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Abstract: This contribution explores the use of diagnosis and control modules based on fuzzy set theory and 

logic for bioreactor monitoring and control. With this aim, two independent modules were used jointly to carry out 

first the diagnosis of the state of the system and then use transfer this information to control the reactor. The 

separation in diagnosis and control allowed a more intuitive design of the membership functions and the 

production rules. Hence, the resulting diagnosis-control module is simple to tune, update and maintain while 

providing a good control performance. In particular the diagnosis-control system was designed for a complete 

autotrophic nitrogen removal process. The whole module is evaluated by dynamic simulation. Additionally, the 

diagnosis tool was demonstrated by analysis 100 days of experimental data.   

Keywords: Fuzzy logic; control; diagnosis; biological wastewater treatment; nitrogen removal 



1. INTRODUCTION 

The automatic control of mixed-culture bioreactors is 

challenging given their highly nonlinear behaviour, 

interactive dynamics, model uncertainty and variations in 

the influent (flow rate, composition, temperature, etc…). 

Furthermore, only a few actuators are usually available to 

reject disturbances and maintain a stable operation 

complicated by competing microbial groups. In this 

context, gain-scheduling and model predictive control 

(MPC) schemes can be used to control a wide range of 

operation conditions of a reactor. However, the 

development of such advanced control strategies in 

bioreactors is usually hindered by the low accuracy of 

models describing the microbial metabolism, the long 

simulation times required to solve such models, and by the 

complexity of such controllers (Olsson 2011). In this 

respect, the simplicity of a controller is an important 

characteristic in a bioreactor since it is likely that frequent 

maintenance will be needed as a result of variations in the 

feedstock, seasonal conditions and even because of 

microbial evolution. Hence, a trade-off must be achieved 

between efficient control and monitoring tools on the one 

hand, and simplicity on the other hand in order to ensure 

the success of the control scheme. 

Fuzzy decision methods have been used for diagnosis of 

performance since it is a means to formalise the knowledge 

accumulated by the process operators (Honda, Kobayashi 

2000) and it is adapted to the use of expert knowledge and 

quantitative models. For instance, Comas et al. (2008) 

developed a fuzzy diagnosis method to establish the risk for 

occurrence of microbiology related settling problems in 

activated sludge systems. Likewise, fuzzy decision can also 

be used in control of bioprocesses, allowing synthesis of the 

available information from the process and applying it for 

the automatic control of the process (Ruano et al. 2010).  

Complete autotrophic nitrogen removal (CANR) is a 

novel process that can increase the treatment capacity 

(volumetric removal rate) approximately 5 times compared 

to the traditional nitrification-denitrification treatment. This 

process achieves the complete stoichiometric conversion to 

nitrogen gas and a low quantity of nitrate by a combination 

of two processes, which are catalysed by aerobic 

ammonium oxidizers (AOB) and anaerobic ammonium 

oxidizers (AnAOB). The conversion performance can be 

compromised by competition by nitrite oxidizing bacteria 

(NOB) and heterotrophic bacteria (HB). Operating the 

system for selection of a desired microbial community 

composition and maintaining stable process performance 

can therefore be a difficult task. Actually, controllers 

depending on set point values for dissolved oxygen (DO), 

oxygen reduction potential (ORP), nitrogen species and pH 

alone may not be enough to deduce whether microbial 

community activities are balanced and performance is 

stable (Vangsgaard et al. 2012).  

In the case of CANR, as in many other bioreactors, the 

coexistence of several kinds of microbial groups makes the 

design of a controller particularly challenging. For instance, 

an increase in aeration may be the convenient response to 

an increase in the ammonium load, but it can create 

problems if the NOB are not supressed. Hence, any control 

action must arise from a previous diagnosis of the state of 

the process and the microbial community. With this aim, 

fuzzy diagnosis and control have been previously combined 

in anaerobic digesters (Puñal et al. 2001, Puñal et al. 2003) 

and it is configured similarly to a state controller with a 

filter for state estimation. 

