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Abstract: This paper presents the metabolic-fluxes calculation of a metabolic network representing the 
central metabolism of the yeast Saccharomyces cerevisiae in the wine-making context. Two solution 
methods are compared: a metabolic flux analysis (MFA) using convex analysis and providing narrow 
intervals of variation for the fluxes, and a flux balance analysis (FBA) based on an objective function. 
The constraints allowing the solution of the underdetermined set of algebraic equations are typically 
originating from measurements of uptake and secretion rates of external metabolites, and/or the use of an 
objective function, and/or metabolic constraints. It is shown here that converting reactions schemes in 
Cmol unit combined with data reconciliation provides a convenient formulation of closed carbon balance. 
In this form, the constraint formulation is natural and facilitates the understanding of the carbon 
distribution within the yeast metabolism. 

Keywords: metabolic flux analysis, Saccharomyces cerevisiae, carbon balance, wine-making 
fermentation. 
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1. INTRODUCTION 

Metabolic Flux Analysis (MFA) is a mathematical method 
for analyzing metabolism of bacterial or eukaryotic cells. It is 
a powerful methodology for the determination of metabolic 
pathway fluxes. In this approach, the intracellular fluxes are 
calculated by using a stoichiometric matrix (metabolic 
pathway map) for the intracellular reactions and applying 
mass balances around intracellular metabolites. A set of 
measured extracellular fluxes, typically uptake rates of 
substrates and secretion rates of metabolites, is used as input 
to the calculations (Vallino and Stephanopoulos, 1993; 
Jorgensen et al., 1995).  

This modelling approach has been used to study the 
metabolism of Saccharomyces cerevisiae for almost two 
decades (Nissen et al., 1997; Gombert et al., 2001, Forster et 
al., 2003). Nevertheless, studies concerning the modelling of 
the wine-making fermentation process have been performed 
only recently (Varela et al., 2004; Pizarro et al., 2007; 
Charnomordic et al., 2010; Celton et al., 2012).  

The final objective of the EC CAFÉ project (www.cafe-
project.org) concerning the wine-making process is to design 
control tools aimed at optimising the fermentation to obtain a 
well-defined aromatic profile. During the alcoholic 
fermentation, hexoses (glucose and fructose) are mainly 
converted to ethanol and carbon dioxide. A large set of other 
by-products (higher alcohols, esters, sulphur compounds) 
affecting the organoleptic properties of the wine are also 
formed during this process (Swiegers et al., 2005); but they 

represent less than 1 % of the consumed sugar. Nevertheless, 
before considering these aroma compounds, a relevant 
description of the central carbon metabolism is needed. MFA 
appears to be an interesting tool to model this part of the 
yeast metabolism.  

Based on the assumption that the internal metabolites are in 
steady state (no accumulation), the system of linear equations 
resulting from the stoichiometric model is usually 
underdetermined when only external measurements are used.  
In the literature, various suggestions are made to overcome 
this problem (Bonarius et al., 1997; Zamorano et al., 2010): 
(i) the introduction of additional metabolic theoretical 
constraints; (ii) the exploitation of linear optimization tools 
and the definition of suitable objective functions; or (iii) the 
use of isotopic tracer experiments to determine some 
intracellular fluxes. An objective function is usually used in 
metabolic models concerning the yeast S. cerevisiae (Forster 
et al., 2003; Celton et al., 2012). Recently, a method 
consisting in using no additional constraint and therefore 
solving the undetermined system of linear equations by 
obtaining intervals for the different metabolic fluxes was 
developed for CHO cells (Provost and Bastin, 2004; 
Zamorano et al., 2010).  

In the present study, a novel aspect is the Cmol conversion of 
the reaction schemes (detailed in Section 2). This impacts the 
coefficients into the reaction schemes, i.e., those of the 
stoichiometric matrix, and allows a consistent carbon balance 
of the system through data reconciliation. We compare the 
results of two methods for calculating the intracellular fluxes 
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of the balanced carbon central metabolism of S. cerevisiae: 
(i) determination of intervals for the metabolic fluxes, (ii) use 
of an objective function. 

