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Abstract: The aim of this paper is to analyze and to reduce coupled transcription-translation models
developed in (Kremling (2007)), which are a detailed representation of the process describing how the
information in DNA turns into proteins in a cell, with polymerase and ribosomes. The full model is of
high dimensions, and may be complex to deal with. Under assumptions on the parameters, we can write
the full system in the form of a slow fast system. The fast part is a monotone system and we prove its
global stability. We put this fast part to its quasi steady state, and show that it is possible to obtain a small
reduced model (with three variables) having essentially the same dynamical behavior.
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1. INTRODUCTION

One of the central dogma of molecular biology is that DNA
makes RNA and RNA makes proteins, which are the primary
components of cells. The first phase of the process is called
transcription from DNA to mRNA and is a copy of the infor-
mation of the gene on the DNA strand into mRNA (messenger
RNA), where the polymerase has a key role. The second phase
of the process is the translation from RNA to linear amino acid
sequences, and folding of these amino acids into functional
proteins, via the ribosomal units, see Alon (2007).

Usually, classical models of gene expression only involve con-
centrations of mRNA and of protein. The polymerase and ri-
bosomes, for example, are always supposed to be in suffi-
cient quantity, and therefore non limiting. Yet, some works
emphasize the important role of the global machinery for gene
expression (Berthoumieux et al. (2013)), and it is therefore
interesting to build detailed models involving the main actors
of the transcription translation process, such as polymerase and
ribosomes. Some very detailed models of this kind have been
developed, see Kremling (2007).

In this paper, in a first step we investigate the dynamical
behaviour of the model of gene transcription and the model of
translation developed in Kremling (2007). Then we focused on
the coupled transcription-translation model which is a part of
gene expression machinery (Berthoumieux et al. (2013)). This
coupled model can be difficult to handle, therefore in a last step
we try to reduce this system into a much simpler system. This
simpler system could be included into more general model of
gene expression machinery.

We present an approach based on time-scale reduction (quasi-
steady-state approximation). This classical approach is already
applied to complex dynamics of enzyme-substrate or to models
integrating both metabolic and gene regulation. For a discussion

? This work was supported by the ANR Gemco project, INRIA/INSERM
Colage action and PIA Bioinformatique RESET project.

of quasi-steady state approximation in biology, see Heinrich
and Schuster (1996). We apply this approximation based on
time-scale separation and have to check if some conditions on
the fast system are satisfied, such as uniqueness of the steady
state and its global stability: these conditions are given by
the Tikhonov theorem (for a complete description see Khalil
(2002)). To show global stability of fast subsystems, we use
monotone system theory and compartmental systems theory
(see Smith (1995); Jacquez and Simon (1993)). We think that
this kind of qualitative tools for proving stability are well
adapted to these biological models studies (Sontag (2004)).

The organization of the paper is the following: firstly we study
“closed” transcription (section 2) and translation (section 3)
models, such as given by Kremling (2007), and show their
global stability. Then we combine these two models with some
inputs and outputs (section 4); we study some stability prop-
erties, then we suppose (based on biological hypotheses) that
some parameters are far larger than others; we remark that the
fast part of the system is precisely the “closed” models above.
We apply reduction theorem, and we numerically compare the
two models. Finally we draw some mathematical and biological
conclusions.

2. THE CLOSED TRANSCRIPTION MODEL

2.1 Description of the model

In the following we consider the reaction scheme of the tran-
scription model presented in Kremling (2007). A single gene
with length l is considered. RNA polymerase P with σ fac-
tor binds to the specific DNA binding site D. After binding,
the polymerase clears the promoter (parameter kc) and moves
along the DNA (parameter kt ). Complexes Y and Y i describe
the moving polymerase which binds to nucleotides along the
strand. The completed RNA molecule is subject to degradation
(parameter km). Nucleotides are supposed to be in excess, and
their concentrations are included in the parameters. All vari-
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ables are described by their concentrations. The scheme given
in Kremling (2007) is:

P + D
k−
�
k+

PD

PD kc→ Y + D + σ

Y + Nu kt→ Y 1

Y 1 + Nu kt→ Y 2

...

