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Abstract: This paper presents an effective and robust structure for the estimation and control of
perfusion cell cultures, in which the cells and glucose concentrations are simultaneously controlled by
manipulating the dilution and bleed rates. Firstly, a partially linearizing feedback controller is designed to
ensure an approximately linear decoupled dynamics between the controlled outputs and the manipulated
inputs. Then the model of the inner loop is used to design an extended Kalman filter, which estimates all
the system states used in the implementation of the linearizing feedback control law from the (possibly
noisy) measurements of cells and glucose concentrations. Two PI controllers are used in the outer loop
for a good tracking performance, which are tuned using a receding horizon optimization procedure.
The proposed structure shows good performance and robustness with respect to parameter uncertainties,
non-cancelled nonlinearities and measurement noise.
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1. INTRODUCTION

Valuable bioproducts such as vaccines, recombinant proteins
and antibodies, are industrially produced by the cultivation of
cells that are programmed to synthesize them. These cells can
grow in suspension in stirred tank reactors (Jain and Kumar,
2008). The efforts for increasing the culture productivity in
these systems focus on elaborating specific culture media, and
in optimal feeding policies. The most popular operating modes
in cell cultures are batch, fed-batch and perfusion modes (Jain
and Kumar, 2008; Komolpis et al., 2010). Batch and fed-batch
modes do not offer many options for control, except for the feed
rate in the latter, and the cells growth can be inhibited by the
accumulation of toxic metabolites, which cannot be removed.
In perfusion mode, fresh medium is fed to replenish the con-
sumed nutrients, while an equal volume of spent medium is
continuously withdrawn, allowing for the removal of inhibitory
components. Cells are retained or recycled back to the reac-
tor by some type of retention device (for instance an acoustic
filter). Higher cell concentrations and higher productivity can
be achieved in perfusion cultures than in conventional batch
cultures (Komolpis et al., 2010). Hence perfusion processes
provide consistent culture conditions, high productivity and low
product residence times, but they require tight control of the
perfusion rate. Too low perfusion rates may result in nutrient
limitation, accumulation of inhibitory metabolites and retarda-
tion in cell growth rate. Too high perfusion rates may result
in wash out of the cells in systems with partial cell retention.
However, as emphasized by (Banik and Heath, 1995; Ozturk
et al., 1997; Dalm et al., 2004), the removal of a small amount
of cells from the reactor through the cell-containing flow (the

bleed) is necessary for maintaining the viability of the culture,
as well as for reaching steady state operation.

In spite of providing increased productivity of the culture, per-
fusion operation with partial cell retention is hardly used at in-
dustrial scale because of the complexity raised by the multivari-
able nature of the process. Hence, most of the published control
studies focus only on manipulating the perfusion rate (Ozturk
et al., 1997; Dowd et al., 2001). Among the existing control
strategies for bioprocesses, the most encountered ones for cell
culture control are the robust and predictive techniques (Dowd
et al., 2001; Aehle et al., 2012). Robustness is needed to cope
with the culture variability and sensitivity to environmental
conditions or to alleviate the negative effect of the incomplete
understanding of the intricate relationship between process pa-
rameters and outputs. On the other hand, predictive control is
one of the few advanced techniques which is widely accepted
in industry and deals with the optimization of cell growth pro-
cesses in a straightforward manner.

Recently, the potential of using the bleed flow in multivariable
control structures has been investigated in several simulation
studies in view of a prospective practical implementation: De-
schênes et al. (2006a,b) have developed an adaptive backstep-
ping strategy for a simple model to simultaneously control
the cell and metabolite concentrations, while Sbarciog et al.
(2013b) have designed a multivariable nonlinear predictive con-
trol strategy based on a more realistic model, for accelerating
the growth of cells and controlling the substrate concentration
in the effluent. This approach has been further simplified and
robustified in (Sbarciog et al., 2013a), where a cascade control
structure has been proposed, that combines a partial feedback
linearizing controller in the inner loop with linear predictive
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Fig. 1. Schematic representation of the perfusion culture

controllers in the outer loop. The cascade structure is an easy-
to-implement solution with remarkable performance and ro-
bustness with respect to parametric uncertainty.

