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Abstract: This work gives mathematical conditions that guarantee the local stability of the equilibrium
regimen of two classes of cell metabolism. In fact, we have analyzed reversible and irreversible linear
bacterial metabolic pathways that integrate both genetic and enzymatic control. Moreover, due to these
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to the concentration of its end product. These results are proved theoretically using some properties of
the cooperative matrices.
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1. INTRODUCTION

Stability analysis is recognized as an issue of great importance
in order to deduce key properties associated with dynamical
models of biological systems. For example, thanks to the stabil-
ity analysis, we can better understand how the bacteria during
the growth phase adapt the concentration of enzymes to ensure
that the de novo biosynthesis is sufficients to complete or to
fully provide the flux demand for metabolites. Moreover, even
though the metabolic network is a complex system, it can be
broken down into subsystems with particular control structures
which leads bacteria to be able to manage efficiently the control
of its metabolic pathways. So, the goal of this work is to analyze
the local stability of an end-product control structure, shared by
a large number of bacteria and yeasts biosynthesis pathways. In
this structure, both genetic and enzymatic controls involve the
last product as metabolic effector (Tyson and Othmer, 1978),
(Goelzer et al., 2008). In the literature, the stability of bacterial
metabolic pathways that integrate only the allosteric regulation
is well investigated. For instance, one can apply diagonal sta-
bility results for cyclic dynamical systems (Arcak and Sontag,
2006) to prove the global stability of the irreversible pathway.
As well, one can use some result concerning monotone tridi-
agonal systems with negative feedback (Wang et al., 2008),
(Wang et al., 2010) to show the global stability of the reversible
pathways. However, to the best of our knowledge, stability issue
of bacterial metabolic pathways that integrate both genetic and
enzymatic control has not been fully studied. In some previous
work, we have presented some results about global attractivity
of such biological systems (Meslem et al., 2010). Likewise,
recently we have built a Lyapunov function for the irreversible
metabolic pathways (Meslem and Fromion, 2011).

Currently, we attempt to prove the global stability of both
irreversible and reversible linear metabolic pathways, under
nonrestrictive, easy-to-check conditions. To reach this goal,
We will tackle this issue in two stages. The first stage is

devoted to improve and to soften the conditions that ensure the
global attractivity of the unique equilibrium of linear metabolic
pathways given in (Meslem et al., 2010). In the second stage,
we will show the local stability of the globally attractive steady
states. Thus, this work is dedicated to accomplish the second
stage of this proposed methodology. In fact, we will show that
for the type of systems, the local stability of the equilibrum
point is guaranteed if the dynamics of the input flux is more
important than that of the output flux.

This paper is organized as follows. In Section 2, we exhibit
realistic models for reversible and irreversible linear bacterial
metabolic pathways. Of course, these models highlight both
genetic and enzymatic control. The existence and the unicity
of equilibrium regimens of these complex biological systems is
proved in Section 3. Then, the main findings of this paper about
the local stability are stated and proved in section 4.

2. LINEAR METABOLIC PATHWAYS

As aforementioned in the introduction, here we will study the
same end-product control structures in metabolic pathways
introduced in (Meslem et al., 2010). For this reason, we have
prefered to keep the same statements and definitions as that
given in the previous work with slight modifications.

Let us consider the linear biosynthesis pathways with n metabo-
lites involved in enzymatic reactions with an input flux ν0 and
an output flux νn as depicted in Figure 1.

We assume that the pool X1 of the first metabolite is maintained
by the input flux ν0 which corresponds to a supply flux, hence
its concentration x1 is strictly positive and constant. The output
of the pathway is the flux νn which corresponds to the bac-
terium requirement for the metabolite Xn. In fact, if the cell
requires large amounts of Xn, the value of νn will be high
and if small amounts of Xn are required the value of νn will
be low. Furthermore, as has been experimentally observed and

Preprints of the 12th IFAC Symposium on Computer Applications in Biotechnology
The International Federation of Automatic Control
16-18, 2013, December. Mumbai, India

Copyright © 2013 IFAC 296



Allosteric and genetic controls 

Enzymatic reactions 

1X 2X
3X

1n
X

− n
X

1E
2E

1n−

E
n

E0E

0
v

n
v

Fig. 1. Linear end-product control structure. Xi (i = 1, . . . ,n)
represent the metabolic pools and Ei (i = 1, . . . ,n) repre-
sent the enzymes that acting in the pathway.