The aim of this work is to design a fuzzy diagnosis and 

control tool for a single-stage autotrophic nitrogen removal 

process. The diagnosis of the process is based on 

stoichiometric ratios of formed or produced nitrogen 
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species as previously used by (Pellicer-Nàcher et al. 2010, 

Mutlu et al. 2013). The controller acts subsequently given 

the diagnosis of the process and modifies the aeration and 

volume exchange ratio (ER). The performance of the fuzzy 

logic based diagnosis and control system is evaluated with a 

dynamic simulation.  

 

2. MODELLING AND METHODS 

2.1 Reactor description and modelling.  

The modelled system mimics a lab-scale reactor 

containing granular sludge performing CANR. The reactor 

has a cylindrical geometry and a volume of 4 L. The 

operating temperature was 30 °C and pH was 

approximately 7.5. The cycles comprised an anoxic feeding 

phase (10 min), a reaction phase with alternating 

oxic/anoxic periods, a settling phase (6 min), a decanting 

phase (10 min), and an anoxic idle phase (10 min). The 

reaction phase lasted 444 min and the total cycle time was 8 

h. Air was supplied intermittently. 

The model of the reactor is described in detail elsewhere 

(Vangsgaard et al. 2012) and just briefly mentioned here. It 

consists of two compartments: a one-dimensional multi-

species biofilm model to describe the granules and a 

perfectly mixed domain to account for the bulk of the 

reactor. The model contains 13 state variables, in the form 

of 6 soluble compounds, 6 particulate compounds and the 

size of the granules. The transport of soluble species (Si) is 

governed by diffusion and of particulate compounds (Xi) by 

advection within the granule (1-2). The individual mass 

balance in the bulk of the reactor (3) is an ODE which 

includes the in- and outflow, the reaction in the bulk and 

the transfer with the granules.  
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where Ri is the net reaction of each compound, r is the 

radial direction in spherical coordinates, Q is the flowrate in 

and out of the reactor, V is the volume of the reactor, Di,bio 

is the diffusivity inside the granules and uF is the net 

advective velocity (4). The calculation of uF at each space 

node k is done by integrating the growth of all the microbial 

groups in the volume comprised between 0 and k (5). 
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where L is the granule radius, rmax is the maximum 

granule radius, is the molar density of the biofilm and uD 

is the detachment velocity. 

The system of thirteen partial differential equations 

(PDEs) has been solved by the method of lines, i.e. 

discretization of the space and numerical approximation of 

the space derivatives by finite differences, in order to obtain 

a system of ordinary differential equations (ODEs). 

Different numbers of discretization layers were tested and a 

number of 100 was found to be sufficient. The model was 

implemented and solved in MATLAB R2013a (The 

MathWorks, Natick, MA). 

2.2 Decision tree for diagnosis.   

In a previous study, appropriate metrics, related to ratios 

of consumption and production of several nitrogen species, 

have been formulated based on reaction stoichiometry and 

process knowledge (Mutlu et al. 2013). These are: 
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Total nitrogen removal (∆TN), is the difference between 

the sum of all nitrogen species at the end and at the 

beginning of each cycle, and similarly also defined for the 

individual N species. ∆TN is equivalent to the sum of N2-N 

and biomass-N produced. ∆NO2- is expected to be zero, 

unless there is a limitation somewhere in the overall 

process. In the decision tree, ∆TN=0 is the situation without 

AnAOB activity. In this case reactors should be 

reinoculated or bioaugmented. 

 

Fig. 1. Decision tree developed for diagnosis of SBRs 

performing single-stage CANR (from (Mutlu et al. 2013)) 
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RAmsmTot is ammonium consumed per total nitrogen 

removed and forms a measure of the relative activity of 

microbial groups present in the system, i.e. the AnAOB 

versus AOB and NOB activity. RNitAmm is nitrite produced 

over ammonium consumed. Unless zero, as in balanced 

cases, it measures prevalence of AOB activity over AnAOB 

and/or NOB. RNatTot is the nitrate produced per total N 

removed and it is a measure of AnAOB versus NOB 

activity. Finally, a ratio of effluent nitrite over effluent 

ammonium concentration (RNitAmm,ef) is introduced, which 

is a measure of the substrate composition at the end of an 

SBR cycle. 

