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Abstract: In a recent publication (Georgakis, 2013), it was shown that a data-driven model obtained through 
the proposed Design of Dynamic Experiments (DoDE) was able to accurately optimize a penicillin 
fermentation process without the use a knowledge-driven model. The resulting optimal operation, just after a 
set of experiments, is almost identical to the one obtained in (Riascos and Pinto, 2004) using the detailed 
model of the process by B&R (Bajpai and Reuss, 1980). Here we examine in silico whether a similar number 
of DoDE experiments will result in an equally accurate estimation of the optimal process operation of 32 
other fermentation processes. This set of fermentation processes is defined by significantly varying the values 
of 10 key parameters of the initial penicillin model. Only between 3 and 7 of the 32 fermentations require 
additional experiments to obtain a satisfactory process optimization through a more accurate data-driven 
model. Furthermore, we examine two different time-evolving domains, A and B, within which the substrate 
in-flow is varied. One of them, domain A, forces the substrate inflow to be zero at the end of the batch. 
Domain B removes this constraint but requires more experiments. The obtained optimal operation in domain 
B is always better than that in domain A; sometimes by as much as 280%. This implies that limiting the 
number of experiments might also limit optimization gains 

Keywords: Pharmaceutical Processes; Optimization; Dynamics and Control, Design Experiment, Batch 
Fermentation 

1. INTRODUCTION 

Batch processes are often related to small production rates 
resulting in processes that are not understood enough to 
enable the development of an accurate mathematical model 
describing their inner workings. To accommodate such a 
lack of detailed understanding we recently introduced a new 
data-driven approach, the Design of Dynamic Experiments 
(DoDE) (Georgakis, 2009, Georgakis, 2013), as a 
generalization of the traditional Design of Experiments 
(DoE) (Box and Draper, 2007, Montgomery, 2013). The key 
generalization allows the use of time-varying inputs. The 
DoDE methodology has been successfully implemented in 
optimizing some additional batch process (Troup and 
Georgakis, 2013) (Fiordalis and Georgakis, 2013). It has also 
been experimentally verified in an industrial hydrogenation 
reaction (Makrydaki et al., 2010). The DoDE defines a finite 
number of experiments within an input domain and from the 
collected data at the end of each batch, develops a data-
driven response surface model that enables the optimization 
of the process. Examining in silico the DoDE optimization 
of the B&R process (Bajpai and Reuss, 1980) through their 
knowledge-driven model, (Georgakis, 2013) has shown that 
the data-driven DoDE approach was able obtain an optimal 
amount of the product that was almost identical to the 

amount obtained by (Riascos and Pinto, 2004) using a 
classical model-based optimization approach. We are 
interested to investigate whether this rather surprising, and 
very welcomed, accuracy of the DoDE can be reproduced in 
other fermentation processes, and under what conditions.  To 
this aim, we define in silico a set of 32 quite different 
fermentation processes by systematically varying 10 of the 
most important parameters of the B&R model over a wide 
range of values. For each of these processes we design a set 
of DoDE experiments, estimate an RSM model, calculate the 
conditions that maximize the amount of product at the end of 
the batch, and test whether the RSM-predicted optimal run 
produces in silico the expected amount. If the optimal 
operation produces what is expected, confidence in the 
accuracy of the DoDE model will be strong and the initial 
success not accidental.  

The selection of the input domain also has a strong effect on 
the experimental results, the estimated data-driven model 
and therefore the optimization of the process. The present 
paper examines in silico the impact two choices of input 
domain, A and B defined below, have on the DoDE 
optimization of the above set of 32 fermentation processes.  
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2. DIVERSE IN SILICO FERMENTATION PROCESSES  

Utilizing the recently introduced Design of Dynamic 
Experiments (DoDE), (Georgakis, 2013), has shown that a 
small set of experiments and a related data-driven model was 
able to accurately optimize a penicillin fermentation process 
without the use a knowledge-driven model. The resulting 
optimal is almost identical to the one obtained in (Riascos 
and Pinto, 2004) using the detailed model of the process by 
B&R (Bajpai and Reuss, 1980). To examine whether this is 
also true for other fermentations, we define a set of 32 
processes by modifying the initial parameters of the initial 
model reported by B&R. The diverse parameter set used is 
given in columns 2-11 of Table 1 below. The last row reports 
the parameter values for the B&R process, the 33rd process 
and base case. We do not examine all the possible 
combinations of the high and low values of the ten 
parameters varied. This would have resulted in 1024 (=210) 
cases, a full factorial design. Instead we have designed a 
resolution IV 210-5 fractional factorial design with 32 cases. 
The diversity of these fermentations is quite apparent if one 
looks at processes #13, 20 and 23, for example. Process #13 
is characterized by a relative slow growth rate for biomass 
and product. Contrasting this, process #20 is characterized 
by fast grow rates for both biomass and product.  Process 
#23 has a slow biomass growth rate and a relative fast one 
for the product.  