theoretically rationalized (Goelzer et al., 2008), the end product
Xn inhibits the first reaction via two control levels: (i) regulation
of enzymatic activity and (ii) regulation of enzyme synthesis,
herein referred as allosteric control and genetic control respec-
tively. Henceforward, for each i ∈ {2, . . . ,n} we denote by xi
the nonnegative concentration of the metabolite Xi, and by ei
we the assumed constant concentration of the enzyme Ei. In
the literature, the dynamical behavior of the three biochemical
phenomena enzymatic reactions, allosteric control and genetic
control as presented in Figure 1 is usually modeled by a set
of interconnected nonlinear differential equations (Tyson and
Othmer, 1978),(Goelzer et al., 2008). As aforementioned, the
aim of this study is to analyze the local asymptotic stability of
the kind of biological systems. Hereafter, nonlinear models for
both reversible and irreversible end-product control structure
are presented.

2.1 Reversible metabolic pathways

Systematic analysis of bacterial metabolic networks shows that
almost all reversible pathways have at least one irreversible
step and in most cases the irreversible step corresponds to the
first enzyme of the pathways. Then, the common end-product
control structure of linear reversible metabolic pathways which
integrates allosteric and genetic control is described by the
following dynamical system:

ẋ2 = e1 f1(x1,xn)− e2 f2(x2,x3)
ẋ3 = e2 f2(x2,x3)− e3 f3(x3,x4)
...

...
...

...
ẋn = en−1 fn−1(xn−1,xn)− en fn(xn)
ė1 = g(xn)−µe1

(1)

where the functions fi denote the reaction rates of the enzymes
Ei. Remember, in this work, we consider that the concentration
x1 of the first metabolite is constant and except for e1 all other
enzyme concentrations are assumed constant. Note that, in this
structure, the growth rate functions of all intermediate reactions
depend on product and substrate concentration and have the
following properties.

• Activity of the first enzyme: it is well-known that the
end product Xn modulates the activity of the enzyme E1
through an allosteric effect. So, the function f1(x1,xn)
is strictly increasing in its first argument and strictly
decreasing with respect to its second argument. Moreover,
one has for any

x1 > 0, xn ≥ 0 f1(x1,xn)> 0
and for any

xn ≥ 0, f1(0,xn) = 0.
In addition, there exists a constant M1 > 0 such that for
any

x1 > 0, xn ≥ 0 f1(x1,xn) ∈ [0, M1)
and for all

x1 > 0 one has, lim
xn→+∞

f1(x1,xn) = 0.

• Activity of the intermediate enzymes: each reaction rate
fi(., .), i ∈ {2, . . . ,n− 1}, is strictly increasing in xi and
strictly decreasing in xi+1 with the following signs,
∀xi > 0, fi(xi,0)> 0, ∀xi+1 > 0, fi(0,xi+1)< 0

and fi(0,0) = 0.
Moreover, there exist Mi > 0 and M′i ≥ 0 such that

∀xi > 0, ∀xi+1 ≥ 0, fi(xi,xi+1) ∈ (−M′i , Mi).

Finally, for any xi > 0 there exists x′i+1 > 0 such that
fi(xi,x′i+1) = 0

and for any constant concentration xi+1, one has
lim

xi→+∞
fi(xi,xi+1) = Mi.

• Activity of the final enzyme: En describes the properties of
the remainder parts of the metabolic network which are
supplied by the end product Xn. Then, the properties of fn
mainly depends on the properties of the next modules, and
generally fn is a strictly increasing, positive and bounded
function in xn such that

fn(0) = 0 and lim
xn→+∞

fn(xn) = Mn.

where Mn is a positive constant.

Now, consider the enzyme synthesis phenomenon. It is well-
known that the variation of the first enzyme concentration dur-
ing the exponential growth phase is mostly the result of two
phenomena: (i) the de novo production, and (ii) the dilution
effect caused by the increase of the cell volume. The two bio-
chemical observable facts are described by the last differential
equation of (1). The continuous, positive and strictly decreasing
function g(.) represents the instantaneous production of the
enzyme E1 modulated by the concentration of the end product
xn (implicitly through a transcription factor) with,

g(0) = gmax, where gmax > 0 and lim
x→+∞

g(x) = 0

and µ is the growth rate of the bacterium assumed to be in the
exponential growth phase.