In this paper, we propose also a multivariable cascade control
structure to simultaneously control the cells and glucose con-
centrations. This control structure consists of the partially lin-
earizing feedback controller, which ensures an approximately
linear decoupled dynamics between the controlled outputs and
the manipulated inputs, and two PI controllers, which ensure
the reference tracking performance. It is assumed that only
measurements of the cells and glucose concentrations are avail-
able, therefore an extended Kalman filter is designed to estimate
the states required for the implementation of the feedback con-
troller. A receding horizon optimization based tuning algorithm
is employed to periodically adjust the parameters of the two PI
controllers. It is shown that the proposed control and estima-
tion structure is efficient and robust with respect to parametric
uncertainties and measurement noise.

The paper is organized as follows: Section 2 presents the animal
cell growth process, while Section 3 introduces the design of
the control structure. The simulation results are shown and
discussed in Section 4. The conclusions and future research
perspectives are highlighted in the last Section.

2. PROCESS MODEL

The animal cell culture considered in this study is described
by a model, which expresses that the cells growth is activated
by the presence of glucose and glutamine and their death is
governed by lactate, ammonia and glutamine concentrations.
A schematic representation of the perfusion culture is given
in Figure 1. Medium containing glucose and glutamine is
continuously supplied to the reactor. Components leave the
reactor at the same rate. The amount of cells in the effluent is
determined by the filtration device.

The mathematical model of the system illustrated in Figure 1 is
given by:

ξ̇1 = −bl ·Dξ1 + r1(ξ)− r2(ξ) (1)

ξ̇2 = D(ξin2
− ξ2)− ar1(ξ)− r3(ξ) (2)

ξ̇3 = D(ξin3
− ξ3)− br1(ξ) (3)

ξ̇4 = −Dξ4 + cr1(ξ) + dr3(ξ) (4)

ξ̇5 = −Dξ5 + er1(ξ) (5)

where

• ξ1, ξ2, ξ3, ξ4, ξ5 respectively represent the concentrations
of viable cells, glucose, glutamine, lactate and ammonia.
ξin2

and ξin3
are the concentrations of glucose and glu-

tamine in the influent;
• D = F/V is the dilution/perfusion rate and bl ∈ [0, 1] is

the bleed ratio;

• ri(ξ), i = 1, 2, 3 are reaction rates, given by:

r1(ξ) = µmax ·
ξ2

KGlc + ξ2
·

ξ3
KGln + ξ3

· ξ1

= µ1(ξ) · ξ1 (6)

r2(ξ) =
kdmax

(µmax − kdLac
ξ4)(µmax − kdAmm

ξ5)
·

kdGln

kdGln
+ ξ3

· ξ1 = µ2(ξ) · ξ1 (7)

r3(ξ) = mGlc ·
ξ2

kmGlc
+ ξ2

· ξ1

= µ3(ξ) · ξ1 (8)

• a, b, c, d, e > 0 are the stoichiometric coefficients, defined

as: a = 1

YXv/Glc
, b = 1

YXv/Gln
, c =

YLac/Glc

YXv/Glc
, d =

YLac/Glc, e =
YAmm/Gln

YXv/Gln
.

This model has been developed from batch and fed-batch
hybridoma culture results (de Tremblay et al., 1992), with the
model parameters given in Table 1.

Table 1. Numerical values of the animal cell cul-
ture (as in de Tremblay et al. (1992))

YXv/Glc 1.09 · 10
2

10
6 cells/mmol

YXv/Gln 3.8 · 10
2

10
6 cells/mmol

YLac/Glc 1.8 mmol/mmol

YAmm/Gln 0.85 mmol/mmol

µmax 1.09 d−1

kdmax 0.69 d−1

V 0.8 L

KGlc 1 mmol/L

KGln 0.3 mmol/L

kdLac
0.01 d−1(mmol/L)−1

kdAmm
0.06 d−1(mmol/L)−1

kdGln
0.02 mmol/L

mGlc 1.68 · 10
−4 mmol(106 cells)−1d−1

kmGlc 19 mmol

3. CONTROL STRUCTURE

The main objective in controlling a cell culture is to achieve
and maintain a high cell density in the reactor. High amounts
of substrates supplied to the culture do not lead to a better
and faster growth of the cells (Jain and Kumar, 2008). On
contrary, the medium is spent inefficiently, as large amounts
of expensive nutrients are lost via the effluent. Moreover, toxic
byproducts causing cell death are produced. Therefore, many
control implementations consider the regulation of the main
nutrient glucose at a reasonable low level to minimize the
formation of toxic metabolites (Dowd et al., 2001; Ozturk et al.,
1997; Yang et al., 2000). In this paper we design the control
structure to achieve a similar goal, i.e., the regulation of cell and
glucose concentrations at specified setpoints by manipulating
the dilution rate D and the bleed ratio bl.