3. TWO EXPERIMENTAL DOMAINS  

We also study the effect of the DoDE domain by considering 
two cases A and B. They are depicted in Figure 1. One of the 
domains (A) assumes that the incoming flow rate of the 
substrate goes to zero at the end of the fermentation and the 
second one removes this restriction. Assuming that the 
substrate incoming flow rate goes to zero at the end of the 
fermentation introduces an additional constraint and reduces 
the set of required experiments for estimating a Response 
Surface Model (RSM). It might be also a reasonable one, as 
the substrate is a reactant. We are interested to see if it has a 
negative effect in the optimization of the process. In the 
second case (B) we remove this constraint and allow the 
maximum substrate inflow rate to have a finite value. This is, 
however, smaller than the maximum value allowed at time 
zero. 

We will assume that the initial volume of the bioreactor, V0
, 

is 7 lt and the maximum possible, Vf
, is 10 lt. We will then 

need to feed in semi-batch mode DV  (=3) lt of substrate. We 

first define the reference incoming flow rate, uo(t) , that will 

serve as the center point of the DoDE design.  In the set of 
DoDE experiments for each of the 32 processes we will vary 
the initial biomass concentration as well as the batch 
duration, besides the substrate feeding profile. The batch 
duration will be varied about a reference batch time, which 
needs to be appropriate for each process, based on the 

different set of parameters of said process. This reference 
batch time is assumed to be depended on the biomass and 
product growth rates. For each of the 32 processes it is 
calculated by 

  

t
b,r
= t

g,r


max,r


max

+ t
p,r


max,r


max
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The reference batch time for each process is defined relative 
to the initial penicillin process of B&R process, where the 
biomass needed about 30 hr to grow and the penicillin 
growth extended for another 100 hr. Based on the 
appropriate reference batch time for each process, we define 
the total volume constraining equation as follows: 

   
u

0
(t)dt

0
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For domain A, we impose 
  
u

0 A
(t

b,r
) = 0 and assume a 

linear dependence on t, which implies that  

  
u

0 A
(t) = 2DV 1 t t

b,r( ) t
b,r

 . (3) 

We then let the substrate flow profile to be in the domain 

  u0 A
(t) ± Du

0 A
(t) , with 

  Du
0 A

(t) = u
0 A

(t). This allows 

  u(t) to vary between zero and 
  2u

0 A
(t) . It is depicted in 

the upper part of Figure 1. For case B we set 

  
u

0 B
(t

b,r
) = u

0 B
(0) 5 and domain B, in Figure 1, is defined 

by 

 
  
u

0B
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0 B
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0B
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0B
(t) = DV 54t t
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Again here, this allows   u(t) to vary between zero and 

  2u
0 B

(t) . 

 

Figure 1: Schematic Representation of the two Domains, 
A and B, in which the Feeding Profiles of the 
Substrate Inflow will be Confined 
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4. DESIGN OF DYNAMIC EXPERIMENTS 

We define two traditional factors in the Design of Dynamic 
Experiments (DoDE).  Firstly, the batch time is defined with 
respect to the reference batch time of each process 

tb = tb,r + Dtb.rw1 with   -1£ w1 £ +1  (5) 

For the original process 
  
Dt

b,r
 was taken equal to 30 hr. The 

value that we will use in each of the 32 other processes will 

be 
  
Dt

b,r
= 30t

b,r
/ 130 . Secondly, the initial biomass 

concentration varies from 1 to 2 gr/lt. 

  
x(0) =1.5+ 0.5w

2
with  1£ w

2
£ +1 (6) 

 

In each DoDE design, we now define the coded time-varying 
factor, z(t ), related to the substrate inflow  

  
u(t ) = u

0
(t )+ Du

0
(t )  z(t ) with 1£ z(t ) £ +1  (7) 

The time dependency within each run is defined in terms of 

the dimensionless time, t = t tb , for each separate run. Now 

let   z(t )  be expanded in a series of shifted Legendre 

polynomials.  For each of the 32 processes defined in Table 
1, and for the two domains A and B we will now define a set 
of DoDE experiments.  The procedure used is described in 
(Georgakis, 2009, Georgakis, 2013). We limit the series 
expansion of z(t ) to only the first 3 polynomials so that the 

number of experiments is a reasonable one.  