2.2 Irreversible metabolic pathways

The main difference between irreversible and reversible end-
product control structure in metabolic pathways is the nature of
the reaction rates fi for the intermediate enzymes. Indeed, in the
case of irreversible reactions the activities of enzymes depend
only on the substrate concentrations and have the following
properties:

• Activity of the intermediate enzymes: each reaction rate
fi(.), i ∈ {2, . . . ,n− 1} is positive and strictly increasing
in xi and fi(0) = 0. Moreover, there exists Mi > 0 such that

lim
xi→+∞

fi(xi) = Mi.

Then, one can describe the dynamical behavior of the end-
product control structure in the case of irreversible linear
metabolic pathways by the following dynamical system

ẋ2 = e1 f1(x1,xn)− e2 f2(x2)
ẋ3 = e2 f2(x2)− e3 f3(x3)
...

...
...

...
ẋn = en−1 fn−1(xn−1)− en fn(xn)
ė1 = g(xn)−µe1.

(2)
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Remark: In the case of irreversible reactions, a classical
representation of the function fi(.) i = 2, . . . ,n− 1 associated
with the enzyme Ei which catalyzes the reaction between the
substrate Xi and the product Xi+1 is given by the so-called
Michaelis-Menten function, see (Tyson and Othmer, 1978),
(Mulquiney and Kuchel, 2003) for more explanations.

After the detailed description of the nonlinear models for both
reversible and irreversible linear metabolic pathways that inte-
grate allosteric and genetic control, in the next section we give
conditions that guarantee the existence and the uniqueness of
equilibrium regimens of the nonlinear dynamical systems (1)
and (2).

3. EXISTENCE AND UNIQUENESS OF STEADY STATES

Let us start our proof by showing the boundedness of the
first enzyme concentration e1, which is governed by the last
differential equation in (1) or in (2). By definition, the function
g(.) is positive and bounded,

∀xn ≥ 0, g(xn) ∈ (0,gmax]

Then, we can deduce that for any xn ≥ 0 the time evolution of
the first enzyme e1(t) is framed between

ě1(t)≤ e1(t)≤ ê1(t),
where ě1(t) and ê1(t) are respectively the solutions of the
following stable first-order linear systems

˙̌e1 = −µ ě1,
˙̂e1 = −µ ê1 +gmax.

with initial conditions ě1(t0) = ê1(t0) = e1(t0). Consequently,
we can conclude that there exists a positive constant e1 > 0
such that

∀t ≥ 0, e1(t)≤ e1.

Once the boundedness of the first enzyme concentration has
been proved, the following proposition gives sufficient condi-
tions, which guarantee in the same time the existence of the
equilibrium regimen and its uniqueness for both irreversible
and reversible linear metabolic pathways (2), (1).
Proposition 1. If for each i ∈ {2, . . . ,n − 1} the following
inequality holds

e1M1 < eiMi

both irreversible and reversible linear metabolic pathways (2),
(1) have a unique equilibrium point.

Proof : First, let us consider the irreversible case. Thus, the
nonlinear system (2) reaches an equilibrium regimen if and only
if the following set of nonlinear equations are satisfied

g(xn) = µe1
e1 f1(x1,xn) = en fn(xn)

= en−1 fn−1(xn−1)
...

...
= e2 f2(x2).

(3)

So, consider the first equation of (3). It is clear that at the steady
state regimen, from this equation we obtain

e∗1 =
g(x∗n)

µ

Now consider the second equation of (3). By construction, we
know that the left side of this equation is a strictly decreasing
function in xn and for xn ∈ [0,+∞) it takes its values in the
interval [0,e1 f1(x̄1,0)]. On the other hand, the right side of

this equation is a strictly increasing function in xn and for
xn ∈ [0,+∞) it belongs in the interval [0,Mn). Therefore, we
can claim that there exists a unique x∗n such that

e∗1 f1(x1,x∗n) = en fn(x∗n)
For the remainder equations of the system (3), we must verify
that for each i∈ {2, . . . ,n−1} there exists a unique x∗i such that

ei fi(x∗i ) = e∗1 f1(x1,x∗n)
Since the functions fi(.) are strictly increasing in xi and
bounded with known bound Mi, the above equation is satisfied
for all i ∈ {2, . . . ,n−1} if

e1M1 < eiMi

This completes the proof of Proposition 1 in the case of irre-
versible linear metabolic pathways (2).

