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Abstract: Microalgae are microscopic plants existing in aquatic environment. They can be used
in the production of high value compounds and they have promising opportunities in energy
production, wastewater treatment and fixation of carbon dioxide. In this context, the control
of the cultivation requires a special attention in order to obtain high amounts of biomass. The
control of microalgae cultivation is approached from passivity-based control perspectives. The
proposed controller solves set point tracking and stabilizes the control loop by the passivity
properties. Moreover, in order to obtain the process state variables from the measurement
output, which are used in the control law, a nonlinear observer with guaranteed stability of
estimation error dynamics is proposed.The design of the nonlinear controller and the observer
is based on the Droop model, describing the dynamic behaviour of the microalgae process in a
practical way. Finally, the performance of the nonlinear observer-based controller is shown by
simulation.
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1. INTRODUCTION

Over the last years, there has been an increasing interest
in the culture of microalgae due to its high potential
for valuable products (Benemann [1997, 2000], Richmond
[2004]).The number of publications and research work to
improve their yield and large scale production gives an
idea of the interest for this promising field. Indeed, several
applications can be highlighted from their cultivation like
fixation of CO2, wastewater treatment, synthesis of high-
value chemicals (vitamins, health food) and production of
biofuel (Benemann [1997], Carlsson et al. [2007], Huntley
and Redalje [2007], Mata et al. [2010], Bernard [2011],
Halim et al. [2012]). The latter is especially relevant as it
appears as a serious alternative to land cultures like corn
crops and doesn’t make a concurrence to the food market
(Chisti [2007], Surisetty et al. [2010], Mairet et al. [2011]).
However, lots of challenges have to be dealt with in order to
give the microalgae the opportunity to be a common route
for energy production. For instance, their cell lipid content
involved in the biodiesel production is favored by limiting
the nitrogen source of feeding and as a consequence, the
biomass production (Mairet et al. [2011]). The extension
to large-scale production is not yet fully handled and
advanced investigation has to be performed (Li et al.
[2007], Moazami et al. [2012]). In addition, to reduce
the operating cost, diversification is also indicated as
combining wastewater treatment to biofuel production or
mitigation systems (Wu et al. [2012]). As a consequence,
keeping the culture under control at a desired value
represents an important objective using suitable control
method (Becerra-Celis et al. [2008b]).

In this context, it is a main preoccupation to investigate
control techniques to reach the desired level of perfor-
mance. Generally, the control of bioprocesses has two

major problems. The first one is that only few measure-
ments are available with a reasonable sampling period
and precision. Furthermore, the presence of living organ-
isms interacting under various biochemical phenomena
leads to interdependent complex mathematical models.
This is why nonlinear control techniques are favored and
designed(Becerra-Celis et al. [2008b]).

In order to circumvent the problem of measuring devices,
observers (also called state estimators or software sen-
sors) can be used. They are dynamical systems which are
used to estimate important process variables by means
of accessible measured variables. Their design and their
application in process control have been an active research
area over the past decades, especially in bioprocess appli-
cations (Doyle [1998], Oisiovici and Cruz [2000], Dochain
[2003], Khodadadi and Jazayeri-Rad [2011]).

In the case of microalgae, the design of state estimators
has been an active research area over the past decade.
For instance, Bernard et al. [2001] designed a high gain
observer based on the Droop model for the monitoring of
phytoplankton. They used the proposed software sensor to
real experimental set up and they showed the validity and
efficiency of the observer. Related to this work, Goffaux
et al. [2009b] applied interval observers for this culture.
Moreover, in Abdollahi and Dubljevic [2012], a moving-
horizon observer is used with a model predictive controller
to estimate the state process variables for the lipid pro-
duction in fed-batch mode. However, these methodologies
don’t take into account the global convergence of the esti-
mation error. In this study, another observer is considered
to estimate the state variables. Based on the Lipschitz
properties of the chosen microalgae growth model, an
observer is designed and a proof of the stability of the
error dynamics is given.