  

z(t ) = x
1
P

0
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P
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P

2

P
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1
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Substituting   u(t )  into the total volume constraint in eq. (2) 

we have: 
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Solving eq. (9), we get 1w  expressed in term of 
  x1

and 
  x2
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where 
 
h

1
= 3, h

2
= 3 for domain A and 

 
h

1
= 3,h

2
= 2 for 

domain B. The above relationship reduces the degrees of 
freedom by one in both A and B cases. For domain A we 
have an additional constraint at the end of the batch, namely 

that 
  
Du(t = 1) = Du(t = t

b
) = 0 . This allows us to set 

  
z(1) = 0 , implying that 

  
x

3
= (x

1
+ x

2
) . 

The degrees of freedom in domain A are now further 
reduced to three. In domain A the DoDE set of runs is 
obtained by a constrained D-Optimal design with 16 runs. 
These runs aim in estimating a quadratic Response Surface 
Model (RSM). Ten of the runs are for estimating the same 
number of parameters; three additional runs for estimating 
the Lack-of-Fit (LoF) statistic and three replicate runs at the 
center point to estimate the normal variability of the process. 
In domain B the corresponding D-Optimal DoDE, again for 
a quadratic RSM, has a total of 21 experiments; fifteen 
experiments for the model parameters, three for the LoF 
statistic and three replicates at the center point for the 
estimation of the normal variability of the process. The 
constraining relationships that both domains need to satisfy 
are the inequalities of eq. (5) and eq. (6) and the following 
set of inequalities, which ensure that the constraints in eq. (7) 
are satisfied.  

  
1£ x

1
± x

2
± x

3
£1  (11) 

 

Figure 2: Some of the Feeding Profiles in Domain A for 
Process #13, along with the Center Point 
Reference Profile and the Calculated Optimal 
one 

 

Figure 3: Some of the Feeding Profiles in Domain B for 
Process #13, along with the Center Point 
Reference Profile and the Calculated Optimal 
one 
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Table 1. Thirty Two Diverse Sets of Model Parameters Representing a Multitude of Possible Fermentation Processes 
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 Pg

 Pg

 Pg

 

 
- 
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1 5 3 3 5 3 32 32 46 59 151 10.5 1.1 10.7 -1.3 20.4 1.8 20.2 1.0 89.3 