In the decision tree in Fig.1, the optimal performance is 

the case where balanced nitritation-anammox is inferred 

and more than 80% ammonium removal is observed (rule 

1). If the removal efficiency is not sufficient, yet RAmmTot is 

within the target range, the system is limited by nitrite 

production (rule 2). If the system moves away from 

balanced CANR, nitrite or nitrate accumulates. If these 

accumulations are still relatively small, within the 

allowable ranges, the AOB activity is still limiting (rule 3). 

If nitrate accumulates to more than the allowed levels, then 

nitratation is prevailing in the system  (rule 6). When NOB 

activity is within allowable limits, the system is 

experiencing nitrite accumulation, which can be due to low 

AnAOB activity (rule 4) or to too high nitritation (rule 5). 

2.3 Fuzzy diagnosis.  

Given sensor readings from the current and the previous 

cycle, the goal of the fuzzy-logic diagnosis is to determine 

the state of the system with respect to the removal of 

nitrogen, the production of nitrate and the imbalances in the 

microbial community. The diagnosis developed in this 

work consists of the following steps: 

Data collection and calculation of input values. Here, the 

raw data in the form of influent and effluent concentrations 

are collected and the above-mentioned ratios (6-10) are 

calculated.  

Fuzzification. The trajectories of the input values are 

converted to linguistic variables/qualitative descriptors by 

means of membership functions (MFs). These MFs are 

created based on previous stoichiometric analysis (Mutlu et 

al. 2013), prior experience, and expert knowledge. The 

output variables are the following phenomena: i) 

Autotrophic Nitrogen Removal, (ANR) ii) Nitritation, iii) 

AnAOB Limitation and iv) Nitratation. All MFs for inputs 

and outputs are triangular or trapezoidal. 

Scaling and centring of variables. In order to use 

comparable MFs the inputs were centred and scaled 

resulting in a universe of discourse equal to [-1,1] for 

RAmmTot, RNitAmm, RNitAmmEff, RNatTot. For REff the universe of 

discourse was equal to [0,1] to keep the meaning of this 

input (efficiency in ammonium removal). The inputs were 

centred by subtraction of the cut-off value in the decision 

tree and scaled by the range of values encountered in an 

experimental campaign of three months or by the maximum 

theoretical span. 

Fuzzy inference engine. The degree of certainty of the 

linguistic output variables is generated through a set of 30 

IF-THEN rules (Table 2-5) constructed from the decision 

tree following the Mamdani fuzzy inference method (max 

aggregation/min implication). All the rules have the same 

weight.  

It must be highlighted that the core of a fuzzy inference 

system is the production rules (Kovacic 2005). Therefore, 

although fine tuning of the controller response would be 

possible changing the MF boundaries, it is essential that the 

rules gather all the information available about the system 

and are self-consistent. 

Tables 2-5. Production rules for diagnosis. The output 

variables are indicated in bold italic font. 

AZ=Approximately zero; F = Fair; H = High; L = Low; 

OK=Balanced; N=No; VH =Very high; VL= Very low; 

Y=Yes; 

2.Output Autotrophic Nitrogen Removal (ANR) 

↓REff /RAmmTot 

→ 

L H VH 

H VH H L 

F F F L 

L L L L 

3. Output Nitritation 

IF [RAmmTot not Low] AND [RNatTol = Low] AND 

↓RNitAmm,ef /RNitAmm → V

L 

L H V

H 

L V

L 

L O

K 

O

K 

H V

L 

L H V

H 

IF [RAmmTot =Low] AND  

↓RAmmTot / REff → H F L 

L O

K 

L V

L 

4. Output AnAOB Limitation 

IF [RAmmTot not Low] AND [RNatTol = Low] AND 

↓RNitAmm,ef /RNitAmm → V

L 

L H V

H 

L N N Y Y 

H N N N N 

IF [RAmmTot is Low] OR [RNatTol not Low], THEN 

[AnAOB Limitation = N] 

5. Output Nitratation 

↓RNatTot 

/RAmmTot → 

L H V

H 

L AZ AZ A

Z 

H AZ L H 

VH AZ H V

H 
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Defuzzification. Here the output variables are translated 

into a numerical value by means of the output MFs and the 

centre of gravity method. The result is used for diagnosis 

for the operators of the process and as an input to the fuzzy 

controller. 