Now, let us consider the case of reversible metabolic pathways.
The equilibrium conditions of the nonlinear system (1) are
given by the following set of nonlinear equations

g(xn) = µe1
e1 f1(x1,xn) = en fn(xn)

= en−1 fn−1(xn−1,xn)
...

...
= e2 f2(x2,x3).

(4)

Note that, the first and the second equation of the above set
of nonlinear equations (4) are the same as in the case of
irreversible pathways. Then, we can claim that, each of these
two equations has a unique solution x∗n and e∗1 respectively. That
means, by definition there exists a unique value x∗n such that

e∗1 =
g(x∗n)

µ

g(x∗n)
µ

f1(x1,x∗n) = en fn(x∗n)

Now consider the third equation of (4), namely
en−1 fn−1(xn−1,x∗n) = e∗1 f1(x1,x∗n)

We know that, by construction, the function fn−1(., .) is strictly
increasing in xn−1 and for any xn∗ ∈ [0,+∞) we get

lim
xn−1→+∞

fn−1(xn−1,x∗n) = Mn−1.

Thus, according to these properties, we can claim that if the
following inequality holds

e1M1 < en−1Mn−1

then there exists a unique solution x∗n−1 for the third equation of
(4). In the same way, since the functions fi(., .) have the same
properties, we can state that the following inequalities

e1M1 < eiMi i = 2, . . . ,n−2
guarantee both existence and uniqueness of equilibrium points
x∗i for the remainder equations of (4). This completes the proof
of Proposition 1. �

4. LOCAL STABILITY

In this section, we state and prove the main contribution of this
study concerning the local stability of the equilibrium regimens
of both reversible and irreversible linear metabolic pathways
(1), (2).
Proposition 2. Denote by f ′1, f ′n and g′ the derivatives of the
functions f1, fn and g with respect to xn. Then, if the inequality
is satisfied

µ >
f1(x1,x∗n)|g′(x∗n)|

en f ′n(x∗n)− e∗1| f ′1(x1,x∗n)|
(5)
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the equilibrium regimens of the reversible and irreversible
linear metabolic pathways are locally stables. Furthermore, it
is clear that the condition (5) is always fulfilled if

e∗1| f ′1(x1,x∗n)|
en f ′n(x∗n)

> 1 (6)

That is, the local stability of these biological systems is guar-
anteed if the dynamics of the input flux with respect to the
concentration of the end product is strictly greater than the
dynamics of the output flux with respect to the concentration
of the same metabolite.

The next subsections are devoted to give the proof of Proposi-
tion 2.

4.1 Proof of Proposition 2 (irreversible case)

First, denote by A the Jacobian matrix of the nonlinear system
(2) evaluated at its equilibrium point,

A =



−e2 f ′2 0 . . . . . . 0 e1 f ′1 f1

e2 f ′2 −e3 f ′3
. . .

...
... 0 0

0 e3 f ′3 −e4 f ′4
. . .

...
...

...
...

. . .
. . .

. . .
. . .

...
...

...
...

. . .
. . .

. . .
. . .

...
... . . . . . . 0 en−1 f ′n−1 −en f ′n 0
0 . . . . . . . . . 0 g′ −µ


where each f ′i represents the derivative of the function fi with
respect to xi computed for xi = x∗i . Recall that, by definition,
except f ′1 and g′ which are negative all the derivatives f ′i are
positive. Then, according to the monotonicity of the functions
fi(.) with respect to their arguments xi, we can easily determine
from the matrix A a cooperative matrix C . In fact, to obtain C
we just substitute in A the negative entries f ′1 and g′ by their
absolute values.

C =



−e2 f ′2 0 . . . . . . 0 e1| f ′1| f1

e2 f ′2 −e3 f ′3
. . .

...
... 0 0

0 e3 f ′3 −e4 f ′4
. . .

...
...

...
...

. . .
. . .

. . .
. . .

...
...

...
...

. . .
. . .

. . .
. . .

