithm is resumed below and more details can be 
found in (Sanchez et al., 2008): 
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where ei,k ϵ RP is the observation error, Pi,k ϵ RLixLi is the 
prediction error covariance matrix at step k, wi,k ϵ R

Li is the 
weight (state) vector, Li  is the respective number of neural  
network  weights, y ϵ RP is  the  plant  output, y is the NN 

output, ηi is the   learning   rate, Ki,k ϵ RLixP is the Kalman  
gain  matrix, Qi,k ϵ R

LixLi is  the  NN  weight estimation noise 
covariance matrix,  Ri,k ϵ R

PxP is the error noise covariance, 
and Hi,k ϵ R

LixP is the matrix for which each entry (Hij)  is the 
derivative of the i-th neural output with respect to ij-th NN 
weight, (wij). Where i =1,..., n and j =1,…, Li . 

The structure of the proposed neural observer scheme is 
shown in Fig. 2. 

 

Fig. 2. Structure of the neural observer. 

where the inputs (u) are dilution rate, input substrate and 
input inorganic carbon; the outputs (y) are methane and 
carbon dioxide. The states to be estimated are biomass, 
substrate and inorganic carbon.  

3. OBSERVER DEVELOPMENT 

3.1  Design 

The mathematical representation of the neural observer is 
introduced by equations (7). It is based on the structure of a 
general model of anaerobic processes; linear, quadratic and 
more complex terms can be used in order to allow the NN to 
learn the different dynamics of each variable. In this case, 
three variables are considered in this work: methanogenic 
biomass, COD (represented by S) and Inorganic carbon. 
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Depending on the NN application, the activation function, 
ζ(•), can be chosen from different alternatives, e.g. threshold, 
piecewise-linear, sigmoid (logistic function, hyperbolic 
tangent function), radial base. As shown in (8), in this work, 
the hyperbolic tangent is used since the antisimetric functions 
allow the neural network to learn the process dynamic faster 
than other activation functions (Sanchez et al., 2008). 
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The process outputs are given by the gaseous phase of 
anaerobic digestion. Methane and carbon dioxide are 
considered as in equations (9): 
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where γ1 and γ2 are production yields, which are determined 
from experimental data. Besides, fCH4 and fCO2 are functions 
describing the production of biogas, their structure is based 
on the traditional anaerobic processes. 

3.2  Tuning guidelines  

Tuning of the observer parameters could be difficult; some 
basic guidelines are provided in this section; more details can 
be found in (Sanchez et al., 2008; Belmonte-Izquierdo et al., 
2010):  

a). The covariance matrices for the EKF are initialized as 
diagonal matrices, they should verify the next condition: 

)0()0()0( iii QRP >>       (10)   

It implies that a priori knowledge is not required to initialize 
the vector weights. In fact, higher entries in Pi(0) correspond 
to a higher uncertainty in the a priori knowledge. It is 
advisable to set Pi(0) inside the range 100-1000, and so on for 
the other covariance matrices on (10). The variation of those 
matrices has an effect on the efficiency to learn different 
dynamics of the process. For the observer described in this 
paper, the matrices are initialized as follows: 
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An arbitrary scaling can be applied to Pi(0), Ri(0), and Qi(0) 
without altering the evolution of the weight vector.  

b). Since the neural network outputs do not depend directly 
on the weight vector, the matrix H is initialized as Hi(0)=0.  

c). It is assumed that weights values are initialized to small 
random values with zero mean value and normal distribution.  

d). The learning rate determines the magnitude of the 
correction term applied to each neuron weight; it usually 
requires small values to achieve good training performance. 
Then, it is bounded as 0 < η < 1.  

e). The observer gain (g) is set by trial and error. It is 
bounded as 0 < L < 1 for a good performance on the basis of 
training experience. 

f). Coefficients α and β in equations (8) are obtained from 
simulations. These coefficients have an influence on the 
respective variable estimation; then it is important to find a 
compromise concerning the estimation of all the considered 
variables. The set of values which provide the better results 
were: 1321 === ααα  and 110;1 321 === βββ .  