Y l−1 + Nu kt→ P + RNA km→ degradation

(1)

We can derive the following system from the reaction scheme
(following classical mass-actions kinetics):

ċ = k+ pd− k− c− kc c

ḋ =−k+ pd + k− c+ kc c

ṗ =−k+ pd + kt yl−1 + k− c
ẏ = kc c− kt y

ẏ1 = kt y− kt y1

...

ẏl−1 = kt yl−2− kt yl−1

ṁ = kt yl−1− km m

(2)

where p, d, c, y , yi and m are the concentrations of P, D, PD, Y ,
Y i and RNA respectively. The length l of the gene is rather large
(until several thousands). Note that the system has to fulfill two
mass conservations (because it is closed), describing the total
concentration of promoter site d0 and the total concentration of
polymerase M0:

d + c = d0 (3)

c+ p+ y+ y1 + . . .+ yl−1 = M0 (4)

Taking into account (3) we can reduce the original system to

ċ = k+ p(d0− c)− k− c− kc c

ṗ =−k+ p(d0− c)+ kt yl−1 + k− c
ẏ = kc c− kt y

ẏ1 = kt y− kt y1

ẏ2 = kt y1− kt y2

...

ẏl−1 = kt yl−2− kt yl−1

ṁ = kt yl−1− km m

(5)

2.2 Equilibrium

We obtain the following equations for the steady state:

yl−1 = . . . = y1 = y =
kc

kt
c (6)

c =
k+ pd0

k+ p+ k−+ kc
(7)

m =
kt

km
yl−1 (8)

We rewrite (7) as

c = d0
p

p+K1
(9)

K1 =
k−+ kc

k+
(10)

Replacing (9) and (6) in (4) we obtain:

l
kc

kt
d0

p
p+K1

+ p+d0
p

p+K1
= M0 (11)

The left side of (11) is an increasing function of p, which is
zero for p equals to zero, and tends to infinity when p tends to
infinity; therefore we can deduce that (11) has a unique solution
which depends on M0 and d0. We define the hyperplane
H0 =

{
(c, p,y,y1, . . . ,yl−1) ∈ℜl+2 : c+ p+ y+ y1 + . . .+ yl−1

= M0}. Therefore system (5) has a unique steady state for each
hyperplane H0. The whole steady state can be obtained after
solving (11) for p. We check that the constraint (c < d0) is
verified by (9).

2.3 Global stability of the equilibrium

In the following we are going to study the stability of this
equilibrium on the invariant hyperplane. We summarize the
results of Belgacem and Gouzé (2013). Last variable m has no
influence on the other variables of the system, and moreover its
equation is linear

ṁ = kt yl−1− km m (12)

Therefore it is easy to show with classical arguments that, if the
system with (c, p,y, . . . ,yl−1) is globally asymptotically stable
(w.r.t. the invariant hyperplane), then the full system (with m)
will be such.Therefore we can deal with a reduced system with
only (c, p,y, . . . ,yl−1).

Notice that this system with (c, p,y, . . . ,yl−1): is closed, in the
sense that ċ+ ṗ+ ẏ+ ẏ1 + .......+ ẏl−1 = 0.

It is easy to check that the Jacobian matrix J(c, p,y,y1, . . . ,yl−1)
of this system is a compartmental matrix (see Appendix for the
definition). To show that, we use the positivity of the variables
(included the fact that (d0−c)≥ 0). Of course we have checked
that the nonnegative orthant is positively invariant.

It can also be checked that the graph of the Jacobian matrix is
strongly connected, so we can apply Theorem 1 in the appendix
to obtain:
Proposition 1. Let M(c, p,y,y1, . . . ,yl−1) = c + p + y + y1 +
... + yl−1 be the (fixed) total polymerase concentration of the
closed system. For any M0 > 0, the hyperplane H0 is forward
invariant and the system contains a unique globally stable
equilibrium in H0.

We end our analysis of the complete system (5) by concluding
that it is globally stable (with the additional variable m) with
respect to the invariant hyperplane H0.