The multivariable control structure used to simultaneously con-
trol the cells and the glucose concentrations is illustrated in Fig-
ure 2. It consists of i) a partially linearizing feedback controller,
designed such as the inner loop has an approximately decou-
pled linear dynamics and ii) two PI controllers which compute
the inputs of the nonlinear controller ξ̄1 and ξ̄2. An extended
Kalman filter, which uses the model of the inner loop, provides
estimates of the states required by the feedback linearizing
controller. The autotuner determines the optimal parameters of
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each PI controller by minimizing a predictive control criterion
via receding horizon optimization.
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Fig. 2. Control structure

3.1 Partial feedback linearizing control

The inner loop controller is a partial feedback linearizing con-
troller, which assumes the availability of biomass, glucose and
glutamine concentrations (ξ1, ξ2 and ξ3). The control law is
given by:

Db = bl ·D =
1

ξ1

(

r1(ξ)− λ1(ξ̄1 − ξ1)
)

(9)

D =
1

(ξin2
− ξ2)

(

a · r1(ξ) + r3(ξ) + λ2(ξ̄2 − ξ2)
)

(10)

where λ1, λ2 > 0 are the controller parameters (to be tuned)
and ξ̄1, ξ̄2 are the controller inputs. Note that (9), (10) show
a singularity in the control law, when ξ1 = 0 and ξ2 = ξin2

.
However, defining a control for such a situation is meaningless,
as ξ1 = 0, ξ2 = ξin2

represent the condition of wash out, from
which the system cannot be recovered.

For designing the controller parameters λ1 and λ2, we consider
that the model (1)-(5) is not perfectly known. In this paper, it is
assumed that µmax may vary ± 20% with respect to its nominal
value, that is:

µmax = µmax(δ) = µ̄max(1 + 0.2δ) , δ ∈ [−1, 1] , (11)

where µ̄max stands for the nominal value of µmax and δ is
an uncertain parameter lying in the interval [−1, 1]. Notice
that we cannot straightforwardly implement the control law
given in (9)-(10), because µmax is uncertain. To overcome this
problem, we estimate the value of r1(ξ) = r1(ξ, δ) based on
the nominal value of µmax leading to

Db =
1

ξ1

(

r̂1(ξ)− λ1(ξ̄1 − ξ1)
)

(12)

D =
1

(ξin2
− ξ2)

(

a · r̂1(ξ) + r3(ξ) + λ2(ξ̄2 − ξ2)
)

(13)

where

r̂1(ξ) = µ̄max ·
ξ2

KGlc + ξ2
·

ξ3
KGln + ξ3

· ξ1 (14)

Using (12) and (13) in the model (1)-(5) and defining

χ1 = ξ̄1 − ξ1 , χ2 = ξ̄2 − ξ2 ,

the following dynamics for the controlled outputs is obtained:

χ̇1 = −λ1χ1 −
(

r1(ξ, δ)− r̂1(ξ)
)

+ r2(ξ) (15)

χ̇2 = −λ2χ2 + a
(

r1(ξ, δ)− r̂1(ξ)
)

(16)

Notice that the above dynamics is not linear since the term
r1(ξ, δ) − r̂1(ξ) is not cancelled due to parameter uncertainty
and r2(ξ) is not considered in the feedback linearizing based
controller to avoid additional measurements.

Thus, we design λ1 and λ2 to minimize the effects of the non-
canceled nonlinearities in (15)-(16) on the state vector χ :=
[χ1 χ2]

T in the H∞ sense. To this end, we embed (15)-(16) into
the following quasi-LPV representation (Leith and Leithead,
2000):

Gwz :

{

χ̇=

[

λ1 0
0 λ2

]

χ+

[

0.2δ 1
0.2aδ 0

]

w , z=χ (17)

where the disturbance input w models the non-cancelled dy-
namics, that is:

w :=







µ̄maxξ1ξ2ξ3
(KGlc + ξ2)(KGln + ξ3)

r2(ξ)







Then, the parameters λ1 and λ2 are designed to minimize an
upper-bound on ‖Gwz‖∞ for all δ ∈ [−1, 1] using similar steps
as in the approach proposed in (Dewasme et al., 2011).