...
... . . . . . . 0 en−1 f ′n−1 −en f ′n 0
0 . . . . . . . . . 0 |g′| −µ


Now, consider the linearized system (7) of the nonlinear system
(2),

δ ẏ = Aδy (7)
where δyi = xi− x∗i for i = 2, . . .n and δyn+1 = e1− e∗1. Then,
according to the Lemma 16 of (Wang et al., 2010) or by using
the well known properties of nonnegative matrices gathered in
(Berman and Plemmons, 1994), we can state that the origin
(δy = 0) of the linearized system is asymptotically stable if
there exist two positive componentwise vectors D and B such
that

C D≤−B (8)
which is equivalent to say that there exists a positive compo-
nentwise vector D such that

−C D > 0 (9)
In (8) and (9), the order relations (≤,>) must be understood
component by component. Thus, to prove Proposition 2 in the

case of irreversible metabolic pathways, it is enough to check
(9). That means, we will show that there exists a positive vector
DT = [d1, . . . ,dn] such that (9) is true. To do so, let us start from
the last element of the vector −C D. Hence, we must choose
positive constants dn and dn−1 such that

µdn > |g′|dn−1

Then, for a given dn we must take

dn−1 <
µ

|g′|
dn (10)

For the next element of the vector −C D, we should choose a
positive constant dn−2 such that

en f ′ndn−1 > en−1 f ′n−1dn−2

which is equivalent to

dn−2 <
en f ′n

en−1 f ′n−1
dn−1 (11)

Thus, we iterate this procedure from the (n− 2)th element of
the vector −C D until its 2nd element to obtain the following
conditions on the entries of the positive vector D

di <
ei+2 f ′i+2

ei+1 f ′i+1
di+1, i = n−3, . . . ,1 (12)

Moreover, the first element of vector −C D must satisfy
e2 f ′2d1 > e1| f ′1|dn−1 + f1dn

That is,

d1 >
1

e2 f ′2

(
e1| f ′1|dn−1 + f1dn

)
Furthermore, taking into account (10), the latter equation is true
if

d1 ≥
1

e2 f ′2

( µ

|g′|
e1| f ′1|+ f1

)
dn (13)

Then, from (12) and (13) d1 must satisfy the following double
inequalities

1
e2 f ′2

( µ

|g′|
e1| f ′1|+ f1

)
dn ≤ d1 <

e3 f ′3
e2 f ′2

d2 (14)

By direct computation, we can show that the above double
inequalities (14) is always satisfied if and only if

d2 >
1

e3 f ′3

( µ

|g′|
e1| f ′1|+ f1

)
dn (15)

Thus, there exists d1 satisfying (14). In the same manner, we
can show that for i = 2, . . . ,n− 2, there exists di belonging to
the following interval

1
ei+1 f ′i+1

( µ

|g′|
e1| f ′1|+ f1

)
dn < di <

ei+2 f ′i+2

ei+1 f ′i+1
di+1 (16)

if and only if

di+1 >
1

ei+2 f ′i+2

( µ

|g′|
e1| f ′1|+ f1

)
dn (17)

Hence, the last condition implies that

dn−1 >
1

en f ′n

( µ

|g′|
e1| f ′1|+ f1

)
dn (18)

and according to (10), dn−1 must satisfy the following double
inequalities

1
en f ′n

( µ

|g′|
e1| f ′1|+ f1

)
dn < dn−1 <

µ

|g′|
dn (19)

Then, by direct computation we can easily show that (19) is
satisfied if

µ >
f1|g′|

en f ′n− e1| f ′1|
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which is exactly the condition (5) of Proposition 2. That means,
if (5) holds then there exists a positive componentwise vector
D for that (9) is true. This completes the proof of Proposition
2 in the case of irreversible metabolic pathways. In the next
subsection, we will prove Proposition 2 for the reversible case.

4.2 Proof of Proposition 2 (reversible case)

Let us consider the Jacobian matrix A of the nonlinear system
(1) evaluated at its equilibrium point. By direct computation we
get
A =

−e2 f ′22 −e2 f ′23 0 . . . 0 e1 f ′1n f1

e2 f ′22 e2 f ′23− e3 f ′33 −e3 f ′34 0
.
.
. 0 0

0 e3 f ′33 e3 f ′34− e4 f ′44 −e4 f ′45 0
.
.
.

.

.

.
.
.
. 0

. . .
. . .

. . .
.
.
.