3. THE CLOSED TRANSLATION MODEL

Now we describe the translation system, using ribosomes to
make proteins from mRNA. The process of translation could be
initiated from every nascent mRNA as it is shown in (Kremling
(2007)); to simplify, in this paper we suppose that the proteins
are synthesized from completed mRNA only, with length h; the
reaction scheme is the following :
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R + RNA′
k
′
−

�
k′+

RRNA

RRNA
kw→ X + RNA′

X + tRNA∗
k
′
t→ tRNA + X1

X1 + tRNA∗
k
′
t→ tRNA + X2

...

Xh−1 + tRNA∗
k
′
t→ R + S ks→ degradation

(13)

where RNA′ represents a molecule of mRNA with length h and
with a free ribosome binding site. RRNA represents the ribo-
some bound to its binding site. X and X j describe the moving
ribosome on the completed RNA. R is the free ribosome. S
is the protein which is being translated. The system of ODEs
associated to the model is:

ẇ = k
′
+ r m− k

′
−w− kw w

ṁ =−k
′
+ r m+ k

′
−w+ kw w

ṙ =−k
′
+ r m+ k

′
−w+ k

′
t xh−1

ẋ = kw w− k
′
t x

ẋ1 = k
′
t x− k

′
t x1

...

ẋh−1 = k
′
t xh−2− k

′
t xh−1

ṡ = k
′
t xh−1− ks s

(14)

where w, m, r , s, x and xi are the concentration of RRNA, RNA′,
R, S, X and X i respectively. Notice as previously that we have
the following equations for the conservation of total amount of
mRNA (q0) and ribosomes (R0)

w+m = q0

r +w+ x+ x1 + · · ·+ xh−1 = R0
(15)

the reduced system becomes:

ẇ = k
′
+ r (q0−w)− k

′
−w− kw w

ṙ =−k
′
+ r (q0−w)+ k

′
−w+ k

′
t xh−1

ẋ = kw w− k
′
t x

ẋ1 = k
′
t x− k

′
t x1

...

ẋh−1 = k
′
t xh−2− k

′
t xh−1

ṡ = k
′
t xh−1− ks s

(16)

This translation system is quite similar to the system of the
transcription system in section 1. The study of the equilibrium
and the stability is exactly the same as before, so for the sake
of brevity the study will not be given here. We define the
hyperplane
G0 =

{
(w,r,x,x1, . . .xl−1) ∈ℜh+2 : w+ r + x+ x1 + . . .+ xh−1

= R0}. The final result is that this system (16) has a unique
equilibrium on invariant hyperplane G0 which is globally
asymptotically stable on G0.

4. A COUPLED TRANSCRIPTION-TRANSLATION
MODEL

The aim of this section is to analyze a transcription-translation
model, which couples the two models above.

4.1 Equations of the model

We can couple both transcription and translation processes, to
obtain the following full system (17). The polymerase is made
by the cellular global machinery, and also degraded, see Alon
(2007). Then for the coupled system we are going to suppose
that the free polymerase has a synthesis input term k and a
degradation term kp; these terms are meant to represent the
input and output for polymerase, coming from other subsystems
of the cell; later, they will be suppose to be small (slow) with
respect to the other terms.

ċ = k+ p(d0− c)− k− c− kc c

ṗ =−k+ p(d0− c)+ kt yl−1 + k− c+k−kp p
ẏ = kc c− kt y

ẏ1 = kt y− kt y1

ẏ2 = kt y1− kt y2

...

ẏl−1 = kt yl−2− kt yl−1

ẇ = k
′
+ r m− k

′
−w− kw w

ṁ =−k
′
+ r m+ k

′
−w+ kw w+ kt yl−1− km m

ṙ =−k
′
+ r m+ k

′
−w+ k

′
t xh−1

ẋ = kw w− k
′
t x

ẋ1 = k
′
t x− k

′
t x1

...

ẋh−1 = k
′
t xh−2− k

′
t xh−1

ṡ = k
′
t xh−1− ks s

(17)

4.2 Stability of the coupled model

We briefly describe the stability properties of the whole model.
Because the lack of space, our arguments will be concise.

