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Abstract: The phenomenon by which Escherichia coli (E. coli) move towards or away from
a chemical by altering its swimming pattern is termed as Chemotaxis. The binding of ligands
to trans-membrane receptors present on the cell surface results in a series of intra-cellular
reactions that ultimately controls the bias of the flagella motors and in turn alters the swimming
pattern. A similar phenotypic response has been observed in gradients of oxygen, termed as
aerotaxis, though the intra- cellular pathway responsible for the effect is not understood. In
this paper, we propose a simple model based on a generic adaptation mechanism that captures
the cell’s response to a time varying concentration of oxygen. Our model incorporates both the
mechanisms of aerotaxis and chemotaxis and predicts the motion of a cell in a gradient of Methyl
Aspartate. The predictions are in good agreement with the measurements of drift velocity in
controlled gradients of Methyl Aspartate.
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1. INTRODUCTION

Chemotaxis is the migratory response of cells in the pres-
ence of a chemical. Chemicals to which cells respond are
called chemotactants. A cell moves in the direction of
increasing chemical gradient for a chemoattractant while
it moves in the opposite direction in case of chemore-
pellents. Examples of chemoattractants for Escherichia
coli (E. coli) are sugars, amino acids, peptides etc., while
the chemorepellents include antibiotics, metal ions, toxic
chemicals etc. Chemotaxis has been extensively studied in
Escherichia coli (E. coli) (Eisenbach, 2004). The E. coli
generates thrust (and therefore runs) via flagella which
bundle when they rotate in the counter clockwise (CCW)
direction while clockwise rotation of one or more of the
flagellum unbundles the flagella to give a new random
direction called a tumble. E. coli modulates its run and
tumble motion so as to direct its net movement towards
favorable environment. The regulation of the motor bias
is achieved through a well characterized signaling path-
way which involves sensing of the ligand through a mem-
brane sensor, response through a signaling pathway and
adaptation to the new environments. The regulation of
chemotaxis involves CheW protein that couples a kinase,
CheA, to methyl-accepting chemotaxis proteins (MCPs) to
form a complex. In this mechanism, CheA autophospho-
rylates which in phosphorylates a regulator protein, CheY
to CheY-P. The latter interacts with a flagellar motor
switch protein FliM causing the motor to run clockwise

leading to a tumble. When a ligand (attractant) binds
to the receptor, the rate of autophosphorylation of CheA
decreases causing dephosphorylation of CheY-P thereby
reducing the tumbling frequency and allowing the cell to
run smoothly in the favorable environment. CheA phos-
phorylation is returned to its original level via a feedback
mechanism involving methylation and demethylation of
the receptor which in turn returns the CW bias to the pre-
stimulus level. This mechanism allows the cell to adapt to
a new environment through a transient where the CW bias
alone is modulated(Eisenbach, 2004).

E. coli has five distinct chemotaxis receptors, namely, Tar,
Tsr, Trg, Tap and Aer. While the existing knowledge
of the signaling pathway is essentially based on studies
involving Tar in response to non-metabolizable amino acid,
α- methyl-DL-aspartate (MeAsp), it is only recently that
the intra-cellular mechanism of aerotaxis, where the cell
moves in response to varying oxygen concentration, is
becoming clear. E. coli senses oxygen via the Aer receptor
which has a MCP-like signaling domain but lacks the sens-
ing domain. Aer has Flavin Adenine Dinucleotide(FAD)
binding Per Arnt Sim (PAS) domain in the cytoplasm,
joined to a membrane anchor by a F1 linker(Laszlo and
Taylor, 1981). The PAS domain senses the changes in
extracellular oxygen by detecting the redox changes in
the cell through cytosolic electron donors like NADH or
by direct interaction with electron transport system. The
signals corresponding to the measured changes in the level
of oxygen converge in the chemotactic signaling pathway
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at the CheA histidine kinase system (Rebbapragada et al.,
1997).