Preprints of the 12th IFAC Symposium on Computer Applications in Biotechnology
The International Federation of Automatic Control
16-18, 2013, December. Mumbai, India

Copyright © 2013 IFAC 290



In order to compensate the nonlinearity and the complex-
ity of the microalgae process, Becerra et al. ([Becerra-
Celis et al., 2008b]) used an input-output linearization
technique to keep the biomass at a constant value for
continuous cultivation. Also, in another work, they applied
a nonlinear model predictive control to the culture in order
to maintain the culture at an optimal population density
in a constant high biomass density mode (Becerra-Celis
et al. [2008a]). Furthermore, in (Abdollahi and Dubljevic
[2012]), an interior point optimization and a model pre-
dictive control with moving - horizon observer are used to
maximize and regulate the lipid production in a real time
fed-batch microalgae cultivation. The estimator and the
controller design are based on a set of linearized models in
the microalgae growth process. In this work, a passivity-
based control is designed as it has shown its usefulness
in solving control problems for a large class of nonlinear
systems. Its main features can be summarized by a simple
physical interpretation, stability of the control loop, and
an ease of implementation.

The article is organized as follows. In Section 2, the
description of the microalgae model called Droop model
is presented. We address the procedure to design the
passivity-based controller as well as the nonlinear observer
in Sections 3 and 4. In Section 5, simulation results are
illustrated.

2. MODEL DESCRIPTION

The Droop model (Droop [1968], Lemesle and Mailleret
[2008]) is a simple and widely used model which can
represent the natural behavior of microalgae culture. It
includes three state variables: the biomass concentration
X, the internal quota QN , which is defined as the quantity
of nitrogen per unit of biomass and the substrate con-
centration S. The time-varying evolution equations of the
Droop model are given by:

Ẋ(t) = −D(t)X(t) + µ(QN )X(t)

Q̇N (t) = ρ(S)− µ(QN )QN (t)

Ṡ(t) = D(t)(Sin − S(t))− ρ(S)X(t)

(1)

with ρ(S) = ρm
S(t)

S(t)+Ks
as the specific substrate uptake

rate and µ(QN ) = µ̄
(

1− KQ

QN (t)

)
as the specific growth

rate. In these relationships, D represents the dilution rate
as a process input, Sin the input substrate concentra-
tion. In the expression of the uptake rate, Ks and ρm
represent a half-saturation constant for the substrate and
the maximum uptake rate respectively. µ̄ is the theoreti-
cal maximum growth rate, obtained for an infinite inter-
nal quota and KQ the minimum internal quota allowing
growth.
The parameters of the model are given in Table 1 (Goffaux
et al. [2009a]).

In this study, the biomass concentration X is considered
as the measured output and the dilution rate D is the
control input. This choice comes from a practical point of
view as biomass sensors based on optical properties are
quite popular. Moreover, the dilution rate, defined by the
inflow rate per unit of volume, is directly related to the
quantity of nutrients supplied in the bioreactor.

2.1 Properties of the Droop model

There are two important properties for the Droop model.
First, the trajectories of the Droop model are bounded
and KQ ≤ QN ≤ QNmax

. Second, the Droop model is
uniformly input observable with y = X if X 6= 0. The
proof of these properties can be found in Bernard and
Gouzé [1995].

3. CONTROLLER DESIGN

3.1 Passivity-based control

We consider a system given by the following nonlinear
equations:

ẋ = f(x) + g(x)u,
y = h(x),

(2)

where x ∈ X ∈ Rnx is the state vector, u ∈ U ∈ R is the
scalar control input and y ∈ Y ∈ R is the output scalar
function of the system. The vector fields f(x) and g(x)
are assumed to be smooth vector fields on X . Moreover,
a storage function V (x) ∈ R is defined such that the
following condition locally holds in the region of operation
of the system:

LgV 6= 0,

where LgV ∈ R is the Lie derivative of function V along

a vector field g : LgV = gT (x)∂V
∂x . Moreover, ∂V

∂x ∈ Rnx

with ∂V
∂x =

[
∂V
∂x1

, . . . , ∂V
∂xnx

]T
. Finally, the output y = h(x)

is considered locally non-zero in this region. The time
derivative of V (x) is then given by:

V̇ = LfV + uLgV = LgV (u+
LfV

LgV
), (3)

The following invertible input coordinate transformation
can be used to make the closed-loop system lossless (Fossas
et al. [2004]): the entering energy to the system is equal to

the stored energy in the system, i.e. such as V̇ = yν:

u = −LfV

LgV
+ ν

h

LgV
, (4)

So, the closed-loop system is written as:

ẋ = f(x)− gLfV

LgV
+ g

h

LgV
ν. (5)