The model is hierarchically built: the first transcription model is
an input to the second translation model, that can be seen by the
term kt yl−1 in ṁ. The first model could be studied by monotone
systems technics, as was done in Belgacem and Gouzé (2013),
to show its global stability. Unfortunately, the whole system
(17) is not monotone anymore, and the same technics cannot
be applied.

We can use the global stability property of the first transcription
model, and the globally stable equilibrium of this model is used
as an input for the second step of the whole model. This kind of
argument can be rigorously justified from a mathematical point
of view with theorems concerning the stability of hierarchical
systems (see Vidyasagar (1993)). In particular, it is valid when
all the variables are bounded, which is the case here, as it can
be easily checked.

Now if we use the equilibrium yl−1,∗ to input it in the second
model, and introduce the variable q = m+w, we obtain

q̇ = ṁ+ ẇ = kt yl−1,∗− km m (18)
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Unfortunately, this model is not monotone anymore, as the
translation model alone (with q constant) is, and we were not
able to obtain global stability results for this model. Yet we are
more interested in the reduction of the model (17), and, as we
see in the next section, if q is a slow variable, it is constant at
the fast scale, and we can apply stability results of section 3.

4.3 Time-scale reduction (Fast-Slow Behavior) of the coupled
transcription-translation model

Our main interest in this paper is the reduction of the above
model (17). We consider the set of parameters listed in Table
1 and 2. This set of parameters for the transcription and the
translation process of bulk proteins in table (1) and (2) have
been carefully built from the literature by D. Ropers et al,
based on classical papers such as Bremer et al. (2003). 1 . The

Table 1. The value of the set of parameters con-
sidered for the gene transcription (bulk mRNA)

model.

Parameter values Unit
k+ 1000 µM−1min−1

k− 700 min−1

kc 1.5 min−1

kt 245.4 min−1

km 0.08 min−1

Gene length l 1000 base pairs
d0 7.96 µM
p0 4.5 µM

polymerase is synthesized at a very slow rate (by other genes),
and degraded also very slowly. We chose these biologically
reasonable constants :

k = 0.05 µMmin−1, kp = 0.07min−1 (19)

The ratio l
kt

, and h
k′t

is constant see (Kremling (2007)), so if we

Table 2. Parameters for the translation model of
bulk protein.

Parameter values Unit
k
′
+ 1000 µM−1min−1

k
′
− 12380 min−1

kw 71.63 min−1

k
′
t 0.96 min−1

ks 0.006 min−1

mRNA length h 333 base pairs
r0 20.5 µM

take another gene length l or h, the value of kt or k
′
t will change.

For easier simulations we will take l = 100 and h = 30.

For this set of parameters we can notice that there are two
different time scales, so under the assumptions of time scales
separation, it is possible to reduce the full model. The main idea
is to separate the system into “fast” and “slow” variables, and
assume that the fast variables reach a “quasi steady state”; this
is valid only if the fast part is globally stable toward his steady
state (Tikhonov et al. (1980)).

To write the system with fast and slow variables, we will intro-
duce two new variables z and q which have no real physiologi-
cal justification but represent the total polymerase and the total
1 Delphine Ropers et al., Edith Grac, personal communication

mRNA, which were constant in the closed systems before, and
are now slowly varying .

z = c+ p+ y+ y1 + . . .+ yl−1 (20)
z represent the total concentration of polymerase whose slow
dynamics is :

ż = k− kp p (21)
and

q = m+w (22)
which implies

q̇ = ṁ+ ẇ = kt yl−1− km m (23)
where q is the total concentration of mRNA. This equation will
also be slow with our choice of parameters.

Replacing variable m by (q− w), and introducing also the
variable z the system (17) becomes :

ċ = k+ p(d0− c)− k− c− kc c

ṗ =−k+ p(d0− c)+ kt yl−1 + k− c+ k− kp p
ẏ = kc c− kt y

ẏ1 = kt y− kt y1

ẏ2 = kt y1− kt y2

...