Experiments, such as those by Vuppula et al. (2010),
have quantified the contribution of oxygen to the overall
response of a cell in the presence of steady gradients
of a chemotactant. Here, a concentrated pellet of cells
was introduced at one end of a horizontal capillary tube
containing a linear gradient of MeAsp. The cells emerge
from the pellet and move up gradient of the ligand. The
measured drift velocity in response to a fixed gradient of
MeAsp varied with the level of initial oxygen concentration
in the media indicating that the cells simultaneously
consume oxygen and respond to the resulting oxygen
gradients. Further Vuppula et al. (2010) show that the net
drift velocity can be obtained by adding the response to
the MeAsp gradient and that due to the oxygen gradient.

In this paper, we propose a simple model that combines
the existing two state model (Barkai and Leibler (1997))
involving the Tar receptor along with a simple phenomeno-
logical model based on a generic adaptation mechanism
( Inoue and Kaneko (2006)) that captures the cell’s re-
sponse to a time varying concentration of both MeAsp
and oxygen. The model predictions compare well with
the measured time varying motor bias to a step change
in oxygen concentration. For fixed gradients of Methyl
Aspartate, we solve for the spatial variation of oxygen
concentration via the convection-diffusion equation that
includes a consumption term.The predicted drift velocity
is high initially and decreases as the cells move up the gra-
dient. This trend matches with the measurements though
the predicted predicted velocities are some what lower.

2. MODEL DEVELOPMENT

E. coli response to ligand comprises of three modules, sens-
ing of ligand by receptor, signal transmission by network
of proteins and execution of response by flagella. Model
equations that were used to describe these three modules
are discussed below.

2.1 Sensing of ligand

Response of E. coli to a ligand in an aerobic environment
comprises of aerotaxis and chemotaxis. Chemotaxis and
aerotaxis are sensed independently by the receptors and
transmit the signals to a common histidine kinase, CheA.

Model equations for aerotaxis Aer senses the presence
of oxygen in the environment and send appropriate signal
to histidine kinase. Experiments have also suggested a
role of Tsr in aerotaxis. Here,we consider the combined
effect of the sensing through a single aerotaxis receptor.
A simple mathematical formulation present by Inoue and
Kaneko (2006) is used to explain the dynamics of aerotaxis
receptor. The aerotactic receptor is assumed to exist in
two responsive states, namely, active and inactive, where
the latter decrease the phosphorylation of CheA. Following
Inoue and Kaneko (2006), we introduce a second variable,
v, such that at its time evolution equation returns the
state of the aerotaxis receptor (T o) at steady state to its
pre-stimulus value. This ensures that the response due
to aerotaxis always leads to a perfect adaptation. The

receptor activation is captured through a Hill function in
terms of the oxygen concentration (CO2

) as given below,

dT o

dt
=

kCn
O2

knO + Cn
O2

− βvT o − αT o (1)

dv

dt
= βvT o − γv (2)

where k, kO, α, β, γ and n are the relevant parameters that
represent the dynamics of the aerotactic receptors. Here T o

is not a conserved moiety, it is equivalent to TA in case of
chemotaxis.

Model equations for chemotaxis The two-state model
proposed by Barkai and Leibler (1997) is used to de-
scribe the receptor dynamics for chemotaxis. Methyaltion
and demethylation rates of receptors in the presence of
CheR and CheB-p determines the dynamics of receptors.
Chemotaxis receptor equations are explained in detail in
the appendix A.

2.2 Signalling Trasduction

Signals in response to oxygen and MeAsp converge at
CheA hisdtine kinase which is reflected in the additional
term, k1T

oA, in equation 3. The first term captures the
response to MeAsp via the Tar receptor and is consistent
with the model of Barkai and Leibler (1997). Thus the
active chemotaxis and aerotaxis receptors increase the
phosphorylation rate of CheA. The phosphorylated CheA-
p transfers its phospate group to CheY and CheB. Recall
that concentration of CheY-p decides the cell response
by interacting with FliM protein of flagella. Dynamics of
CheA-p, CheB-p and CheY-p are given in equations 3 to
5, while the rate constants (other than k1) were taken from
Vuppula et al. (2010).

dAp

dt
= 23.5(TA)A− 100(Ap)Y − 10(Ap)B − k1T oA (3)

dYp
dt

= 100(AP )Y − 30(Yp) (4)

dBp

dt
= 10(Ap)B − (Bp) (5)