The next two sections give a description of the metabolic 
network and of the experimental data respectively. MFA is 
presented in Section 4 and the objective function strategy 
(FBA) in Section 5. Discussion is provided in Section 6. 

 

2. METABOLIC NETWORK DESCRIPTION 

The central carbon metabolism of S. cerevisiae considered in 
this paper is represented by a set of 79 biochemical reactions 
listed in Table 1. The metabolic network involves the 
following pathways: glycolysis – pentose phosphate pathway 
(PPP) – TCA cycle – ethanol, glycerol and acetate synthesis – 
transport reactions (sugar uptake and product excretion) – 
amino acid synthesis – DNA and RNA synthesis – lipid 
synthesis – carbohydrate synthesis – biomass formation. It 
has to be stressed that this metabolic network corresponds to 
a metabolism of exponentially-growing cells in wine-making 
conditions. This network would be different if for example 
the stationary phase of the yeast was considered.  

Knowing that the alcoholic fermentation is an anaerobic 
process, the TCA pathway does not operate as a cycle but as 
two branches (v15 and v16 in Table 1) leading both to 
succinate synthesis (Camarasa et al., 2003). The biomass 
composition in carbohydrates, lipids and proteins was 
experimentally measured (as described in Celton et al., 2012). 
The cellular contents of RNA and DNA were standard values 
available in the literature (Lange and Heijnen, 2001). It has to 
be noted that to simplify the network the energetic cofactors 
(NAD and NADP) were not taken into account. Nevertheless, 
the chosen reactions correctly described the central carbon 
metabolism of S. cerevisiae.  

The metabolic network involves 70 internal metabolites and 9 
external metabolites: glucose, ethanol, glycerol, acetate, 
succinate, CO2, biomass, exogenous fatty acids [A_exo] and 
exogenous lipids [lipid_exo]. A_exo and lipid_exo are not 
measured data, they correspond to nutrient requirements 
associated with growth and are thus proportional to the 
production of biomass (Celton et al., 2012). 

The metabolic fluxes will be expressed in Cmol/L.h.gcell. The 
Cmol unit corresponds to a normalization of the elements 
contained in a molecule by the number of carbon atoms C 
present in the considered compound. For example, the 
formula of glucose in mol is C6H12O6 and turned into Cmol it 
becomes CH2O. When considering reaction schemes this 
normalization affects the stoichiometric coefficients as 
illustrated in the following example with the reaction v7: 

- in mol: PYR  ACAL + CO2, i.e. ‘3 C  2 C + 1 C’; 

- in Cmol: ‘1 C  2/3 C + 1/3 C’, see v7 in Table 1. 

On the other hand, the sum of inlet fluxes must be equal to 
the sum of the outlet fluxes, as presented in equation (1): 
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where vin(i) corresponds to the inlet flux of substrate i and 
vout(j) corresponds to the outlet flux of product j. If the 
equation (1) is satisfied, the “carbon balance” is closed. 

Moreover, there is only one substrate: glucose. The rates of 
metabolite synthesis can be divided by the glucose 
consumption rate to be normalized. This fluxes expression in 
percent can be used within the metabolic-network model 
because the reaction schemes are defined in Cmol unit and 
not in mol unit. 

Using Cmol instead of mol in addition with the calculation of 
carbon recovery in percentage provides a straightforward 
assessment of the use of carbon through the reactions 
network. It is also an easy and highlighting indicator of the 
precision of the measurements (as detailed in Section 3). 

Table 1.  Metabolic reactions for the metabolism of S. 
cerevisiae 

Flux Reaction 
 Glycolysis 

v1  Glucose  G6P 
v2 G6P  F6P 
v3 F6P  G3P 
v4 G3P   PEP 
v5 PEP  PYR 

 Ethanol, glycerol and acetate synthesis 
v6 G3P  Glycerol 
v7 PYR  2/3 ACAL + 1/3 CO2 
v8 ACAL  Ethanol 
v9 ACAL  Acetate 
v10 Acetate  ACCOA 

 TCA cycle 
v11 PYR  2/3 ACCOA + 1/3 CO2 
v12 3/4 PYR + 1/4 CO2  OAA 
v13 4/6 OAA + 2/6 ACCOA  ICIT 
v14 ICIT  5/6 AKG + 1/6 CO2 
v15 MAL  Succinate 
v16 AKG  4/5 Succinate + 1/5 CO2 
v17 OAA  MAL 