2.4. Fuzzy Controller 

The combination of the fuzzy diagnosis and control has 

been successfully reported for anaerobic digestion (Puñal et 

al. 2001, Garcia et al. 2007) and it is configured similarly to 

a state controller with a filter for state estimation. 

Definition of controller objectives, degrees of freedom 

and controlled variables. The objective of the controller is 

to achieve high and stable complete autotrophic nitrogen 

removal. This objective can be split into two controlled 

variables: a high nitrogen removal and a balanced microbial 

community. Four potential degrees of freedom 

(manipulated variables - MVs) were identified in the 

system: mixer, heating jacket, air supply and exchange ratio 

(or equivalently the hydraulic retention time, given that the 

cycle time is constant). The heating jacket is assumed to 

perfectly control the temperature. Since the effect of mixing 

is not completely established, the mixer was not considered 

a suitable actuator. Therefore, the only available actuators 

for control are the exchange ratio (ER) and the air supply 

rate. For simplicity, the air supply was represented by the 

oxygen mass transfer coefficient, kLa, in the model. 

The resulting diagnosis-control block results in a 

multivariable controller with two manipulated variables 

(MVs). The value of each of the MVs depend on three 

inputs from the diagnosis module (kLa does not depend on 

AnAOB limitation and ER does not depend on nitritation, 

tables 6-7 ). It can be inferred from the rules that the action 

on kLa is aimed at modifying the removal performance 

whereas the action on ER is aimed at modifying the 

microbial community composition. 

 

Fig. 2. Structure of the control and diagnosis fuzzy 

modules and information flow 

Scaling and centring of variables. Since all the inputs are 

provided from the diagnosis module with universe of 

discourse [-1, 1] (Nitritation and AnAOB Limitation) or 

[0,1] (ANR and Nitratation), no centring or scaling is 

needed. The outputs from the fuzzy controller have a 

universe of discourse [-1,1] and are unscaled by 

multiplication with their corresponding nominal value, i.e. 

the design values of kLa and ER. 

Fuzzification. The inputs to the controller are provided 

from the diagnosis block in fuzzified form. The outputs 

from the fuzzy controller, corresponding to the inputs to the 

reactor, are the variations to the nominal value of the 

manipulated variables. 

Fuzzy inference engine. A set of 16 IF-THEN rules (tables 

6-7), following the Mamdani fuzzy inference method (max 

aggregation/min implication), forms the inference engine. 

All the diagnosis inputs have an impact on the variation of 

kLa. As for ER, it can affect  the washout of NOB when 

nitratation takes place. When the process is limited by 

AnAOB, ER increases the retention in order to ensure that 

the AnAOB are not washed out despite their low growth 

rate. All the rules have the same weight. 

 

Tables 6-7. Production rules between the linguistic 

input and output variables for the control module. The 

output linguistic variables indicate the variation to the 

nominal value of the MV (in bold italic font). N = Negative, 

NL = Negative Large, P =  Positive, PL = Positive Large, Z 

= Zero. 

6. Output Variation of Aeration (kLa) 

↓Nitritation/ANR 

→ 

V

H 

H F L 

VL Z Z PL P

L 

L Z Z P P 

M Z Z Z Z 

H Z Z N N 

VH Z Z N

L 

N

L 

     

↓Nitratation/AN

R → 

VH H F L 

AZ Z Z Z Z 

L N N N N 

H N NL N
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VH NL NL N
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7. Output Variation of Exchange Ratio (ER) 

↓Nitratation/AN

R → 

VH H F L 

AZ Z Z Z Z 

L Z Z Z Z 

H P P P P 

VH P P P P 

     

↓AnAOB 

Limitation/ANR → 

V
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H F L 

N Z Z Z Z 

Y Z Z N N 
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Defuzzification. The crisp values of the controller outputs 

are obtained by the centre of gravity method. As their 

universe of discourse is [-1, 1], the crisp value is unscaled 

multiplying with the corresponding nominal values. Finally 

the result is added to the nominal value to obtain the current 

controller output, as described by (11-12)      

                          (11) 

                      

 (12) 

where Si is the scaling factor, Ci is the crisp value of the 

fuzzy output and subindex 0 denotes the nominal value. 

