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Abstract: This paper deals with the development of a multivariable predictive control structure
for improving the nitrogen removal of a biological wastewater treatment plant while reducing
the operational costs. A simple dynamic matrix control algorithm is utilised as predictive
controller and applied to a full-scale municipal wastewater treatment plant for controlling
nitrogen concentrations at the end of the biological process. The complex calibrated model of
the process is implemented in a commercial simulator that acts as a real-time testing platform
for the proposed control structure, and allows the identification of the multivariable input-
output model for the predictive control. Simulation results show the potentialities of the chosen
predictive control, which allows the reduction of ammonia peaks in the effluent and at the same
time permits a reduction of the energy consumption costs.

Keywords: Activated sludge process model, Wastewater treatment, Multivariable control,
Dynamic Matrix Control

1. INTRODUCTION

During the last decades the increased consciousness on the
negative impact of eutrophication has given rise to more
and more stringent requirements in terms of water pollu-
tion prevention. The tightened treatment regulations are
nowadays acting like a driving force for the improvement
of wastewater treatment plants (WWTPs) (Olsson, 2012).
The plants are in fact evolving toward efficient and safe
operations with high-quality effluents, while optimizing
operating and management costs. A major requirement for
achieving these objectives relies on real-time automation
technologies which would allow for an efficient monitoring
and supervision of the process units and to implement ad-
vanced control strategies such as model predictive control
(MPC) algorithms.

MPC has become an attractive control strategy for a
considerable number of WWTP applications over the last
decades, starting from the seminal works of Hoen et al.
(1996), Steffens and Lant (1999) to Weijers (2000), Rosen
et al. (2002), Sotomayor and Garcia (2002), Alex et al.
(2002), Marsili-Libelli and Giunti (2002), Corriou and
Pons (2004), Vrec̆ko et al. (2004), Stare et al. (2007),
Ekman (2008), and more recently Ostace et al. (2011),
Vrec̆ko et al. (2011) and O’Brien et al. (2011). This interest

is mainly due to the ability of the MPC algorithms of deal-
ing with multivariate constrained control problems in an
optimal way, through the use of simple and generally linear
models. The main advantage is that MPC enables easy
control of multivariable processes and handles constraints
of the manipulated signals in a systematic way (Camacho
and Bordons, 1999; Maciejowski, 2002).

The purpose of this work is to test the multivariable
predictive controller on the activated sludge process (ASP)
of a full-scale WWTP and compare its behaviour with
the current control strategy implemented in the plant. As
predictive controller is applied a Dynamic Matrix Con-
trol (DMC), which utilises a linear finite response process
model and a constant output additive disturbance model.
The choice of a DMC strategy is preferred to a rela-
tively simpler decoupled feedback controllers configuration
mainly because considered less sensitive to the optimal
choice of controller set-points and advantageous for a wider
range of operating conditions.

As testing platform, a structured model of the activated
sludge process at the Viikinmäki WWTP is employed. The
structured model is constructed and simulated by means of
a commercial software, the GPS-X (Hydromantis, version
6.2) which is linked to the Matlab controller in such a way
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Fig. 1. A schematic of the activated sludge process of the Viikinmäki wastewater treatment plant.

that a realistic representation of the real-world behaviour
might be achieved. Particular consideration is given to
the effluent ammonia and nitrate concentration by manip-
ulating the dissolved oxygen set-points and the internal
recirculation flow-rate in the bioreactor. The choice of the
control structure is mainly due to the fact that (i) the
ammonia-based control of the ASP can led to significant
savings in the energy cost and in potential improvements
in the removing ammonia (Rieger et al., 2012) and (ii) the
nitrate effluent concentration needs to be guaranteed.

The paper is organised as follows. After an introductory
description of the investigated unit process and the struc-
tured model used as simulation platform (Section 2), the
main stages of the DMC configuration are presented and
discussed (Section 3). The development of the controller is
presented in details, starting from the preliminary process
identification (Section 3.2) and configuration (Section 3.1),
toward the simulation results in Section 4.