 Pentose phosphate pathway (PPP) 
v18 G6P  5/6 R5P + 1/6 CO2 
v19 R5P  4/10 E4P + 6/10 F6P 
v20 5/9 R5P + 4/9 E4P  6/9 F6P + 3/9 G3P 

 Transport reactions 
v21 Glucose_ext  Glucose 
v22 Glycerol  Glycerol_ext 
v23 Ethanol  Ethanol_ext 
v24 Acetate  Acetate_ext 
v25 Succinate  Succinate_ext 
v26 CO2  CO2_ext 
v27 A_exo_ext  A_exo 
v28 Lipid_exo_ext  Lipid_exo 
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 Amino acid synthesis 
v29 PYR  ALA 
v30 5/6 AKG + 1/6 CO2  ARG 
v31 OAA  ASN 
v32 OAA  ASP 
v33 G3P  CYS 
v34 AKG  GLN 
v35 5/6 R5P + 1/6 CO2  HIS 
v36 4/7 OAA + 3/7 PYR  6/7 ILE + 1/7 CO2 
v37 6/8 PYR + 2/8 ACCOA  6/8 LEU + 2/8 CO2 
v38 5/7 AKG + 2/7 ACCOA  6/7 LYS + 1/7 CO2 
v39 4/5 OAA + 1/5 CO2  MET 
v40 4/10 E4P + 6/10 PEP  9/10 PHE + 1/10 CO2 
v41 AKG  PRO 
v42 G3P  SER 
v43 OAA  THR 
v44 4/12 E4P + 3/12 PEP + 5/12 R5P  11/12 TRP 

+ 1/12 CO2 
v45 4/10 E4P + 6/10 PEP  9/10 TYR + 1/10CO2 
v46 PYR  5/6 VAL + 1/6 CO2 
v47 G3P  2/3 GLY + 1/3 CO2 
v48 OAA  1/2 GLY + 1/2 ACAL 
v49 AKG  GLU 

 DNA, RNA synthesis 
v50 5/11 R5P + 3/11 G3P + 3/11 CO2  dATP 
v51 5/10 R5P + 4/10 OAA + 1/10 CO2  dTTP 
v52 5/11 R5P + 3/11 G3P + 3/11 CO2  dGTP 
v53 5/10 R5P + 4/10 OAA + 1/10 CO2  dCTP 
v54 5/11 R5P + 3/11 G3P + 3/11 CO2  ATP 
v55 5/10 R5P + 4/10 OAA + 1/10 CO2  UTP 
v56 5/11 R5P + 3/11 G3P + 3/11 CO2  GTP 
v57 5/10 R5P + 4/10 OAA + 1/10 CO2  CTP 

 Lipid synthesis 
v58 ACCOA  A10 
v59 ACCOA  A12 
v60 ACCOA  A14 
v61 ACCOA  A16 
v62 ACCOA  A18 
v63 0.00917 A10 + 0.0413 A12 + 0.0775 A14 + 

0.24 A16 + 0.0554 + 0.577 A_exo  AG 
v64 54/57 AG + 3/57 G3P  TRIGLY 
v65 3/39 G3P + 36/39 AG  PA 
v66 6/42 G3P + 36/42 AG  PC 
v67 6/42 G3P + 36/42 AG  PS 
v68 6/42 G3P + 36/42 AG  PE 
v69 3/45 G3P + 6/45 G6P + 36/45 AG  PINS 

 Carbohydrate synthesis 
v70 F6P  MANNAN 
v71 G6P  GLYCOGEN 
v72 G6P  TREHALOSE 
v73 G6P  GLUCAN 