Notice that the overall feedback system aims at operating in set
point regions such that the death rate r2(ξ) is close to zero. In
addition, if ‖Gwz‖∞ is relatively small, we may also assume
that ∆r1 := r1(ξ, δ) − r̂1(ξ) ≃ 0. Hence, the following
simplified dynamics is considered as the model of the inner
loop:

ξ̇1 = λ1

(

ξ̄1 − ξ1
)

(18)

ξ̇2 = λ2

(

ξ̄2 − ξ2
)

(19)

ξ̇3 = D(ξin3
− ξ3)− br̂1(ξ) (20)

ξ̇4 = −Dξ4 + cr̂1(ξ) + dr3(ξ) (21)

ξ̇5 = −Dξ5 + er̂1(ξ) (22)

where D is given by (13).

3.2 Extended Kalman filter

The nonlinear controller requires the knowledge of the cells,
glucose and glutamine concentrations. Cells and glucose con-
centrations are measured on-line, however they may be affected
by measurement noise which can destabilize the control loop.
Glutamine concentration cannot be measured on-line, thus it
needs to be estimated. Therefore an extended Kalman filter
(EKF) is designed, which uses the model of the inner loop (18)-
(22) to provide estimates of the system states from the noisy
measurements of cells and glucose concentrations.

Figure 3 shows the estimates provided by the EKF, when
constant inputs are applied to the inner loop. The estimation is
carried out in the realistic scenario of a 20% increase in µmax

with respect to the nominal value µ̄max. Noise free estimates
of the cells and glucose concentrations are obtained. A small
estimation error may be noticed for the cells and glutamine
concentrations due to the difference between the real inner loop
model and the simplified version assumed by the EKF, which
supposes that the cells death rate is negligible. Obviously, this
estimation error is influenced by the uncertainty on µmax, as
the cells death rate (7) depends on this parameter. Nevertheless,
the overall performance will not be affected in steady state
(assuming that µmax is time-invariant) by a constant estimation
error as the integral action of the outer loop will reject in steady
state constant errors.
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Fig. 3. Estimation of biomass, glucose and glutamine concen-
trations provided by the EKF

3.3 Receding horizon optimization based tuning of PI controllers

Classical PI controllers are used in the outer loop to ensure the
tracking of the setpoint changes and to reject the disturbances
acting on the process:

ξ̄j(t) = Kpj

(

ej(t) +
1

Tij

∫ t

0

ej(t)dt

)

j = 1, 2 (23)

where Kpj
, Tij respectively represent the proportional gains

and the integral time constants. The control errors are defined
as

ej(t) = ξrefj (t)− ξj(t) j = 1, 2 (24)

and the incremental discrete time representation of (23) is given
by

ξ̄j(k) = ξ̄j(k − 1) +Kpj
(ej(k)− ej(k − 1)) +

Kpj

Tij

Tsej(k)

(25)
where Ts represents the sampling period and k is the discrete
time index (t = kTs). Conventionally, the parameters Kpj

, Tij
are time-invariant. However, to cope with the nonlinear nature
of the process we adapt the controller parameters periodically.
To this end, we use a discrete time representation of the inner
loop

ξmj (k) =
Bj

(

q−1
)

Aj (q−1)
ξ̄j(k) +

1

1− q−1
υ(k), j = 1, 2 (26)

where ξm
1

, ξm
2

are the models outputs; Aj

(

q−1
)

, Bj

(

q−1
)

are
polynomials in the shift operator q found by discretizing respec-
tively the dynamics (18), (19) with a sampling period Ts; υ(t)
is uncorrelated noise with zero mean value. Using (25), (26)
iteratively, predictions of the process outputs over a horizon Np

(ξmj (k + l), l = 1 . . . Np) are computed. Then the parameters
of the PI controllers are found by minimizing

Ji =

Np
∑

l=1

(

ξrefi (k + l)− ξmi (k + l)
)2

+αi

(

∆ξ̄i(k + l − 1)
)2

(27)
with ∆ξ̄i(k) = ξ̄i(k) − ξ̄i(k − 1), i = 1, 2. In principle the
tuning of the PI controllers may be done at every sampling
instant. However, this leads to unnecessary computational ef-
fort. Therefore, the tuning is triggered periodically (every Na

samples, with Na ≤ Np) as long as the control errors are higher
than some thresholds.