Here, A, AP , Y , Yp, B and Bp represent, respectively,
the concentrations of CheA, phosphorylated CheA, CheY,
phosphorylated CheY, CheB and phosphorylated CheB.
Li and Hazelbauer (2004) have measured these chemotaxis
protein concentrations for wild type E. coli and are given
by, A + Ap = 5.3 µM, B + Bp = 0.28 µM, Y + Yp =
9.7 µM and CheR (R) = 0.16 µM. The total receptor
concentration, T0 + T1 + T2 + T3 + T4 = 17 µM and
R = 0.16 µM. These values are identical to that used
for sensing of MeAsp. The above equations were solved
in conjuction with Tar receptor equations (appendix) to
obtain the dynamics of the signaling network.

2.3 Motion of cell

The above intra-cellular pathway determines the concen-
tration of CheY-p which in turn decides the CW bias of the
cell, i.e., fraction of time cell spends in tumbling. Vuppula
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et al. (2010) use a Hill relation to relate the CW bias and
CheY-P (Yp) concentration with a Hill coefficient (n) of
50 and a Half saturation constant (K) of 3.1 µM,

CW =
Y n
p

Y n
p +Kn

(6)

We use the same values in the simulations. The calculated
CW bias was used to determine the time spent in the
tumble and run mode. The time spent by the cell in the
tumble mode (ttum) is the ratio of the CW bias to the
switching frequency (F = dCW

dYp
) while that in the run

mode (trun) is the ratio of CCW bias to the switching
frequency.

ttum =
CW

F
(7)

trun =
1− CW

F
(8)

The probability that a cell in the run mode will tumble
(Ptum) is equal to the ratio of the discrete time step used
in the simulation to the run time,

Ptum =
dt

trun
(9)

Similarly, the probability that a cell in the tumble mode
will run (Prun) is equal to the ratio of the discrete time
step used in the simulation to the tumble time,

Prun =
dt

ttum
(10)

In our simulations, for a cell already in a run mode,
we generate a random number between 0 and 1, and
compare this value with the probability that the cell will
tumble. If the generated random number is less than
the probability value, then it will tumble else it will
continue to run. A similar procedure is used to decide
a run when the cell is in the tumble mode. Simulations
were performed to capture the motion of E. coli in a
capillary for a steady concentration gradient of MeAsp.
Concentration of MeAsp in the capillary varies linearly
with position (x), L(x) = L0 + Gx, where L0 is MeAsp
concentration at x = 0 and G is the gradient. E. coli moves
in response to MeAsp gradient and consumes oxygen,
thereby establishing an oxygen gradient. Therefore, the
cell movement is determined by the combined response
to MeAsp and oxygen. The oxygen concentration in the
capillary is determined using a diffusion equation that also
accounts for the consumption of oxygen by the bacteria,

∂CO2

∂t
= D

∂2CO2

∂x2
−Ncell(x)θ(CO2

) (11)

Here, Ncell(x) is the cell density. Cell density is cell distri-
bution in the capillary per unit volume of the capillary. It
gets updated after every step in simulation using the cells
distribution obtained. Distribution of cells in the capillary
are divided into 5 equal bins. In each bin cell density,
number of cells present in the bin divided by its volume is
measured. While D = 2000µm2/s is the oxygen diffusivity
(Cussler, 1997). To ensure that oxygen consumption by
the cell decreases as oxygen concentration declines, θ is
assumed to follow Michaelis-Menten kinetics.

θ(CO2
) = cr

CO2

CO2
+ k0

(12)

where cr is the maximum oxygen consumption rate by
E. coli i.e., 10−15 mg/s bacterium (Martin, 1932) and

k0 is the Michaelis Menton constant. The capillary has
initially a uniform concentration of oxygen (Ci) while cells
are assumed to be clustered at one end of the capillary,
x = 0. Since the simulations represent experiments where
the ends of the capillary are sealed with wax to prevent
oxygen from entering the capillary, a zero flux condition
was applied at the domain boundaries, x = 0, L. Thus the
initial and boundary conditions becomes,

CO2
(x, 0) = Ci,

∂CO2
(0, t)

∂x
= 0,

∂CO2
(L, t)