 Biomass formation 
v74 0.04 GLYCOGEN + 0.0094 TREHALOSE + 

0.32 MANNAN + 0.63 GLUCAN  CARBO 
v75 0.216 TRIGLY + 0.0129 PA + 0.143 PC + 

0.0391 PS + 0.107 PE + 0.137 PINS + 0.345 
Lipid_exo  LIPID 

v76 0.0763 ALA + 0.0547 ARG + 0.0229 ASN + 
0.0681 ASP + 0.00125 CYS + 0.0301 GLN + 
0.0224 HIS + 0.0749 ILE + 0.0949 LEU + 
0.0965 LYS + 0.0127 MET + 0.0673 PHE + 
0.0459 PRO + 0.0309 SER + 0.0423 THR + 
0.0176 TRP + 0.0501 TYR + 0.0720 VAL + 
0.0315 GLY + 0.0847 GLU  PROT 

v77 0.313 dATP + 0.192 dCTP + 0.211 dGTP + 
0.284 dTTP  DNA 

v78 0.277 ATP + 0.185 CTP + 0.285 GTP + 0.252 
UTP  RNA 

v79 0.416 CARBO + 0.0514 LIPIDS + 0.430 PROT 
+ 0.0922 RNA + 0.00991 DNA  Biomass 

 

3. EXPERIMENTAL DATA 

The experimental data used in the current work correspond to 
the monitoring of the growth of the Saccharomyces 
cerevisiae commercial strain EC1118 (Lallemand SA) at 
20°C on a synthetic medium (SM300) simulating the grape 
juice (Bely et al., 1990) where glucose was the sole carbon 
source.  

The extracellular measurements of glucose, ethanol, glycerol, 
acetate, succinate, biomass and CO2 used in this study are 
listed in Table 2. Using these values, the carbon balance is 
equal to 102%, meaning that the measurements are accurate. 
Nevertheless, these raw data cannot be used directly. Indeed, 
if the incoming and outgoing fluxes are not equal, the system 
of equations cannot be solved. So, it was decided to distribute 
the error on the ethanol and CO2 (because they are the main 
produced metabolites) keeping the ratio ethanol/CO2 
constant. Finally, the rates of metabolite synthesis were 
divided by the glucose consumption rate to be normalized 
and ready to use for the model. 

Table 2.  Extracellular measurements 

Compound 
Experimental 
specific rate 

(Cmol/L.h.gX) 

Specific rates 
modified to get 

a closed 
carbon balance 
(Cmol/L.h.gX) 

Normalized 
specific 
rate (%) 

Glucose 4.47E-02 4.47E-02 100 
Glycerol 2.19E-03 2.19E-03 4.89 
Ethanol 2.30E-02 2.25E-02 50.46 
Acetate 1.36E-04 1.36E-04 0.30 

Succinate 8.34E-05 8.34E-05 0.19 
CO2 1.45E-02 1.42E-02 31.86 

Biomass 5.70E-03 5.70E-03 12.75 
 

4. METABOLIC FLUX ANALYSIS 

4.1  Principle of the method 

The yeast metabolism considered in this analysis is described 
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by a set of n = 79 biochemical pathways listed in Table 1. 
The metabolic network involves a group of m = 70 internal 
balanced metabolites. 

MFA is a methodology for the quantification of the pathway 
fluxes from limited experimental data. In the present work, 
we consider the special case where extracellular 
measurements in the culture medium are the only available 
data (using a method described in Provost and Bastin, 2004 
and Zamorano et al., 2010). On the basis of the metabolic 
network, the flux distributions are found by applying steady-
state mass balances around the internal balanced metabolites. 
Each admissible flux distribution is represented by a vector v 
= (v1, v2, …,vm)T whose entries are the rates (or fluxes) at 
which the reactions proceed. The steady-state balance around 
the internal metabolites is expressed by the algebraic set of 
equations:  

0 vN ; 0v      (2) 

where the (m×n) matrix N is the stoichiometric matrix 
deduced from the metabolic network (m is the number of 
internal balanced metabolites and n is the number of fluxes). 
In our case, the stoichiometric matrix N has dimensions 70 × 
79. It is a rather sparse matrix (4.4% of filling). An 
admissible flux distribution v must satisfy the steady state 
balance (2) and be compatible with the experimental 
measurements. The specific uptake and excretion rates of the 
measured external species are collected in a vector vm and are 
by definition linear combinations of the unknown fluxes vi. 
This is expressed as follows: 

vNv mm       (3) 

Where Nm is a proper (p×n) full-rank matrix with p the 
number of available measurements. 