2 20 3 3 5 3 3 3 18 37 151 71.1 2.9 66.3 7.2 83.0 7.2 81.2 2.2 22.4 

3 5 11 3 5 3 3 3 18 59 95 142.4 11.4 141.8 -0.3 267.4 17.4 190.8 40.1 34.6 

4 20 11 3 5 3 32 32 46 37 95 62.6 3.6 58.6 6.9 76.4 5.4 75.1 1.8 28.1 

5 5 3 12 5 3 3 3 46 37 95 32.6 3.3 30.2 7.7 40.5 4.5 40.3 0.6 33.2 

6 20 3 12 5 3 32 32 18 59 95 20.2 1.6 19.7 2.5 32.3 3.7 28.2 14.2 43.3 

7 5 11 12 5 3 32 32 18 37 151 76.6 10.9 61.2 25.1 101.1 14.9 95.4 6.0 55.9 

8 20 11 12 5 3 3 3 46 59 151 111.0 6.3 112.0 -0.9 151.8 19.1 154.2 -1.6 37.7 

9 5 3 3 20 3 32 32 18 37 95 4.4 0.2 4.4 -1.1 15.1 1.2 13.4 13.1 201.9 

10 20 3 3 20 3 3 3 46 59 95 51.4 3.7 46.1 11.6 55.2 2.8 49.3 11.9 7.1 

11 5 11 3 20 3 3 3 46 37 151 109.3 14.8 111.1 -1.6 147.3 13.3 122.3 20.4 10.1 

12 20 11 3 20 3 32 32 18 59 151 70.1 5.1 66.1 5.9 112.6 9.7 111.3 1.2 68.3 

13 5 3 12 20 3 3 3 18 59 151 82.5 6.6 76.3 8.1 92.0 12.0 94.5 -2.6 23.8 

14 20 3 12 20 3 32 32 46 37 151 2.7 0.1 2.7 0.1 7.1 0.5 6.5 9.5 139.0 

15 5 11 12 20 3 32 32 46 59 95 10.1 1.5 10.8 -6.2 38.5 3.1 41.1 -6.3 280.8 

16 20 11 12 20 3 3 3 18 37 95 143.1 10.9 137.5 4.0 158.1 9.6 162.3 -2.6 18.0 

17 5 3 3 5 32 3 3 18 37 95 93.5 6.3 88.2 6.0 107.0 6.1 102.8 4.1 16.5 

18 20 3 3 5 32 32 32 46 59 95 4.8 0.2 5.1 -5.4 10.8 0.4 10.3 4.7 101.0 

19 5 11 3 5 32 32 32 46 37 151 33.2 4.4 29.9 11.3 79.2 4.6 61.2 29.5 104.9 

20 20 11 3 5 32 3 3 18 59 151 258.6 15.9 263.9 -2.0 298.7 27.0 285.0 4.8 8.0 

21 5 3 12 5 32 32 32 18 59 151 8.6 0.5 8.3 3.3 19.9 1.5 20.3 -2.3 144.5 

22 20 3 12 5 32 3 3 46 37 151 62.5 4.7 60.3 3.7 66.3 5.7 66.7 -0.6 10.7 

23 5 11 12 5 32 3 3 46 59 95 169.2 15.9 156.4 8.2 183.0 15.6 186.3 -1.8 19.1 

24 20 11 12 5 32 32 32 18 37 95 67.5 6.1 67.0 0.8 97.5 6.3 92.3 5.7 37.8 

25 5 3 3 20 32 3 3 46 59 151 35.6 3.3 29.6 20.3 41.0 3.9 37.3 9.9 26.3 

26 20 3 3 20 32 32 32 18 37 151 12.8 0.7 12.8 -0.2 22.4 0.9 21.9 2.0 71.8 

27 5 11 3 20 32 32 32 18 59 95 65.5 8.2 59.8 9.6 117.4 16.0 109.0 7.7 82.3 

28 20 11 3 20 32 3 3 46 37 95 108.1 8.1 104.6 3.4 149.5 11.2 127.1 17.6 21.5 

29 5 3 12 20 32 32 32 46 37 95 5.4 0.3 5.3 0.7 10.6 0.8 10.6 0.4 99.2 

30 20 3 12 20 32 3 3 18 59 95 70.7 5.3 65.1 8.6 88.9 9.0 87.6 1.5 34.5 

31 5 11 12 20 32 3 3 18 37 151 127.4 15.6 133.5 -4.5 205.8 40.1 196.2 4.9 47.0 

32 20 11 12 20 32 32 32 46 59 151 68.5 7.1 67.2 2.0 90.2 5.9 87.6 2.9 30.4 

33 10 5.5 6 10 10 10 10 29 47 120 68.9 1.4 65.2 5.7 85.6 8.4 85.3 0.4 30.8 
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In Figures 2 and 3 some of the feeding profiles of the 
substrate are given for domains A and B, respectively and 
for Process #13. All the feeding profiles in Figure 2 are 
ending with a zero value at the end of the batch, while this is 
not the case with the feeding profiles in Figure 3. We see 
that the batch time and the incoming flow profiles vary 
considerably between runs in each of the DoDE sets.  