∂x
= 0 (13)

In our simulation, we consider 1000 cells located at x = 0
at t = 0 that respond to an initially uniform concentration
of oxygen and a fixed linear gradient of MeAsp in the capil-
lary. Recall that MeAsp is only sensed but not metabolized
by the bacteria, and therefore the MeAsp concentration
remains constant in time. In the first time step, all cells
were made to run (with run speed of U = 20µm/s) in
the positive x direction for time duration, dt. At the
new location, we solve the diffusion equation to update
the concentration profile in the capillary. Next, the intra-
cellular pathway equations are solved for all the cells to
determine the probability of run or tumble for the next
time step. In case of run, the cell is made to move a
distance Udt at an angle chosen from a normal distribution
with mean zero angle (about its previous angle) and a
variance

√
2Drdt. Here, Dr is the rotational diffusivity

during the run mode (Vuppula et al., 2010). On the other
hand, in case of a tumble event, the position of the cell is
held constant and a new direction of the motion is chosen
from a gamma distribution of turn angles with a mean
turn angle of 62o ± 1.1 (Berg and Brown, 1972). Note
that while the cell is allowed to move in the y direction,
the net displacement along x is considered for determining
the cell density. This is equivalent to applying a periodic
boundary condition along y. The above steps are repeated
at every time step to generate the cell density and oxygen
concentration as function of the spatial coordinates. The
average drift velocity of the cells was obtained by dividing
the average position of the population by time.

3. RESULTS

3.1 Excitation and adaptation

In a uniform environment E. coli exhibits a random
motion and all its signaling proteins will be at steady
state. For a step change in the attractant, the CheY-p
concentration decreases immediately after which it slowly
returns to its pre-stimulus steady state value. We simulate
the dynamic response in terms of CheY-p concentration for
step changes in MeAsp (Fig 1(A)) and oxygen (Fig 1(B)).
While the drop in CheY-p concentration was immediate
in both cases, the adaptation time for response to MeAsp
was 100 times longer than that for oxygen. The parameters
for the oxygen response mechanism were chosen so as to
match the measured response reported by Yu et al. (2002)
(Fig 2). The latter report their results in terms of the rate
of change of direction per unit time (rcd in o/s) given by,

rcd =

∑
i=1..m

|∆θi|∑
i=1..m

∆ti
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Fig. 1. Response of CheY-p protein in response to a
step change in ligand concentration in A) MeAsp is
changed from 10 µM to 50 µM at 2000 s and made
it 10 µM back at 3500 s and oxygen is maintained at
10 µM B) Oxygen is changed from 10 µM to 50 µM
at 2000 s and made it back to 10 µM at 3500 s and
MeAsp is maintained at 10 µM C) Both Oxygen and
MeAsp are changed from 10 µM to 50 µM at 2000 s
and made it 10 µM back at 3500 s

where ∆θ is the change in the angle between two time
steps, m is the total number of time steps over a small
time interval. There are six parameters to characterize
the aerotaxis response (see equation (1) and (2)) which
were fit using the aforementioned experimental results.
Parameter values obtained are k1 = 65.38, β = 0.5,
k = 10, ko = 4.6 ∗ 105M , n = 0.1, α = 0.35 and
γ = 0.65. It can be noted that after the parameter fitting,
the model simulation captures the entire measured time
profile of CheY-p. Successful prediction of experimental
measurements supports our mathematical formulation as
an effective way to describe the aerotaxis behavior of E.
coli.

To study the combined response of the aerotaxis and
chemotaxis pathways, simultaneous step changes in both
oxygen and MeAsp were performed (Fig 1(C)). It is clear
from the figure that the dip in the CheY-p concentration is
higher than the individual response though the adaptation
time is closer to that for MeAsp.