2. PROCESS DESCRIPTION AND SIMULATION
PLATFORM SET-UP

The Viikinmäki wastewater treatment plant (800 000 pop-
ulation equivalent) is the largest WWTP in Finland. The
plant is located in Helsinki and it treats an average in-
fluent flow of 250 000 m3d−1, with peaks of 800 000
m3d−1, of which about 85% is domestic and 15% indus-
trial wastewater. The wastewater treatment consists of
bar screening, grit removal, pre-aeration, primary sedi-
mentation, activated sludge treatment (eight parallel lines
of cascaded bioreactors), secondary sedimentation and a
tertiary biological treatment (ten parallel lines of deni-
trifying post-filtration reactors). The sludge treatment is
achieved with four mesophilic digesters and subsequent
dewatering systems. Biogas from sludge digestion is used
for electricity and heat production. Nitrogen removal is
obtained in the activated sludge process and in the den-
itrifying post-filtration process. A total nitrogen removal
of approximately 90% of yearly average is achieved.

The nitrogen removal in Viikinmäki starts in eight acti-
vated sludge lines through tapered aeration and secondary
sedimentation. Each ASP line consists of cascaded biore-
actors, followed by two settlers, Figure 1. The cascade of

bioreactors comprises a mixing zone followed by a non-
aerated zone (Z1), five aerated zones (Z2 to Z6) and a
degasing zone. After the bioreactors, activated sludge is
settled at the bottom of the sequential settlers from where
part is returned to maintain the concentration of activated
sludge in the reactors.

The ASP lines are well monitored with hardware sensors
providing on-line measurements for the most important
process variables. The influent from the primary sedimen-
tation to the ASP lines is characterized continuously by its
flow-rate, ammonia (NH4-N) and suspended solids (SS).
Flow-rates of sludge recirculation from the secondary sed-
imentation and internal recirculation (calculated from the
pump frequency values), are also reported continuously.
The dissolved oxygen (DO) concentration is measured in
zones Z2 to Z6 and SS concentration is analysed only
in zone Z6. The NH4-N and nitrate-nitrogen (NO3-N)
concentrations are measured after degasing. It is worth
noticing that Figure 1 point out only the on-line measure-
ments considered relevant for the present study.

The current automation systems involves the control of
the number of aerated zones, which is realized according
to NH4-N measurements and the time-delays set for
switching the aeration modes. The anoxic volume can be
varied by controlling the air flow in zones Z1 to Z3, so that
the number of the anoxic zones is adjustable according to
treatment needs. Air flow-rate is also controlled in zones
Z4 to Z6, by means of a feedback controller with a DO
target value set at 3.5 mgL−1.

From a modeling point of view, as the main skeleton for
representing the biological reactors in GPS-X environ-
ment, the Activated Sludge Model No. 3, ASM3 (Henze
et al., 2000) is utilised, whereas the secondary settlers are
represented as non-reactive basins by means of the so-
called Takács model (Takács et al., 1991). To calibrate the
models and characterise the influent wastewater entering
the ASP, a set of process measurements from the plant
has been collected. The data correspond to one-year con-
tinuous operation (Jan 1, 2009 - Dec 31, 2009), recorded
as hourly averages from the data acquisition system and
twice-three times per week as flow proportional composite
samples of wastewater from the laboratory.
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Table 1 summarizes the overall set of available process
variables relevant to the task.

Table 1. Measurements considered in the acti-
vated sludge process model set-up.