4. RESULTS 

For each of the 32 sets of fermentation processes, defined by 
the 32 different of parameter values, we implement in silico 
the two sets of DoDE experimental runs designed, for 
domains A and B. To the simulated amount of total grams of 
product produced at the end of the fermentation we add an 
experimental error of 4% to represent the normal variability 
of the process. We then calculate, by linear regression, the 
quadratic Response Surface Models (RSMs) for each 
domain. Through the data-driven RSM models obtained, we 
calculate the optimum initial biomass concentration, the 
optimum batch time and the optimum feeding profile of the 
substrate that will produce the maximum amount of product 
at the end of the batch. The predicted maximum amount of 
product (P_pred) is reported in column 12 for domain A and 
in column 16 for domain B. We also report the width of the 
prediction interval (PI Width) in column 13 for domain A 
and in column 17 for domain B. For example for process #1 
it is predicted that the optimum amount of product to be 
produced is 10.5 ± 1.1 gr for domain A and 20.4 ± 1.8 gr for 
domain B. The calculated optimal experiment is then 
verified by a follow-up in silico fermentation. The resulting 
amount of product (P_sim) is reported in columns 14 and 18 
for domains A and B, respectively. The percent difference 
between the predicted (P_pred) and simulated values 
(P_sim) are given in columns in columns 15 and 19 for 
domains A and B, respectively. In most processes the grams 
of product produced is less than those predicted, which is 
expected due to the approximate character of the DoDE 
approach. The opposite happens in ten processes in domain 
A and seven in domain B. We note with bold face if this 
difference is more than 10% and, at the same time the 
amount produced is outside the prediction interval.  This 
happens three times in domain A (#7, #10, and #25) and for 
seven processes in domain B (#3, #6, #9, #10, #11, #19, and 
#28).  For these cases we conclude that the quadratic RSM in 
not sufficient to represent the process dependence on the 
varied factors accurately. In response to this observation we 
append the initial DoDE design with additional experiments 
so that a cubic RSM is estimated. The process optimization 
is repeated, the predicted optimum is lower than with the 
quadratic RSM. The simulated optimum, though, is not that 
different from the one reported in Table 1 and within the 
prediction interval of the cubic RSM.  

 

 

 

We also calculate the percent difference in the amount of 
product produced by the optimal operation in domain B 
versus the optimal operation in domain A, using for all 
processes the quadratic RSM. This is reported in the last 
column. In all 32 processes examined the optimum obtained 
in domain B was better than that obtained in Domain A. The 
maximum percent difference was 280.8% for process #15 
and the minimum was 8.00% for process #20. The average 
difference was 60.9% and the median was 36.2%.  

The time evolution of the state and input variables of process 
#13 in domain A is given in Figure 4, while Figure 5 

 

Figure 4: The Time Evolution of the State and Input 
Variables of the Optimum Operation for Process 
13 in Domain A 

 

Figure 5: The Time Evolution of the State and Input 
Variables of the Optimum Operation for Process 
13 in Domain B 
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presents the corresponding optimal profiles of process #29 in 
domain B.  

 

One might observe that the product composition reaches a 
maximum before the end of the fermentation; at 75% of the 
total batch duration for process #13 in Figure 4 and about the 
same fraction of the batch duration for process #29 in Figure 
5. This is due to the product degradation term in the used 
model. Because we avail ourselves measurements only at the 
end of the batch, this is not obvious experimentally. 
Nevertheless, this is not a better optimum as the total grams 
of product than can be harvested then is smaller than at the 
end of the batch since volume of the reacting mixture is less 
than the maximum volume, reached at the end of the batch. 
Here we maximize the total grams of product at the end of 
the batch, independently of how long it might last. 
Maximizing the process productivity, e.g the ration of 
product grams divided by the batch duration, is also possible 
in the DoDE framework. For a simpler example see (Troup 
and Georgakis, 2013). Comparison with the model-based 
optimum for all 32 processes is still in progress. 

A generalization of DoDE methodology to incorporate 
online date during the fermentation is under development 
and will be reported elsewhere.  

5. CONCLUSIONS 

The success of the recently developed DoDE methodology in 
correctly estimating the optimal operation of the B&R 
penicillin fermentation process with just a set of well-
designed time-varying experiments has been also 

demonstrated in 32 other fermentation processes in silico. 
The calculated optimal operation, utilizing a quadratic RSM, 
was confirmed for almost all processes with an in silico 
operation under the optimal conditions. Among the two 
domains considered, A and B, within which the inflow of the 
substrate is constrained, the second one, B, always produces, 
after the DoDE optimization, more product than domain A. 
In process #15 this is as much as 280% better. It appears that 
domain A, which forces the substrate inflow to zero at the 
end of the fermentation, restricts the maintenance 
consumption by the product.  
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Table 2. Differences between the Predicted and 
Simulated Optimum grams of Product through Quadratic 
and Cubic RSMs 
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A 7 76.6 61.2 69.4 62.0 

A 10 51.4 46.1 51.1 46.9 
A 25 35.6 29.6 31.2 28.9 
B 3 267.4 190.8 211.7 200.8 
B 6 32.3 28.2 29.3 28.2 
B 9 15.1 13.4 13.7 13.7 
B 10 55.2 49.2 50.6 51.3 
B 11 147.3 122.3 138.6 139.6 
B 19 79.2 61.2 66.5 61.2 
B 28 149.5 127.1 134.9 129.3 
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