3.2 Response to linear gradient

Vuppula et al. (2010) have measured the drift velocity
for a fixed linear gradient of MeAsp in a capillary. Here,
cells were introduced at one end so that the cells travels
up the gradient. During this process, the cells consume
oxygen and set up a gradient of oxygen. Thus the measured
drift velocity is the net chemotactic response to both the
gradient of MeAsp and oxygen. The model equations were
solved to obtain the drift velocity for various gradients of
MeAsp with a fixed initial concentration of oxygen. Figure
4 compares the predicted drift velocity with measurements
as a function of the distance from the plug (x = 0) for
different MeAsp gradients. The model was able to capture
the decrease in the drift velocity away from the plug due to
adaptation. Figure 4 shows that drift velocity at a distance
of 2000 micron for varying gradients for MeAsp. While the

Fig. 2. E. coli response to step change from 0 to 0.0051
pmol in oxygen. • is experimental measurements and
+ is model predictions. Band of values were obtained
due to the stochastic behaviour in selecting angles

model is able to predict the observed trend, the predicted
values are lower than the measurements.

Fig. 3. Drift velocity as a function of position for four dif-
ferent gradients of MeAsp: � is experimental measure-
ments, thick line is model prediction. (A) G = 0.016
µM/µm, L0= 16µM (B) G=0.08 µM/µm, L0= 80µM
(C)G=0.16 µM/µm, L0= 160µM (D)G= 1.6µM/µm,
L0= 1600µM. In all the cases, the model predictions
are close to the measurements

4. DISCUSSION

It is well known that bacteria consumes oxygen during the
chemotactic response to a ligand. While most experiments
and simulations focus on the latter, we attempt for the
first time, to model the motion of bacteria in response to
simultaneous variations in both oxygen and ligand con-
centration. The theoretical framework involves a detailed
signaling pathway model for MeAsp and a phenomeno-
logical model for the response to oxygen. The model was
able to simultaneously capture the consumption of oxygen
along with its motion in response to the set gradient.
Our model is able to qualitatively predict the motion of
bacteria over a wide range of MeAsp gradients results
though the predicted values are somewhat lower than
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Fig. 4. Comparison of the measured drift velocity (�) with
theoretical predictions at a distance of 2000µm from
the plug for the K12 strain as a function of the MeAsp
gradient. � is experimental measurements, thick line
is model prediction.

the measurements. The discrepancy may be attributed
to the absence of precise measurement of motor bias to
step change in oxygen concentration over a wide range.
However, the proposed model can be considered as a first
step to model aerotaxis and further integrate chemotactic
response to other ligands.

ACKNOWLEDGEMENTS

We thank Department of Science and Technology, India
for providing financial assistance.

REFERENCES

Barkai, N. and Leibler, S. (1997). Robustness in simple
biochemical networks. Nature, 387, 913–917.

Berg, H.C. and Brown, D.A. (1972). Chemotaxis in
Esherichia coli analysed by three-dimensional tracking.
Nature, 239, 502–507.

Cussler, E.L. (1997). Diffusion: Mass Transfer in Fluid
Systems. New York: Cambridge University Press.

Eisenbach, M. (2004). Chemotaxis, chapter 3. Imperial
college press.

Emonent, T. and Cluzel, P. (2008). Relationship between
cellular response and behavioral variability in bacterial
chemotaxis. Proc. Nat. Acad. Sci. USA, 105, 3304–3309.

Inoue, M. and Kaneko, K. (2006). Condition for intracel-
lular adaptive dynamics for chemotaxis. Phys. Rev. E,
74, 011903.

Laszlo, D.J. and Taylor, B.L. (1981). Aerotaxis in
Salmonella typhimurium: Role of electron transport. J
Bacteriol, 145, 990–1001.

Li, M. and Hazelbauer, G.L. (2004). Cellular stoichiometry
of the components of the chemotaxis signaling complex.
J Bacteriol, 186, 3687–3694.

Martin, D. (1932). The oxygen consumption of escherichia
coli during the lag and logarithmic phases of growth. J
Gen Physiol., 15(6), 691708.

Rebbapragada, A., Johnson, M.S., Harding, G.P., Zuc-
carelli, A.J., Fletcher, H.M., Zhulin, I.B., and Taylor,
B.L. (1997). The aer protein and the serine chemore-
ceptor tsr independently sense intracellular energy levels

and transduce oxygen, redox, and energy signals for
Escherichia coli behavior. Proc Natl Acad Sci U S A,
94, 10541–10546.