.

.

.
.
.
.

.

.

.
. . .

. . .
. . .

. . .
.
.
.

.

.

. . . . . . . 0 en−1 f ′(n−1)(n−1) en−1 f ′(n−1)n− en f ′n 0
0 . . . . . . . . . 0 g′ −µ


where each f ′i, j represents the partial derivative of the function
fi(., .) with respect to the argument x j computed for xi = x∗i
and x j = x∗j . Note that, by definition, the partial derivatives f ′ii
are strictly positive and for i 6= j the partial derivatives f ′i j are
strictly negative. Then, from the Jacobian matrix A we build the
following cooperative matrix
C =

−e2 f ′22 −e2 f ′23 0 . . . 0 e1| f ′1n| f1

e2 f ′22 e2 f ′23− e3 f ′33 −e3 f ′34 0
.
.
. 0 0

0 e3 f ′33 e3 f ′34− e4 f ′44 −e4 f ′45 0
.
.
.

.

.

.
.
.
. 0

. . .
. . .

. . .
.
.
.

.

.

.
.
.
.

.

.

.
. . .

. . .
. . .

. . .
.
.
.

.

.

. . . . . . . 0 en−1 f ′(n−1)(n−1) en−1 f ′(n−1)n− en f ′n 0
0 . . . . . . . . . 0 |g′| −µ


Thus, as in the case of irreversible metabolic pathways, the
local stability of the nonlinear system (1) is guaranteed if
the condition (9) holds. Then, let us show that under (5) this
condition is fulfilled.

For the last element of the vector −C D, we should choose
positive constants dn and dn−1 such that

µdn > |g′|dn−1

This implies that for a given dn we must take

dn−1 <
µ

|g′|
dn (20)

Then, for the next element of the vector −C D, the positive
constant dn−2 must satisfy

(en f ′n− en−1 f ′(n−1)n)dn−1 > en−1 f ′(n−1)(n−1)dn−2

That is,

dn−2 <
en f ′n− en−1 f ′(n−1)n

en−1 f ′
(n−1)(n−1)

dn−1 (21)

In the same way, the (n−2)th element of the vector−C D must
satisfy the following inequality

dn−3 <
e(n−1) f ′(n−1)(n−1)− e(n−2) f ′(n−2)(n−1)

e(n−2) f ′
(n−2)(n−2)

dn−2

+
e(n−1) f ′(n−1)n

e(n−2) f ′
(n−2)(n−2)

dn−1

(22)

Moreover, dn−3 must be positive. Then, to guarantee this con-
dition on dn−3 we should choose dn−2 such that(

en−1 f ′(n−1)(n−1)− en−2 f ′(n−2)(n−1)
)
dn−2+

e(n−1) f ′(n−1)n)dn−1 > 0

That implies the following condition on dn−2,

dn−2 >
−en−1 f ′(n−1)n

en−1 f ′
(n−1)(n−1)− en−2 f ′

(n−2)(n−1)
dn−1

In the next, in order to simplify the demonstration, we take

dn−2 >
− f ′(n−1)n

f ′
(n−1)(n−1)

dn−1 (23)

Thus, from (21) and (23) we get
− f ′(n−1)n

f ′
(n−1)(n−1)

dn−1 < dn−2 <
en f ′n− en−1 f ′(n−1)n

en−1 f ′
(n−1)(n−1)

dn−1 (24)

Now, the (n−3)th element of the vector −C D must verify

dn−4 <
e(n−2) f ′(n−2)(n−2)− e(n−3) f ′(n−3)(n−2)

e(n−3) f ′
(n−3)(n−3)

dn−3

+
e(n−2) f ′(n−2)n−1

e(n−3) f ′
(n−3)(n−3)

dn−2

(25)

Here also dn−4 must be positive. Then to fulfil this condition,
we must have

dn−3 >
−en−2 f ′(n−2)(n−1)

en−2 f ′
(n−2)(n−2)− en−3 f ′

(n−3)(n−2)
dn−2

For simplicity’s sake, in the next we consider

dn−3 >
− f ′(n−2)(n−1)

f ′
(n−2)(n−2)

dn−2 (26)

So, by direct computation we can show that under the condition
(23), dn−3 must be framed between the bounds defined by (22)
and (26).