ẏl−1 = kt yl−2− kt yl−1

ż = k− kp p

ẇ = k
′
+ r (q−w)− k

′
−w− kw w

ṙ =−k
′
+ r (q−w)+ k

′
−w+ k

′
t xh−1

ẋ = kw w− k
′
t x

ẋ1 = k
′
t x− k

′
t x1

...

ẋh−1 = k
′
t xh−2− k

′
t xh−1

q̇ = kt yl−1− km (q−w)

ṡ = k
′
t xh−1− ks s

(24)

To obtain the dynamics of the fast part we should notice that the
system has a hierarchical structure. The fast system formed with
variables c, p, y, y1, . . ., yl−1 is at the top of the structure and the
fast system formed with variables w, r, x, x1, . . ., xh−1 is at the
bottom. The slow variables are z,q,s (these slow variables more
clearly appear after some rescaling of the x and y variables; due
to the lack of space, we cannot not explain this thoroughly). We
also remark that Tikhonov theorem is a limit theorem obtained
when some parameter ε goes to zero, but in practice it is used
for fixed small values of ε (quasi-steady state approximation).

Then we are going to compute the equilibrium of this top level
subsystem

yl−1 = . . . = y1 = y =
kc

kt
c (25)

c = d0
p

p+K1
(26)

We have proven in section 2 that this equilibrium is globally
stable with respect to the invariant hyperplane. The fast system
converges toward its quasi-steady state (Tikhonov et al. (1980)).
The hyperplane now is slowly varying due to the variation of z
and we have the algebraic equation:
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l
kc

kt
d0

p
p+K1

+ p+d0
p

p+K1
= z (27)

The dynamics of the fast system in the bottom level of the
structure has the quasi-equilibrium:

xh−1 = . . . = x1 = x =
kw

k′t
w (28)

w =
qr

r +K2
(29)

K2 =
k
′
−+ kw

k′+
(30)

We have also proven in section 3 that this equilibrium is glob-
ally stable with respect to the hyperplane G0. Taking (28),(29),
and (30) into account in equation (15), we can write:

r +
qr

r +K2
+h

kw

k′t

qr
r +K2

= R0 (31)

where q (slow variable) is fixed; so as previously the left side of
(31) is an increasing function of r, which is zero for r equals to
zero, and tends to infinity when r tends to infinity; therefore we
can deduce that (31) has a unique solution r(q) which depends
on R0 and q.

The analytic solutions of r(q) and p(z) are not very convenient,
then we keep equations (31) and (27) as algebraic equations,
and the dynamics of the reduced system becomes :

z = l
kc

kt
d0

p
p+K1

+ p+d0
p

p+K1

R0 = h
kw

k′t

qr
r +K2

+ r +
qr

r +K2

ż = k− kp p

q̇ = kt yl−1(z)− km (q−w)
ṡ = kww− ks s

(32)

If we express yl−1 as a function of p(z), and w as a function of
r(q) we can write :

z = l
kc

kt
d0

p(z)
p(z)+K1

+ p(z)+d0
p(z)

p(z)+K1

R0 = h
kw

k′t

qr(q)
r(q)+K2

+ r(q)+
qr(q)

r(q)+K2

ż = k− kp p(z)

q̇ = kcd0
p(z)

p(z)+K1
− km (q− qr(q)

r(q)+K2
)

ṡ = kw
qr(q)

r(q)+K2
− ks s

(33)

This is the reduced system. To show the similarity between the
full system and the reduced system, we performed simulations
for the same set of parameters as above, with length l = 100,h =
30; and with the initial conditions p0 = 5,y0 = 1, d0 = 7.96, and
r0 = 20.5, the results of simulation are shown in the figures (1),
(2) and (3). We see on the simulations that variables z and q
are (with our values of parameters) almost the same. Yet, the
variable s has a damped oscillatory behaviour in the full model,
which is averaged in the reduced model. When h increases, the
oscillations increase. We also remark that the reduced model
has a chain structure, and it is easy to check that it converges
toward a unique equilibrium. Moreover, this model enables us
to clearly understand the influence of biological parameters
such as d0 (total promoter) and R0 (total ribosomes).