 

3. EVALUATION OF DIAGNOSIS TOOL 

The diagnosis tool was first tested assessing real data 

from the aforementioned lab-scale reactor during 100 days. 

This assessment was done a posteriori and did not influence 

the policy followed by the operator, hence open loop 

analysis.  

The diagnosis results for the four outputs (Fig. 3) show 

the following evolution of the reactor: at the beginning the 

autotrophic nitrogen removal (ANR) is limited by the 

AnAOB metabolism and by too much nitratation. As 

nitritation becomes lower due to a decrease in the oxygen 

supply, the process is no longer limited by AnAOB and 

nitratation becomes less significant. However, since 

nitritation becomes then too low (after day 50), the ANR is 

still not satisfactory. As nitritation is recovered slowly, the 

ANR also increases but barely reaches the high level.  

 

Fig. 3. Results of the diagnosis tool for 100 days of 

experimental operation data of the SBR as described in 2.1. 

 

4. EVALUATION OF THE DIAGNOSIS-CONTROL 

MODULE 

The diagnosis-control module was evaluated by dynamic 

simulation of 7 days operation with a step input disturbance 

(at t = 4 days the ammonium concentration of the influent 

was increased by 10%). The initial conditions were taken 

from a steady state solution of an equivalent continuous 

reactor. 

The diagnosis results (Fig. 4) show that the system is 

stabilised in approx. 4 cycles, with a decrease in nitratation 

and an increase in nitritation. The increase in ammonium 

concentration in the influent at t = 4 days is not reflected in 

the diagnosis because the aeration is sufficient to cope with 

the increase in ammonium load.  

  

Fig. 4. Simulation test: Diagnosis of 7 days of dynamic 

operation under step disturbance in influent ammonium 

load. 

Concerning the controller performance, Fig. 5 shows the 

nitrogen removal both in terms of N2 produced and 

percentage of nitrogen removed, defined as the ratio 

between the N2 produced and the nitrogen load in the 

influent (in this case in the form of ammonium). It can be 

seen that the controller is able first to stabilise the 

percentage of nitrogen removed increasing it from about 85 

% to about 95% after two days. At t = 4 days the decrease 

in the percentage of nitrogen removed reflects the increase 

of the influent load but indeed not in the N2 concentration. 

As it can be seen, the percentage of nitrogen removed is 

recovered in 1.5 days to reach again 95% 

 

Fig. 5. Concentration of N2 produced (left axis) and 

percentage of nitrogen removed (right axis) during 7 days 

of simulated dynamic operation. On day 4, a step 

disturbance in influent ammonium load is introduced (see 

text). 
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5. CONCLUSIONS AND PERSPECTIVES 

It was demonstrated that diagnosis and control of a 

granular bioreactor can be suitably achieved by the fuzzy-

logic method. The advantages are the simplicity of the 

control structure in comparison with the complexity of the 

microbial ecology of the reactor, and the possibility to bring 

together quantitative, qualitative and even expert 

knowledge. As aforementioned, it is essential that this 

information is properly represented in the production rules 

which represent the core of the fuzzy inference system. 

Using online measurement of the nitrogen species in the 

reactor, the diagnosis of the system is carried out first and 

this information is passed on to the controller that decides 

on the appropriate action to be taken. The separation of 

diagnosis and control was an efficient way to implement the 

tool and followed the intuition of the operators of the 

reactor. As a future perspective, the diagnosis-control 

module is expected to be implemented in the lab-scale 

reactor in the near future.   
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