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Abstract: A Glucose- Insulin steady state static map is obtained from the Hovorka’s 8th order virtual 
patient model. Three First Order Plus Time Delay (FOPTD) models are derived for the three piecewise 
linear regions in it. Through polyhedral vector space partitioning based on constraint violation, critical 
regions in state vector space are identified. A state feedback gain based controller is designed for each 
critical region. The controller design prevents constraint violations and ensures convexity while 
regulating the state vector to origin. The solution is also globally minimal. The state vector space of each 
empirical model is subjected to such analysis, resulting in three different set of critical regions and 
corresponding controllers. Gain Scheduling (GS) based on the Blood Glucose Concentration (BGC) 
measurement ensured proper profile selection. Through delay time compensation techniques, the multi 
model multi-parametric Model Predictive Control (mp-MPC) is designed for pure dynamics of each 
linear region. It is observed that the gain scheduled controller regulates the BGC within the acceptable 
range (80mg/dL to 160 mg/dL) during multiple meal disturbances. The explicit state feedback gain nature 
of the controller implies ease of deployment on memory constrained embedded devices.   

Keywords: Type 1 diabetes, multi model, multi parametric, explicit MPC, exogenous Insulin Infusion, 
Lagrangian multipliers. 

 

1. INTRODUCTION 

The metabolic disorder in which blood sugar increases 
beyond its permissible range, owing to insufficient secretion 
of insulin by the β-cells of the islets of Langerhans present in 
pancreas is termed Type 1 diabetes or Insulin Dependent 
Diabetes Mellitus (IDDM).  A BGC outside this range results 
in chronic and acute complications (Abu-Rmileh et al.,2010).  
Open loop exogenous infusion of insulin maintains BGC in 
near normal range.  

Virtual Patient models have been constantly updated to 
improve their representation of the BGC – insulin dynamics. 
The most popular model initially was the 3 differential 
equation Bergman’s minimal model, see Chee et al. (2007). 
Exogenous Insulin infusion was added only later to this 
minimal model. Other popular models representing Type 1 
diabetics are Sorensen model having 19 differential equations 
and Hovorka’s model having 8 differential equations, see 
Hovorka et al. (2004). Sorensen’s model does not capture the 
real hyperglycaemic extremes observed in Type 1 diabetics, 
see  Finan et al. (2006). Hovorka model is simple and 
accurate in representing patients with Type 1 diabetes 
(Semizer et al., 2012). 

Model Predictive Control based on treating the control 
problem as an online optimization problem at each sampling 

time is widely adapted in many applications.  The benefits of 
such scheme include constraints inclusion for inputs, outputs 
and states in finding the optimal solution, see Mayne et al. 
(2000). Such design of MPC for linear time invariant systems 
have been studied (Satheesh et al., 2011). They have proven 
to provide reliable regulatory and tracking solutions to 
different types of processes (Sivakumaran et al., 2006). 
Online optimization involves repetitive solution search owing 
to the implicit feedback. This increases the computational 
effort (Kouramas et al., 2011). As compared to classical 
controllers like proportional integral derivative (PID), MPC 
shows better performance but owing to MPC’s inability to 
adapt to faster systems, PID controls are still being widely 
used for such processes. By performing online optimization 
via offline optimization tools, see Pistikopoulos et al. (2002), 
mp-MPC recasts the problem from a numerical optimization 
into a parametric optimization (Dua et al., 2008). The 
hardware-software co-design becomes efficient owing to the 
simple controller deployment. 

A state feedback based mp-MPC design has been created for 
a linearized time invariant (LTI) model, see Dua et al. (2006). 
A FOPTD model based mp-MPC design facilitates direct 
field data utilization in mp-MPC control law derivation, see 
Kosmidis et al. (2006).  
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Hovorka’s virtual patient model, exhibits nonlinearity owing 
to the selection of saturation for certain parameters like non-
insulin dependent glucose flux and also renal glucose 
clearance in it. Insulin dynamics also contribute greatly to 
this non linearity, see Amjad et al. (2010). 