After some mathematical manipulations, the closed-loop
system can be represented by :

ẋ = Φ(x)
∂V

∂x
+ Γ(x)ν,

y = ΓT (x)
∂V

∂x
,

(6)

Table 1. Parameters of the Droop model

Parameter Unit Value

Sin µmol/L 100

Ks µmol/L 0.105

µ̄ 1/d 2

KQ µmol/µm3 1.8

ρm µmol/µm3/d 9.3
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where Φ(x) is a skew-symmetric matrix. The expressions
of Φ(x) and Γ(x) are given by:

Φ(x) =
1

LgV
[f(x)gT (x)− g(x)fT (x)],

Γ(x) = g(x)
h(x)

LgV (x)
.

Moreover, V (x) can be considered as a quadratic energy
storage function, whose gradient satisfies the following
linear property:

∂V (x)

∂x
− ∂V (xd)

∂xd
=
∂V (e)

∂e
,

with e = x − xd being a tracking error and xd is an
auxiliary vector which is to be designed. Consequently, let
V (e) = V (x − xd) be a positive definite storage function
of e. Then,

V̇ =
∂V (e)

∂eT
[Φ(x)

∂V

∂x
+ Γ(x)ν − ẋd]

=
∂V (e)

∂eT
[Φ(x)

∂V (e)

∂e
+ Γ(x)ν + Φ(x)

∂V (xd)

∂xd
− ẋd].

(7)
If xd has the following time-varying dynamics with output
equation:

ẋd = Φ(x)
∂V (xd)

∂xd
+RI(e)

∂V (e)

∂e
+ Γ(x)ν,

yd = ΓT (xd)
∂V (xd)

∂xd
,

(8)

with RI(e) which is strictly positive definite symmetric
matrix, the following condition will be obtained:

V̇ (e) =
∂V (e)

∂eT
[Φ(x)−RI(e)]

∂V (e)

∂e
,

V̇ (e) = −∂V (e)

∂eT
RI(e)

∂V (e)

∂e
< 0.

(9)

as ∂V (e)
∂eT

Φ(x)∂V (e)
∂e = 0. Hence, the tracking error asymp-

totically converges to zero and the state vector x tracks the
controlled state xd. One can remark that the evolution of
the controlled state is depending on the unknown state.
To handle this situation, a state observer is introduced in
section 4.

3.2 Application to the microalgae process

At first, model Equations (1) are written in the form (2),
with the dilution rate D as the control input u.

f(x) =

(
µX

ρ− µQN

−ρX

)
, g(x) =

( −X
0

Sin − S

)
, h(x) = X.

We consider the following storage function V (x) given by:

V (x) =
1

2
(S2 +X2 +Q2

N ) (10)

The storage function directional derivative LgV along the
control input vector field, g(x), is given by:

LgV = S(Sin − S)−X2 (11)

Based on the physical properties of the process state
variables, Equation (11) never goes to zero. After some
manipulations using input transformation (4), the system

can be transformed in the form of Equation (6). In this
form, the matrices Φ and Γ have the following forms:

Φ(x) =
1

S(Sin − S)−X2

 0
−X(ρ− µQN )

ρX2 − µX(Sin − S)

X(ρ− µQN ) −ρX2 + µX(Sin − S)
0 (ρ− µQN )(Sin − S)

(−ρ+ µQN )(Sin − S) 0

 ,

Γ(x) =
X

S(Sin − S)−X2

( −X
0

Sin − S

)
.

The following input coordinate transformation can make
the system passive with respect to the proposed storage
function V (x):

u = D =
SρX − µX2 −QN (ρ− µQN )

S(Sin − S)−X2

+ν
X

S(Sin − S)−X2
.

(12)

If Ẋd = 0 is considered and if RI is a diagonal matrix,
then:

ν =
R1(X −Xd)(S(Sin − S)−X2) +XQd(ρ− µQN )

X2

+
(−ρX2 + µX(Sin − S))Sd

X2
.

(13)
with Qd and Sd given by the solution of:

Q̇d =
−X(ρ− µQN )Xd + (ρ− µQN )(Sin − S)Sd

(S(Sin − S)−X2)

+R2(QN −Qd),

Ṡd =
(ρX2 − µX(Sin − S))Xd − (ρ− µQN )(Sin − S)Qd

(S(Sin − S)−X2)

+R3(S − Sd) +
X(Sin − S)

S(Sin − S)−X2
ν.