Name Description Unit
On-line data

I-Q Wastewater flow-rate to the ASP m3d−1

Z2-DO Dissolved Oxygen in zone 2 mgL−1

Z3-DO Dissolved Oxygen in zone 3 mgL−1

Z4-DO Dissolved Oxygen in zone 4 mgL−1

Z5-DO Dissolved Oxygen in zone 5 mgL−1

Z6-DO Dissolved Oxygen in zone 6 mgL−1

Z6-SS Suspended Solids in zone 6 gL−1

D-NH4 Ammonia after degas mgL−1

D-NO3 Nitrate after degas mgL−1

QA Internal recycle flow-rate m3d−1

S1-QR Return activated sludge from settler 1 m3d−1

S2-QR Return activated sludge from settler 2 m3d−1

QW Wasted sludge flow-rate m3d−1

T Liquid temperature ◦C
Laboratory analysis

I-COD Chemical Oxygen Demand to the ASP mgL−1

I-SS Suspended Solids to the ASP mgL−1

I-TN Total Nitrogen to the ASP mgL−1

I-NH4 Ammonia to the ASP mgL−1

I-ALK Alkalinity to the ASP mgL−1

The study started with a preliminary cleaning of the
online data: unfeasible zeros and constant process val-
ues associated with saturated measurements have been
removed. Possible instrument faults in the ASP analysers
are cleaned off by means of a moving-window principal
component analysis with a window size of one month. For
reconstructing to certain extends the continuos behavior
of the available scattered laboratory data for the influent
concentrations, cubic spline interpolation is applied to get
data with hourly sampling average.

The calibration procedure involved the definition of the
stoichiometric and temperature dependent kinetic param-
eters of the ASM3 model and the settling parameters of the
Takács model. It has been approached considering firstly
the parameters given by Fred (2005), followed by ad-hoc
adjustments to match the observed data at the bioreactor
effluent.
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Fig. 2. Winter scenario: Simulation results comparison for
ammonia (a) and nitrate (b) after the degas.

The resulting calibrated model allows representing the
main ASP effluent concentrations and it is considered
here as the testing platform for the multivariate con-
troller. Comparison examples between the simulated and
measured ammonia and nitrate concentrations after the
degasing basin are reported in Figure 2 and 3 for winter
and spring, respectively. The dynamics of the simulated

concentrations are appropriate and the discrepancy con-
sidered negligible.
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Fig. 3. Spring scenario: Simulation results comparison for
ammonia (a) and nitrate (b) after the degas.

3. DYNAMIC MATRIX CONTROL DEVELOPMENT

A model predictive controller in its basic formulation of
dynamic matrix control is developed in the present work
to control the effluent ammonia and nitrate concentrations
at the exit of the bioreactor while reducing the operative
costs. The controller has been implemented in Matlab and
linked to the GPS-X model of the full-scale ASP at the
Viikinmäki WWTP (Figure 4).

Fig. 4. Link between the process (GPS-X) and the con-
troller (Matlab) in the simulation loop.

The basic idea of every MPC algorithms is to calculate at
each control step a control sequence that minimises a cer-
tain objective function. The control sequence is calculated
based on a simplified model of the process and measured
outputs.

3.1 DMC configuration

Denoting with Hp the prediction horizon and with Hu

the control horizon, the following objective function (Stare
et al., 2007) is implemented in the DMC for a m-input and
n-output system:

J =
[
e(k + 1)−A∆u(k)

]T [
e(k + 1)−A∆u(k)

]
+

[
∆u(k)

]T
R∆u

[
∆u(k)

]
+

[
u(k)− u0

]T
Ru

[
u(k)− u0

]
.

(1)

k denotes the sampling instants, e(k + 1) is the n ×
Hp-dimensional projected error vector representing the
difference between the desired input trajectory, r(k + 1),
and current output prediction in absence of further control
action, y0(k). The projected error is corrected by the
measured outputs d(k) available at the sampling instant.
The vector ∆u(k) represents the m × Hu-dimensional
vector of the future control moves and it is multiplied
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by the dynamic matrix A, while u(k) is the m × Hu-
dimensional input vector. The weighting matrixes R∆u

andRu penalise, respectively, changes in the control signal
in order to avoid excessive effort on the manipulated
variables and deviations of the input vector from the
desired steady-state values u0.

In this study, the controlled and manipulated variables are,
respectively, given by:

y =

[
D-NH4
D-NO3

]
; u =





Z2-DOsp

Z3-DOsp

Z4-DOsp

Z5-DOsp

Z6-DOsp

QA




(2)

The schematic representation of the DMC configuration is
given in Figure 5 where the dissolved oxygen concentra-
tions in each bioreactor tank (Z2 to Z6) are controlled by
simple PI feedback controllers that manipulate the airflow
rate in each zone.

Fig. 5. DMC configuration for the activated sludge process
of the Viikinmäki wastewater treatment plant.