A coarse (due to the presence of non-cancelled nonlinearities,
estimation and measurement errors) evaluation of the closed
loop stability can be done by computing the closed loop dynam-
ics from (18), (19), (23) (second order dynamics) and requiring
that the poles have negative real parts. The stability is ensured
as long as Kpi

> −1, i = 1, 2.

4. SIMULATION RESULTS AND DISCUSSION

Simulation results of the proposed control and estimation loop
are presented in Figures 4, 5 and 6. The parameters of the par-
tially linearizing feedback controller are set to λ1 = 11.8319,
λ2 = 6.9534. A sampling period of 0.05d is used. For the
tuning algorithm of the PI controllers the prediction horizon
Np has been set to 15 samples and the penalty coefficients α1,
α2 in the cost functions (27) have been chosen equal to 10. The
PI parameters are adapted every Na = 10 samples as long as
the control errors are higher than the imposed thresholds (i.e.
|e1(t)| > 50, |e2(t)| > 1), otherwise no adaptation occurs. The
optimization problems are solved using the Nelder-Mead algo-
rithm. Constraints on the dilution and bleed rates are imposed:
0 ≤ D ≤ 3.75d−1, 0 ≤ Db ≤ D (which is equivalent to
0 ≤ bl ≤ 1). To cope with inputs saturation, an anti-windup
mechanism is included in the PI-controllers implementation.

All the investigations are carried out in the presence of mea-
surement noise, which largely affects the glucose concentration
and less the cells concentration. The outputs of the partially
linearizing feedback controller are computed based on the esti-
mates of cells, glucose and glutamine concentrations provided
by the EKF. The simulation results presented here include:
the controlled outputs ξ1, ξ2 and their respective setpoints; the
inputs of the inner loop controller computed by the two PI con-
trollers represented with continuous line and the inputs which
are admissible (to comply with the physical constraints on the
flow rates) represented with dashed line; the process inputs
calculated by the partially linearizing feedback controller: the
dilution and the bleed rates; the parameters of the PI controllers.

Figures 4 and 5 present the closed loop response for the same
setpoint profiles, but different magnitudes of the maximum
growth µmax. The responses are almost identical, which shows
that the proposed control structure is highly robust with respect
to parametric uncertainty. The PI controllers are periodically
tuned, however more adaptation of the controller gains occur
after a change in the setpoint. When the system approaches the
steady state, the optimization for recomputing the controller
parameters is triggered by the magnitude of the measurement
noise rather than the process dynamics.

Figure 6 presents the closed loop response for a particular
setpoint, where the glucose concentration is controlled at a low
constant level while the cells concentration is periodically in-
creased. This is one of the most representative setpoint changes
for animal cells culture, as one of the control goals is to achieve
a high cells density in the reactor without wasting high amounts
of nutrients via the effluent. The results displayed in Figure 6
demonstrate the effectiveness of the cascade control structure
in achieving one of the most important goals in cells culture
control, in spite of parametric uncertainty, lack of full state
measurement and presence of measurement noise.
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Fig. 4. Closed loop response for a 20% decrease in the maxi-
mum specific growth µmax

5. CONCLUSIONS AND PERSPECTIVES

In this paper an estimation and multivariable control structure
has been presented for an animal cell culture. The proposed
strategy i) is effective in simultaneously controlling the cells
and glucose concentrations; ii) is robust with respect to para-
metric uncertainties, non-cancelled nonlinearities and measure-
ment noise; iii) is easy to implement as it combines principles
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Fig. 5. Closed loop response for a 20% increase in the maxi-
mum specific growth µmax

and tools widely used in control engineering practice: the EKF,
the partially linearizing feedback controller and the PI con-
trollers. Additionally, the computational effort is low, due to
the partial linear inner loop model used in the implementation
of the EKF and the periodic optimization of the PI parameters.
However, in some cases the real-life implementation of the
cascade control loop may be hampered by the assumption of the
kinetics structure knowledge that has been used in this design.
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Fig. 6. Closed loop response for a low glucose setpoint with a
20% decrease in the maximum specific growth µmax

Therefore our future developments aim at further robustifying
the cascade control structure, such that it becomes independent
of the process kinetics.
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Deschênes, J.S., Desbiens, A., Perrier, M., and Kamen, A. (2006a).
Multivariable nonlinear control of biomass and metabolite con-
centrations in a high-cell-density perfusion bioreactor. Ind. Eng.
Chem. Res., 45, 8985–8997.
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