Fig. 1. The dashed line represents the behavior of variable z in
the reduced system, the full line shows the evolution of
variable z in the complete system (with l = 100, h=30).

Fig. 2. The dashed line represents the behavior of variable q
in the reduced system, the full line shows the evolution of
variable q in the complete system (with l = 100, h=30).

Fig. 3. The dashed line represents the behavior of variable s in
the reduced system (with l = 100, h=30) while the full line
shows the evolution of variable s in the complete system.
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5. CONCLUSION

The coupled transcription-translation model is of large dimen-
sions and can be difficult to handle; simplifications are nec-
essary, and it was the main interest in this paper. Taking into
account the parameters provided by the biology experiments,
we wrote the system with two different scales of time: fast
and slow. The fast part is a compartmental system, and we
used the monotone systems theory to prove the global stability,
and therefore the validity of the reduction process. Using these
results, we were able to reduce the full system to a new smaller
one, with three variables, where the fast system is reduced to
two algebraic equations. The behavior of the reduced and the
full system is similar but the full system may oscillate with
damped oscillations. It is easy to see that this oscillating behav-
ior is generated by the length h of the variables x,x1, . . . ,xh−1,
that could be seen as a linear chain or a delay. Moreover, this
behaviour appears because the scale of time for this subset
of the system is not really fast enough, with our values of
parameters. In fact, the whole system could be seen as a three
time scale system: a very fast one, which give the variables z
and q, a fast one, which gives the variable s, and the slow final
scale. If we want to obtain the damped oscillations of s in the
reduced system, we have to keep a more important part of the
translation system. Such investigations are the subject of further
work.
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Appendix A. MONOTONE AND COMPARTMENTAL
SYSTEMS

Monotone systems form an important class of dynamical sys-
tems, and are particularly well adapted to mathematical models
in biology (Sontag (2004)), because they are defined by con-
ditions related to the signs of Jacobian matrix. Such a sign for
one element traduces the fact that some variable will contribute
positively to the variation of some other variables, and this kind
of qualitative dependence is very frequent in biological mod-
els. The reader may consult the reference Smith (1995) for a
review or an exhaustive presentation of the theory of monotone
systems.

In summary, if the system is cooperative, then the flow pre-
serves the partial order in ℜn (the flow is monotone). Coopera-
tivity is easy to check by looking at the signs of the elements of
the Jacobian matrix, that should verify

∂ fi

∂x j
(t,x)≥ 0 ∀i 6= j

These systems have a strong tendency to converge to the set of
their equilibria (Smith (1995)). It can be shown that almost any
solution converges to the set of equilibria except a set of zero
measure. In particular, there are no stable periodic solutions.
For more precise theorems, see Smith (1995).

Let us now give a few reminders about compartmental systems
(see Jacquez and Simon (1993)), which are strongly linked to
monotone systems. This kind of models describes the dynam-
ics of n-compartments interconnected by links with fluxes of
matter. The overall equation is written by making a global mass
balance between inputs and outputs of each compartment. The
definition of a compartmental matrix is the following:
Definition 1. Compartmental Matrix
Matrix f(n×n) is a compartmental matrix if it satisfies the fol-
lowing three properties ( Jacquez and Simon (1993)):

fii ≤ 0 f or all i, (A.1)
fi j ≥ 0 f or all i 6= j, (A.2)
− f j j ≥∑

i 6= j
fi j f or all j (A.3)

Note that fi j can in general depend on xk,k = 1 . . .n which
are the concentrations in each compartment. There are also
theorems on the stability of linear and nonlinear compartmental
systems (see Jacquez and Simon (1993)). Let the nonlinear
system:

ẋ = f (x) (A.4)
Theorem 1. Property 5 in Bastin and Guffens (2006).
Suppose system (A.4) is closed, that is to say M(x) = ∑

n
i=1 xi is

the fixed total concentration.
If the Jacobian matrix of the system is irreducible (the system is
strongly connected) and compartmental, then for any M0 > 0,
hyperplane H = {x ∈ ℜn

+ : M(x) = M0 > 0} is invariant and
contains a unique globally stable equilibrium in H.
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