3.2 Predictive model identification

A linear predictive model is developed and implemented
in the DMC algorithm (Ogunnaike and Ray, 1994). The
model is obtained by analysing the response of ammo-
nia and nitrate concentrations after the degasing basin
when a step function of different amplitudes is applied
to the manipulated variables (i.e., dissolved oxygen set-
points and internal recirculation flow-rate) in the GPS-X
environment. Mainly a simple first-order plus delay model
has been used to describe each input-output relationship,
being the only exception the step response of D-NH4 to
a step in QA which has been better represented by second
order with lead term plus time delay model. The model
parameters have been then estimated at the different op-
erating conditions and a set of process models is considered
to represent the input-output responses at different condi-
tions. A nominal model is subsequently assumed by simply
considering the mean values of the estimated parameters.
The error mismatch can be recovered because the ammonia
and nitrate concentrations are measured.

3.3 Tuning and implementation

The parameters related to the DMC development, such
as prediction and control horizon, sampling time and

weights, are found by analysing the dynamic response
of the process, considering the frequency of the inputs
variations and by tuning. In particular, a sampling time
of 30 min is used and the prediction horizon is set to be
equal to 2.5 hr (that is 5 time steps), which allows a small
condition number of the matrix A (Garriga and Soroush,
2010). The number of control moves is set to be equal
to 4 giving a good compromise between the dimension of
the dynamic matrix and control efforts. The control signal
remains constant during the prediction horizon and only
the first control move is applied at each sampling time.

To prevent higher oxygen profile in the first bioreactor
zones (Z2 and Z3) when the ammonia effluent does not
exceed the limit values and in order to avoid excessive
variation of QA from the value set in the full-scale plant,
the weighting matrix Ru is set to be equal to diag[0.03
0.1 0.08 0.008 0.2 0.05].

The changes of the manipulated variables have been also
penalised with a weighting matrix R∆u, which has been
set to be equal to diag[0.06 0.1 0.2 0.07 0.2 0.15]. The
penalisation implies the reduction on the oscillations of the
control signals and minimization of energy consumption.

The desired steady-state values u0 for the manipulated
variables are defined in such a way that a suitable profile
of dissolved oxygen inside the bioreactor is assured and
the internal recycle flow-rate is the close to the value
normally used at the Viikinmäki WWTP: u0 =[0.02 0.2
1.5 2 1 43200]. It is worth noticing that the dissolved
oxygen set-point is constrained at a maximum equal to 2.5
mgL−1, in fact higher values do not improve the ammonia
removal efficiency, but they only increase the aeration
energy consumption (Rieger et al., 2012).

Eventually, the parameters of the inner PI controllers
are tuned manually based on the process step responses,
in particular the proportional gain is set equally to 25
m3d−1(mgL−1)−1 for every PI, as well as the integral time
constant equal to 1.2 min, with a controller sampling time
of 2 min.

4. RESULTS AND DISCUSSION

The performance of the proposed controller has been
tested in terms of disturbance rejection, considering the
dynamic influent data of the Viikinmäki WWTP.

The results are presented in Table 4 as comparison be-
tween the original control configuration at the Viikinmäki
WWTP without the DMC and proposed control structure
with the DMC. The results refer to one-year simulation
with respect to the ammonia and nitrate concentrations,
as well as to the overall energy and aeration costs of the
activated sludge process. The original control has been
implemented by providing to the GPS-X model as set-
points of dissolved oxygen and internal recycle flow-rate
as they were acquired from the plant. It must be noticed
that the overall costs are calculated by GPS-X as sum
of the aeration and pumping energy consumptions in the
activated sludge process as a whole, assuming a fixed
energy price of 0.1 C/KWh. This is not related to the
real consumptions at the Viikinmäki WWTP but it is used
here as a mere comparison term.
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An average reduction of 7% in the effluent ammonia
concentration is achieved, shrinking the total and aeration
costs of, respectively, 2% and 4%, for each of the eight ASP
lines at the Viikinmäki WWTP. On average, the effluent
nitrate concentration is cut by 1% .

Table 2. Comparison of the DMC performance
over one year simulation.