Vuppula, R.V., Tirumkudulu, M.S., and Venkatesh, K.V.
(2010). Mathematical modeling and experimental val-
idation of chemotaxis under controlled gradients of
methyl-aspartate in Escherichia coli. Mol. BioSyst, 6,
1082–1092.

Yu, H.S., Saw, J.H., Hou, S., Larsen, R.W., Watts, K.J.,
Johnson, M.S., Zimmer, M.A., Ordal, G.W., Taylor,
B.L., and Alam, M. (2002). Aerotactic responses in
bacteria to photoreleased oxygen. FEMS Microbiol.
Lett., 217, 237–242.

Appendix A. MODEL EQUATIONS FOR
CHEMOSENSING

Let Ti represent the concentration of receptor complexes
with i residues methylated and αi(L) denote the prob-
ability that the receptor complex Ti is active when the
concentration of chemoattractant is L. The receptor com-
plex can be in one of five methylation states with i = 0, 1,
2, 3 or 4 methyl groups. The total concentration of active
receptors is given by,

TA =

4∑
0

αi(L)Ti, (A.1)

while the total concentration of inactive receptors is given
by,

T I =

4∑
0

(1− αi(L))Ti. (A.2)

The binding kinetic equation for active receptor complex
is given by,

TA
F + L
 [TAL] (A.3)

The total active receptor complex concentration TA
T is

given by,

TA
T 
 TA

F + [TAL] (A.4)

where TA
F is free (non-ligand bound) active receptor com-

plex concentration and [TAL] is the ligand bound active
receptor complex concentration respectively. The fraction
of free active receptor complex concentration from the
above equation is given by,

TA
F

TA
T

=
KL

KL + L
(A.5)

where KL is the ligand dissociation constant. Similarly, the
fraction of ligand bound receptor complex concentration is
given by,

[TAL]

TA
T

=
L

KL + L
(A.6)

The total probability of the receptor complex being in
active state is the sum of the probabilities of the ligand
bound and non ligand bound being in active state and is
given by,
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αi(L) =
αL
i L

KL + L
+

α0
iKL

KL + L
(A.7)

where the parameters assigned the following numerical
values are, αL

0 = 0, αL
1 = 0, αL

2 = 0.01, αL
3 = 0.05, αL

4
= 1, α0

0 = 0, α0
1 = 0.65, α0

2 = 0.75, α0
3 = 0.95, α0

4 =
1 and KL = 250 µM. The Barkai and Leibler (Barkai
and Leibler, 1997) model assumes that CheR (R) binds
to the inactive receptors (T I) and the phosphorylated
CheB (Bp) binds to the active receptors (TA). Assuming
that, the methylation and demethylation reactions follows
Michelis - Menten kinetics, the rate of demethylation and
methylation is given by, respectively,

rB =
kb(Bp)

KB + TA
(A.8)

rR =
kr(R)

KR + T I
(A.9)

where, kb = 0.208 s−1 and kr = 0.25 s−1 are the rate
constants and KB = 0.54 µM and KR = 0.39 µM are
the Michaelis constants (Emonent and Cluzel, 2008) for
receptor demethylation and methylation, respectively.

The rate of methylation is proportional to the concen-
tration of inactive receptors (1-αi(L))Ti, and the rate
of demethylation is proportional to the concentration of
active receptors αi(L) Ti. For the receptor Ti, the rate of
demethylation is rB αi(L) Ti and the rate of methylation
is rB (1 − αi(L)) Ti, the mass balance equations for the
corresponding receptor can be given by,

dT0
dt

= −rR(1− α0(L))T0 + rBα1(L)T1 (A.10)

dT1
dt

= −rR(1− α1(L))T1 + rBα2(L)T2

+rR(1− α0(L))T0 − rBα1(L)T1

(A.11)

dT2
dt

= −rR(1− α2(L))T2 + rBα3(L)T3

+rR(1− α1(L))T1 − rBα2(L)T2

(A.12)

dT3
dt

= −rR(1α3(L))T3 + rBα4(L)T4

+rR(1− α2(L))T2 − rBα3(L)T3

(A.13)

dT4
dt

= rR(1− α3(L))T3 − rBα4(L)T4 (A.14)
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