(14)
Finally, the final control input law, which is able to
stabilize the control loop, is:

u =
R1(X −Xd)(S(Sin − S)−X2) +XQd(ρ− µQN )

XS(Sin − S)−X3

+
(−ρX2 + µX(Sin − S))Sd + SρX −QN (ρ− µQN )

S(Sin − S)−X2

+
−µX2

S(Sin − S)−X2
.

(15)

As it can be seen, all the derived equations depend on
of the process state variables. Therefore, it is necessary to
know the proper value of the variables. In order to estimate
the process variables, a nonlinear observer is introduced in
the next section.
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4. OBSERVER DESIGN

There are several observer design approaches such as
the high gain observer (Biagiola and Figueroa [2004]),
the moving-horizon observer (Rao and Rawlings [2002]),
the extended Kalman filter (Khodadadi and Jazayeri-Rad
[2011]) and the extended Luenberger observer (Quintero-
Marmol et al. [1991]). However, one of the difficulties in de-
signing an observer is the proof of the global convergence of
the estimation error. In this work, based on the properties
of the Droop model, a nonlinear observer with guaranteed
convergence of estimation error dynamics is designed. The
complete explanation for the design procedure is presented
in the next section.

4.1 Reformulation of the Droop model

After mathematical manipulations on the Droop model, it
is possible to obtain the nonlinear model, combination of
a linear and a nonlinear part satisfying the observability
condition. (i.e the pair (A,C) is observable).

ẋ = A(D)x+ φ(x,D),
y = CX,

(16)

A(D) =

(
µ̄−D µ̄ 0

0 −µ̄ −ρm
−ρm 0 −D

)
, C = (1, 0, 0),

φ(x,D) =

 −µ̄Q− µ̄KQX

Q
KQµ̄+ Sρm + ρ
DSin +X(ρm − ρ)

 .

As it can be seen in (16), the nonlinear part φ(x,D) in
terms of the state variables is continuous and differen-
tiable. In addition, based on the first property of the Droop
model, φ(x,D) is bounded. So, it can be concluded that
φ(x,D) satisfies Lipschitz property.

4.2 Nonlinear observer design for system with Lipschitz
property

The nonlinear System (16) can be written by the following
structure with u = D:

ẋ = A(u)x+ φ(x, u),
y = Cx,

(17)

where φ(x, u) is a nonlinear vector field with a Lipschitz
constant γ, the vector x ∈ Rn stands for the state variables
and the input u represents the manipulated variable. The
measured output is represented by vector y. The pair
(A,C) is considered observable.

The observer is considered to be of the form:
˙̂x = A(u)x̂+ φ(x̂, u) + L(y − Cx̂). (18)

By subtracting Equation (18) from Equation (17), the
estimation error dynamics (e = x− x̂) is given by

ė = (A(u)− LC)e+ [φ(x, u)− φ(x̂, u)], (19)

where L refers to the observer gain and it can be deter-
mined by pole placement technique.

4.3 Stability analysis of the estimation error dynamics

Based on the Lipschitz property for nonlinear function, the
following inequality globally would be valid:

‖ φ(x, u)− φ(x̂, u) ‖≤ γ ‖ (x− x̂) ‖ (20)

The following Lyapunov function is considered for the
error dynamics (19)

V (e) = eTPe, P = PT > 0.

The time derivative of Lyapunov function is

V̇ (e) = ˙eTPe+ eTP ė,

V̇ (e) = [(A(u)− LC)e+ φ(x, u)− φ(x̂, u)]TPe

+eTP [(A(u)− LC)e+ φ(x, u)− φ(x̂, u)],

V̇ (e) = eT (A(u)− LC)TPe+ (φ(x, u)− φ(x̂, u)TPe

+eTP (A(u)− LC)e+ eTP (φ(x, u)− φ(x̂, u)),

V̇ (e) = eT ((A(u)− LC)TP + P (A(u)− LC))e

+2eTP (φ(x, u)− φ(x̂, u)).

Based on the Lipschitz property of the nonlinear part, the
latter can be written

2eTP (φ(x, u)− φ(x̂, u)) ≤ 2 ‖ Pe ‖‖ φ(x, u)− φ(x̂, u) ‖
≤ 2γ ‖ Pe ‖‖ e ‖ .