FOPTD based models of the glucose – insulin dynamics are 
derived from the virtual patient, see Ramprasad et al. (2006). 
The benefits of multiple model controller based on gain 
scheduling for nonlinear processes over a nonlinear controller 
has been discussed greatly, see Amjad et al. (2010). Delay 
time compensation schemes for control design based on pure 
dynamics for processes with slow dynamics are widely 
accepted.  

A direct model approach is suggested in Dua et al. (2006) 
based on a Bergman minimal model. This article deals with 
difference model based approach to model the dynamics of a 
Hovorka’s virtual patient model. Also, a gain scheduled 
multiple model adaptive control is designed for the BGC 
control on the virtual patient.  

Hence, the controller developed is deployed in-silico. The 
controller has been tuned under varying scenarios of 
simulation which includes meal disturbances, Insulin 
sensitivity, and inter-patient variations.  

2. VIRTUAL PATIENT MODEL 

Hovorka’s 8 differential equation model divide the entire 
operating range into three major subsystems - glucose 
subsystem, the insulin subsystem and insulin action 
subsystem, see, Hovorka et al. (2004).  

2.1.1 Glucose Subsystem  

Glucose kinetics is represented by two compartments 
1
Q  and 

2
Q  as in (1) and (2). They represent the masses of glucose in 

the accessible and non-accessible compartments.  
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where, BGC is obtained as in (3). 
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G
U is the gut absorption rate of glucose. DG is the amount of 

carbohydrates digested and AG is the carbohydrate bio 
availability.  

2
max,

max, )(exp
)(

G

GGG

G
t

tttAD
tU

−

=    (6) 

2.1.2.Insulin subsystem 

S1 and S2 represent the absorption of subcutaneously 
administered short-acting insulin. u(t) represents the 
administration of insulin. The plasma insulin concentration 
I(t)is given as in (9). 
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2.1.3.Insulin action subsystem 

Influence of insulin on the glucose kinetics is provided as in 
(10) to (12). 
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where 
1
x  ,

2
x  and 3x showcase insulin’s effects on glucose 

transport, production and disposal.  

 

Fig. 1. Steady State BGC – Insulin Interaction for Hovorka’s 

virtual patient 
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The model constants made use of in this virtual patient is 
listed in Table 1. The parameters mentioned in Table 1 are 
taken from Hovorka et al. (2004). 

2.2.Non Linearity of Hovorka’ virtual patient 

The major sources of nonlinearity are due to insulin action on 
glucose production, distribution and disposal. The steady 
state Glucose Insulin interaction is obtained as in Fig. 1. 

Table 1.  Virtual patient model constants 

Constant Description Value 

12k  Transfer Rate 0.066 min-1 

1ak  Deactivation rate 0.006 min-1 

2a
k  Deactivation rate 0.06 min-1 

3a
k  Deactivation rate 0.03 min-1 

1bk  Activation rate 0.3072 x10-4 

min-2 per mU L-1 

2b
k  Activation rate 0.492 x10-4      

min-2per mUL-1 

3b
k  Activation rate 15.6 x10-4         

min-1per mUL-1 

ke  Insulin Elimination rate 0.138 min-1 

I
V  Insulin Dist. Vol. 0.12Lkg-1 

G
V  Glucose Dist. Vol. 0.16Lkg-1 

G
A  Carb. Bio availability 

(CHO) 
0.8(Unit less) 

G
t
max,

 Max. CHO absorption 
Time 

40 min 

EGPo EGP Extrapolated to zero 
insulin concentration 

0.0161        
mmol kg-1 min-1 

F01 Non-Insulin dependent 
glucose flux 

0.0097  
mmol kg-1 min-1 

I
t
max,

 Max. Insulin absorption 
time 

55 min 

 