With the same method, we can show that from the (n− 4)th
element of the real vector −C D to its 2nd element, condition
(9) is satisfied if the entries di, i = (n−4), . . . ,1 are chosen as
follows

di <
e(i+2) f ′(i+2)(i+2)− e(i+1) f ′(i+1)(i+2)

e(i+1) f ′
(i+1)(i+1)

di+1

+
e(i+2) f ′(i+2)(i+3)

e(i+1) f ′
(i+1)(i+1)

di+2

(27)

di >
− f ′(i+1)(i+2)

f ′
(i+1)(i+1)

di+1 (28)

That means di must be bracketed between by the known bounds
(28) and (27).

Now, consider the first element of the vector C D. Here d1 must
satisfy

d1 >
1

e2 f ′22

(
e1| f ′1n|dn−1 + f1dn− e2 f ′23d2

)
(29)
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Moreover, d1 has to be lower than (27). By direct computation,
we can show that this condition on d1 is satisfied if

d2 >
1

e3 f ′33

(
e1| f ′1n|dn−1 + f1dn− e3 f ′34d3

)
(30)

Following this reasoning, we can show that for all i = 1, . . . ,n−
3 the double inequalities defined by (28) and (27) are satisfied
if

dn−2 >

(
(e1| f ′1n|− en−1 f ′(n−1)(n−1))dn−1 + f1dn

)
en−1 f ′

(n−1)(n−1)
(31)

In other hand dn−2 must be lower than (21). Thus, by direct
computation, we can show that this condition is fulfilled if

dn−1 >
f1

en f ′n− e1| f ′1n|
dn (32)

Finally, according to the condition (20) we should have
µ

|g′|
dn−

f1

en f ′n− e1| f ′1n|
dn > 0

So, it is clear that to ensure this inequality the following
condition must be true

µ >
|g′| f1

en f ′n− e1| f ′1n|
which is exactly the condition (5) of Proposition 2. That means
if (5) is satisfied then for a given positive constant dn we
can construct a positive vector D such that −C D > 0. This
completes the proof of Proposition 2 in the case of reversible
metabolic pathways.

Before to conclude, note that one can easily extend the use of
Proposition 1 and Proposition 2 to analyse the local stability of
more complicated end-product control structures. For instance,
one can apply these propositions to study the case of end-
product control structures where all the enzyme concentrations
ei, i = 1, . . . ,n are considered variable in time but bounded
with known bounds and also the case where the intermediate
enzymatic reactions are mixed. That is, metabolic pathways
where some enzymatic reactions are reversible and some other
ones are irrreversible. For example, the case of the metabolic
pathway of Tryptophan synthesis (Goelzer et al., 2008).

5. CONCLUSION

This work proposed mathematical conditions to check the local
stability of linear reversible and irreversible metabolic path-
ways. Moreover, thanks to these conditions, we can claim that
regardless of the size of these linear metabolic pathways, only
dynamical properties of the activity of the first enzyme can
guarantee the local stability of their steady state. This shows the
natural capacity of bacteria to cope with increasing of their flux
demand by activating only the first enzyme of their metabolic
pathway. As well, the mathematical property of the end-product
control structure helps to simplify the behavior analysis of
complex metabolic pathways and to predict the changes of
their components (enzyme concentrations, metabolite pools and
fluxes). Furthermore, a comparative analysis between the math-
ematical predicted behavior and biological data may help to
detect still undescribed regulations in a systematic way. In fact,
unknown regulations can be highlighted by discrepancies. In-
deed, in practice, the bacterium always adapts the flux capacity
provided by the pathway to satisfy the flux demand and may
employ other mechanisms to cope with the flux demand in some
situations. Such mechanisms may modify enzyme activity, en-
zyme production or flux capacity.

For forthcoming work we will use the local stability result to
prove the global stability of both reversible and irreversible
linear metabolic pathway. In fact, to do so, we will simplify our
global attractivity conditions presented in (Meslem et al., 2010)
and then we will show that the local stability condition given
in this paper allied with the global attractivity conditions guar-
antee the global stability of the end-product control structures.
Also, in order to show the merits of this theoretical work, we
will compare our mathematical findings to real world problems.
For instance, we plan to use measurement data coming from
the Tryptophan or Lysine synthesis to validate our theoretical
prediction concerning the stability of these types of end-product
control structures.
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