(21)
Using the following mathematics inequality

2 ‖ Pe ‖‖ e ‖ γ ≤ γ2eTPPe+ eT e,

the derivative of Lyapunov function is

V̇ ≤ eT (A(u)− LC)T + (A(u)− LC)e+

γ2eTPPe+ eTPe

= eT ((A(u)− LC)TP + P (A(u)− LC) + γ2PP + I)e.

(22)

So, if the inequality (23) is satisfied, the error dynamics
would be stable.

(A(u)− LC)TP + P (A(u)− LC) + γ2PP + I < 0.
(23)

Remark 1. One can note that the Riccati Equation (23)
is a function of a time-varying control input, the dilution
rate. In the following theorem, the existence of a solution
for a Riccati equation is presented.

Theorem 2. (Zhu and Pagil [2005]) Consider the following
Riccati equation

ATP + PA+ PRP +Q = 0,

If P ≥ 0 is a solution of the Riccati equation, then the
following conditions need to be true

λmin(R)tr(Q)− nλ2min(S) < 0, (24)

λmin(S) < 0, S =
(A+AT )

2
, (25)

where tr(X) and λmin(X) are the trace and the smallest
eigenvalue of matrix X respectively .

Remark 3. If A is Hurwitz, then λmin(S) < 0.

Consequently, the following procedure can be consid-
ered. Based on the pole placement technique, a gain matrix
L is computed satisfying some dynamics of the linear part
of the estimation error. Then, the related Riccati equation
is solved greeting to Theorem2 in order to find suitable
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matrices Q and P . If no matrix can be obtained, then
another gain matrix L should be determined.

In order to solve the resulting Riccati equation, the iden-
tity matrix is chosen for matrix R and matrix Q. Further-
more, gain matrix L is such thatA = A(u)−LC is Hurwitz
and one has λmin(S) < 0. Consequently, Equation (25) is
satisfied. Moreover, Equation (24) can be rewritten by the
following inequality:

1 < λ2min(S). (26)

In conclusion, knowing L and P , Equation (26)and Equa-
tion (23)have to be satisfied. If not, L is modified by trial
and error.

5. SIMULATION RESULTS

In order to show the effectiveness of the passivity based
output feedback controller, a PI controller is designed
around the operating point and compared with the non-
linear observer-based controller. R1 = 20 ,R2 = 10 , and
R3 = 10, are selected parameters for the passive controller.
The eigenvalues for the linear part of the estimation error
dynamics are λ1 = −8 , λ2 = −6 and λ3 = −4. The tuning
parameters for the PI controller are KC = −0.037, KI =
−0.057. Simulation results show that the performance is
almost the same for both strategies. However, when the
operating point changes, the PI controller is unable to
control the process properly and the performance of the
nonlinear controller is better than the linear controller as
expected (Figs[1-2]).

Fig. 1. Control of biomass concentration

In Figs [3-4], the observer performance to estimate the
process variables are presented. As it can be seen, it has
a fast rate of convergence and after a short period of
time the estimated values converge to real value. Related
to robustness issues, some advanced extensions should
be performed to design a solution taking into account
model uncertainties. In this context, a sensitivity analysis
can show that µ̄ and ρm have bigger impacts than the
other parameters. Indeed, KQ and Ks only influence the
transient phase. Consequently, one can show that a 10%
error on the unmeasured variables Q and S is obtained
with 10% uncertainty on µ̄ and 3% uncertainty on ρm
respectively. Finally, the next steps should be to develop
a coupled scheme observer/controller taking into account
some parameter uncertainties.

Fig. 2. Control Action (dilution rate)

Fig. 3. Estimation of the internal quota

Fig. 4. Estimation of the substrate

6. CONCLUSION

For microalgae cultivation, the regulation of the biomass
concentration is studied by considering an observer-based
controller. An output feedback passivity-based controller
was designed to control the biomass cultivation inside the
bioreactor. However, it requires the whole state vector for
evaluation of the control law. The controller is combined
with a nonlinear observer which was used to estimate the
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process variables. Based on the property of the Droop
model, the stability of estimation error dynamics was
demonstrated. Finally, the proposed observer and con-
troller were coupled and simulation results showed that the
controller-observer scheme has a good performance over a
wide range of operation.
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