4. RESULTS 

First, a series of simulations is developed in order to evaluate 
the observer performances; a model previously validated has 

been used as reference data (Belmonte-Izquierdo et al., 
2010). The obtained results are shown in Fig. 3 to Fig. 5. The 
observer has been initialized randomly in order to test the 
observer convergence, which is illustrated at the beginning of 
the simulation: the estimated state reach the model one in few 
minutes. After the convergence, the estimation is done with 
high quality; the error estimation is negligible for the three 
variables. In addition, a variation on the input substrate is 
simulated: an increase of 100% of the initial condition is 
considered from t = 300 h to t = 600h. The three variables are 
well estimated despite this change on the operating 
conditions, which means the observer is able to follow the 
process dynamics in face of input disturbances.   
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Fig 3. Biomass estimation. 
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Fig. 4. Substrate estimation.  
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Fig. 5. Inorganic Carbon estimation. 

After that, the observer is tested using experimental data. The 
input substrate is equivalent to the measured COD in the 
effluent provided by the slaughterhouse; as said before, the 
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samples are used directly without any additional 
modification. The input flow rate was Qin = 0.45 L/h. The 
input substrate considered in the experiment is presented in 
Fig. 6. 
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Fig. 6. Input substrate 

The biomass estimation is presented in Fig. 7. As can be 
remarked, the observer has some problems to recover the 
biomass behaviour. A possible reason is that the training data 
do not contain the complete dynamics of bacteria; also, the 
structure of the neural observer is simple and maybe it is 
required to add some other neurons, especially for the section 
concerning biomass; for example, it is likely necessary to 
include a relationship between methane and biomass since 
the presented structure does not consider it.  
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Fig 7. Real biomass estimation 
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Fig. 8. Real substrate estimation 
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Fig. 9. Real inorganic carbon estimation 

On the other side, substrate and inorganic carbon are well 
estimated by the neural observer as can be seen in Fig. 8 and 
Fig. 9, respectively. At the beginning of the experimentation, 
the convergence is illustrated: the observer is initialized 
randomly and after 10 h, approximately, it meets the real 
variable. After the convergence, the estimation is done almost 
perfectly for the substrate and with a small estimation error 
for the inorganic carbon. The dynamics of inorganic carbon is 
faster than the substrate, it is a possible reason of the 
estimation error; as for the biomass, other neurons should be 
added to the neural structure in order to improve the 
estimation of this variable. Besides, the use of variable 
parameters and a self-tuning methodology could allow the 
neural network to better adapt their learning capability of 
complex dynamics and then to improve the estimation.    
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Fig. 10. Real methane estimation 

Concerning the methane estimation, the results are presented 
in Fig. 10. After the convergence, the estimation is done with 
a negligible error; this is an expected situation since the 
measures of methane are used for the estimation. However, it 
is worth to mention that the estimation is adequate in all the 
experimentation time, even for the cases where no measures 
are provided. This is in an important advantage of the 
observer since methane is a good indicator of the biological 
activity and it is very useful for supervision purposes; the 
existing biomethane sensors are expensive and then the 
neural observer is an interesting alternative. In addition, in 
previous works a similar structure has been tested by using a 
synthetic substrate (Belmonte-Izquierdo et al., 2010); the 
application for more complex substrate, such as the ones 
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from slaughterhouse considered here, proves the flexibility of 
the neural observer related to the kind of substrates.   

5.  CONCLUSIONS 

A neural observer has been proposed in this paper. The main 
objective was to estimate biomass, substrate and biomethane 
in anaerobic process; additionally, estimation of inorganic 
carbon is also included in the structure of the observer. The 
observer is validated via simulations and by experimental 
data obtained from a continuous bioreactor treating real 
slaughterhouse wastewater. The obtained results show a well 
estimation of substrate, inorganic carbon and biomethane. 
Biomass is estimated with errors, but it can be said that the 
behaviour is reproduced qualitatively. The observer structure 
was selected simple in order to reach a compromise between 
complexity for real implementation and estimation quality. 

Current works are in progress in order to improve the 
observer performances, especially for biomass which is an 
important variable in anaerobic processes. The idea is to 
include more neurons in the observer structure, to enhance 
the tuning methodology, and also to use some other data to 
train the neural network. 
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