Without DMC With DMC
Aeration cost
Average [C d−1] 151 145
Maximum [C d−1] 294 254
Minimum [C d−1] 69 47
Total cost
Average [C d−1] 509 498
Maximum [C d−1] 856 782
Minimum [C d−1] 302 259
Ammonia
Average [mgL−1] 3.7 3.4
Maximum [mgL−1] 17.8 15.3
Minimum [mgL−1] 0.01 0.04
Nitrate
Average [mgL−1] 12.9 12.7
Maximum [mgL−1] 24.2 19.5
Minimum [mgL−1] 3.1 4.8

Figure 6 shows the dynamic comparison of the simulation
behaviour for a period of one week during winter and
spring in 2009. The controlled concentrations of ammonia
and nitrate at the end of the bioreactor are compared
with the simulation results obtained with the original
configuration. In both conditions, the results indicate that
the DMC controller is capable to reduce the ammonia
peaks, while keeping the nitrate concentration roughly
constant associated with a reduction of the total costs.

06.Feb.09 08.Feb.09 11.Feb.09

5

10

15

D
−N

H
4−

N
 [m

gN
/L

]

 

 

Without DMC
With DMC

(a) Winter scenario - Ammonia

26.Apr.09 28.Apr.09 01.May.09

5

10

15

D
−N

H
4−

N
 [m

gN
/L

]

 

 

Without DMC
With DMC

(b) Spring scenario - Ammonia

06.Feb.09 08.Feb.09 11.Feb.09
2

10

20

D−
NO

3−
N 

[m
gN

/L
]

 

 

Without DMC
With DMC

(c) Winter scenario - Nitrate

26.Apr.09 28.Apr.09 01.May.09
2

10

20

D−
NO

3−
N 

[m
gN

/L
]

 

 

Without DMC
With DMC

(d) Spring scenario - Nitrate

Fig. 6. Comparison of ammonia and nitrate concentrations
after degas during winter, (a) and (c), and spring (b)
and (d).

Figure 7 and Figure 8 report the load of the manipulated
variables, for the same winter and spring periods in 2009.
It is possible to notice the effect of the controller on the
ammonia peaks, which are slight reduced with an increase
of the dissolved oxygen concentration in Z2 during the
winter Figure 7(b) and spring Figure 8(b) scenarios, while
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Fig. 7. Winter Scenario: Internal recycle flow-rate (a) and
dissolved oxygen set-points in the second (b), fourth
(c) and sixth (d) zone of the bioreactor.

the internal recirculation flowrate, Figures 7(a) and 8(a),
is following the desired trajectory.
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and sixth (d) zone of the bioreactor.

5. CONCLUSION

This paper presented a preliminary study for the develop-
ment of a multivariable predictive controller for improving
the nitrogen removal of a biological wastewater treatment
plant while reducing the operative costs. The complex
calibrated model of the activated sludge process is imple-
mented in a commercial simulator that acts like a real-
time testing platform for the proposed control structure.
A simple dynamic matrix control algorithm is utilized for
controlling nitrogen concentrations at the end of the bio-
logical process in a full-scale municipal wastewater treat-
ment plant. The DMC performance is compared with the
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current control strategy implemented in the plant, which
is already performing in a rather satisfactory way.

Based on the simulation results, the presented control
structure has shown the potentialities of the dynamic
matrix controller. It can be seen that overall the DMC
reduces the dissolved oxygen set-points and it is able to
cope with the imposed set-point variations by moving
the system along the desired trajectory. On the other
hand, a careful identification that takes into account the
inherent nonlinearities of the activated sludge process is
a key step in the development of the predictive controller
and needs to be investigated. In fact, major improvements
are expected by overcoming the limitations given by the
linear predictive model. In addition, the objective function
could be further improved by taking into account optimally
defined values of u0 and by introducing constraints for the
effluent violations. This is particularly necessary, from an
economical point of view, for the nitrate concentration.
Effluent nitrate removal is assured in the subsequent post-
denitrification unit at the Viikinmäki WWTP by dosing
methanol, which represents a significant cost for the plant.

Summarizing, the application of the proposed control
structure has demonstrated the benefits for the WWTP
control. It has been shown that stricter regulations can
be effectively enforced thought the use of robust multi-
variable controllers, which are able to improve the process
performances allowing a reduction of the operative costs.
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