The aim of MFA is to compute the set of admissible flux 
distributions v, i.e., the set of non-negative vectors v that 
satisfies the equations (2) (3). The problem is said to be well-
posed if the solution set is not empty and if all the solutions 
are bounded. Otherwise, the system is said to be ill-posed. 

When the problem is well-posed, the solution set is a 
polytope in the positive orthant and each admissible flux 
distribution v can be expressed as a convex combination of a 
set of non-negative basis vectors fi which are the vertices of 
this polytope and form therefore a unique convex basis of the 
solution space. In other words, the solution set of the MFA 
problem is the set of admissible flux vectors defined as: 


i

ii fv   with    0i  and  
i

i 1    (4) 

The basis vectors fi are obtained by applying the toolbox 
METATOOL (Pfeiffer et al., 1999; Schuster et al., 1999) to 
the matrix 

0

m m

N
N 

 
  

 

Once the basis vectors are known, we can compute the 
limiting values of the flux interval for each metabolic flux 
(Provost and Bastin, 2004): 

min max
i i iv v v   

with
   min maxmin , 1, ..., , max , 1, ...,i ki i kiv f k m v f k m     

where fki denotes the i-th element of the basis vector fk. 

Calculating the range of possible values for each metabolic 
flux is relevant for underdetermined systems which do not 
have a unique solution.  

4.2  Results 

We perform a flux analysis for yeast cells on the basis of the 
underlying metabolic network presented in Table 1. The first 
purpose is to characterize the feasible set of solutions using 
extracellular measurements only. Our system is well-posed 
(i.e. the sets of equations (2) (3) are reliably satisfied), 
therefore the number of basis vectors fi and the size of the 
flux intervals will depend on the extracellular measurements 
that are considered.  

The size of the intracellular flux intervals is analyzed under 
different assumptions. In the first place the 7 experimental 
rates of the external metabolites are used to compute the flux 
intervals. In this case, most of the fluxes have fixed values; 
the values of the undetermined fluxes (internal fluxes) are 
within a fairly narrow interval. This observation makes sense 
because a system of 79 linear equations (metabolic reactions) 
constrained with 70+7 values (internal+external metabolites) 
is still underdetermined. 

Figure 1 illustrates the distribution of G6P between the 
glycolysis pathway (v2) and the PPP (v18). It stresses 
solution intervals that are between 59 and 61% for v2 and 
between 35 and 38% for v18. The reaction v20 corresponding 
to the outlet of the PPP is between 17 and 18%. These results 
are satisfactory because the narrow intervals of variation of 
the metabolic fluxes make possible a good understanding of 
the carbon distribution within the yeast metabolism. 

If we use 6 rates of external metabolites, results are similar 
because the rate of the “missing” external compound is equal 
to the experimental value (see Figure 2 for example). This 
observation is not surprising: there is no carbon accumulation 
within the cell (the sum of the rates of external metabolites is 
equal to zero), therefore when only one external metabolite is 
not taken into account, its value must be equal to its 
experimental value (knowing that, for our experimental 
values, the carbon balance is kept). 

If we use 5 rates of external metabolites, the intervals of 
variation that are defined for the two last measured rates are 
large and include the corresponding measurement value. The 
ranges of variation of some internal fluxes are consequently 
large too, making difficult the interpretation of the obtained 
results. In Figure 1, where CO2 and biomass fluxes are 
considered as unknown, the fluxes v2 and v18 corresponding 
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to the distribution of G6P between the glycolysis pathway 
and the PPP are almost undetermined as they nearly varies 
between 0 and 100%. The reaction v20 corresponding to the 
outlet of the PPP is between 0 and 50%. This is obviously a 
too large interval and the maximum value is far from a 
standard flux value for the considered strain of yeast 
(personal communication). Figure 2 also illustrates this result 
with the calculated fluxes of CO2 and biomass: the mean 
value of the interval of variation respectively deviates from 5 
and 18 % compared to the experimental value. This is 
reasonable for CO2 but not for the biomass. 

These last observations show that if the number of constraints 
is low, the span of solution highly increases and it becomes 
difficult to analyze and understand the results. On the 
contrary, using 6 or 7 measurements provides satisfactory 
results demonstrating the reliability of these measurements 
and the relevance of the data reconciliation. 

 

5. USE OF AN OBJECTIVE FUNCTION 

A FBA method (Lee et al., 2006) based on an objective 
function was tested on the metabolic network. The 
assumption considered for defining the objective function is 
the maximization of the biomass production as the 
measurements were taken during the growth phase of the 
yeast (see Section 3). This corresponds to the maximization 
of the reaction v79. 

If we use the rates of the 6 external metabolites except 
biomass, we observe that the calculated biomass production 
rate is equal to the experimental value (see Figure 2). Once 
again, this observation makes sense; it is due to the carbon 
balance. Using the objective function, a single value is 
obtained for each metabolic flux. An interesting observation 
is that this value is equal to the central value of the interval 
obtained with the previous solution method when considering 
internal fluxes (example in Figure 1). This shows that the 
methods consisting either in only solving the 
underdetermined system or in using an objective function 
give close results as long as sufficient external metabolites 
are measured.  

When we use 5 rates of external compounds, several 
observations are made: 

1) if glycerol, acetate or succinate are among the unused 
measurements their calculated values are equal to zero. 
Indeed, the objective function consists in maximizing the 
biomass production; so no carbon is sent or assigned to the 
production of a metabolite that is not directly involved in 
biomass synthesis such as the before-mentioned compounds.  

2) CO2 is involved in different metabolic pathways 
(glycolysis, ethanol production, biomass synthesis) so its 
value cannot be equal to zero; nevertheless, when its rate is 
not fixed, the calculated value is underestimated by 20% 
compared to the experimental one (see Figure 2). The results 
in Figure 1 provide an explanation. v2 value is maximum 
whereas v18 and v20 values are close to 0 meaning that most 

of the carbon is transferred to glycolysis to the detriment of 
PPP. As v18 produces CO2, it can explain the under-
estimation of the CO2 flux. 

Consequently the biomass synthesis is systematically over-
estimated. Figure 2 stresses an overestimation up to 47% for 
instance.  

It can be concluded that the maximization of biomass 
production is a validated assumption as long as the needed 
measurements are available. 

 

Fig. 1. Calculated fluxes for reactions v2, v18 and v20 
depending on the available measurements and the solution 
method. 

 

 

Fig. 2. Calculated fluxes for CO2 (v26) and biomass X (v79) 
depending on the available measurements and the solution 
method. 

 

6. DISCUSSION 

The Cmol conversion of the reaction schemes in addition 
with the calculation of carbon recovery in percentage 
provides a quite convenient overview of the use of carbon 
through the metabolic network. This formulation also eases 
data reconciliation prior to the use of MFA tools. 
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The two solution methods used in this work provide reliable 
and comparable results. As a matter of fact, when all the rates 
of external metabolites are used to solve the system of 
equations, the flux calculated for each reaction of the network 
using an objective function is equal to the central value of the 
calculated interval provided by the toolbox METATOOL. A 
good reliability is also obtained when only one external 
measurement is missing.   

With less measurements the convex analysis also provides 
solutions but with larger intervals making difficult any 
metabolic interpretation. Results obtained with the objective 
function do not account for key metabolites (succinate, 
acetate, and glycerol) if they are not included into the 
measurements. Indeed, in the considered metabolic network, 
these compounds are not directly linked to the biomass 
production and consequently to the objective function. This 
last observation gives insight about the selection of the 
metabolic network: the production of these products is 
associated with the regeneration of energetic cofactors 
necessary to biomass synthesis, i.e. linking the production of 
succinate, acetate, glycerol, to the production of biomass. So 
it would be interesting to establish this link in the next 
version of the metabolic network so as to overcome this 
issue. Moreover, taking into account these metabolic 
intermediates is also of interest because the intensity of some 
internal fluxes involved in the regeneration of cofactors 
appears to be unappropriate (for example the flux values in 
PPP). 

In the future, the conversion of reaction schemes into Cmol 
and Nmol will be considered so as to close carbon and 
nitrogen balances. This will allow studying an extended 
version of the yeast metabolism including the nitrogen 
metabolism and some volatile compounds having an 
organoleptic interest. 
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