3. MULTI-PARAMETRIC MPC 

Multi-parametric optimization problems are vector based 
optimization problems. Consider a discrete linear time 
invariant system as in (13). 
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The linear constraints on the system are as in (14). 
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The objective cost function of the model predictive control is 

as in (15). 
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Q and R are both positive definite matrices. U as in (16) is 
the set of input vectors 
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Ny, Nc and Nu are the prediction, constraint and control 
horizons respectively. The terminal weighing matrix P, is 
obtained by solving the following algebraic Ricatti equation 
shown in (17). 
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For a prediction horizon of N steps, (13) can be rewritten as 
in (18). 
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The quadratic cost function for this problem is now written as 
in (19). 
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The multi-parametric optimization problem is recast as in 
(20). 
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H is the hessian matrix. g is the gradient. 

By optimizing vector z using state vector x(k), explicit 
functions of state vector provides input decision U as in (21).  

)(1 kxgHzU −

−=     (21) 

Using the Karush-Kuhn-Tucker condition for optimality, see 
Bazaraa (1993), the Lagrangian multipliers for various points 
in the state vector space is obtained. The number of 
multipliers is decided by the number of constraints 
implemented as in (14). A non-zero positive value to any of 
the Lagrangian multiplier signifies an active constraint in the 
assessed state vector space. Such assessment is carried out in 
the entire state vector space and different sets of such active 
constraints are utilized to partition the state vector space into 
polyhedrons. 

A state vector is classified into a polyhedral region on 
satisfying (22). 
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The state feedback controller for this polyhedral region is 
obtained as in (23) 
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where, 

~

G ,
~

S and 
~

W  are obtained from G, S and W matrices based 

on the active Lagrangian multipliers. 

The control design ensures the convexity and the contiguity 
of the solution are being preserved in the entire vector space.  

The discrete state space model of the pure dynamics of 
empirical FOPTD model and the deviation of BGC from 
reference, form the two dimensional state vector space. 

To this effect, the difference form of pure dynamics’ state 
space is considered, as in (24). 

)1()1(

)()()1(

+∆=+∆

∆+∆=+∆

kxCky

kuBkxAkx
   (24) 

Deviation of BGC is appended to the state as in (25). 
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Proper weights on Q ensures, only the deviation is weighed 
while regulating the system to origin, hence eliminating 
disturbances. 

Offline tuning is hence the process of identifying various 
combinations of active constraints on the entire state vector 
space. Controller is tuned by initially setting the Q/R ratio. 
Both the Q and R matrices in (15) influence the aggression 
and also the robustness of the controller. Designing controller 
for each of the critical region completes this procedure.  

4. RESULTS AND DISCUSSION 

4.1 Empirical modelling and vector space partitioning 

The virtual patient model exhibits three distinct regions  
(Region 1: BGC<80 , Region 2: 80< BGC <160 , Region 3: 
BGC >160 unit: mg/dL ) as seen in Fig. 1. Under steady state 
conditions in each of the three regions, the subcutaneous 
insulin infusion rate, which is the input to this process, was 
varied by 1mU/min as a negative step change and by 0.5 
mU/min in the  positive direction, from the nominal insulin 
infusion rate and the transient response of the in–silico 
patient’s BGC, which is the output, is recorded. An FOPTD 
model is derived out of the transient response in each region. 
The model thus obtained for region 2 is compared with actual 
Hovorka model as seen in Fig. 2. 

The FOPTD model hence obtained is converted to discrete 
state space form with a sampling time of 5 minutes. This 
model is subject to analysis and offline tuning as discussed in 
Section 3. Using (22) and (23), the polyhedrons and control 
laws are obtained.  

The resultant vector space partitioning for region 2 
constitutes of three critical regions as seen in Fig.3. 
Polyhedral classifiers and state feedback controllers are thus 
obtained for all three FOPTD models.  

 

Fig. 2. Comparison of Empirical FOPDT model to Hovorka’s 

virtual patient model.  

The FOPTD model for Region 2 constitutes of a gain of          
-70.51, a time delay of 25 minutes and a time constant of 
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magnitude 125 minutes. As indicated in Percival et al. 
(2011), the time delay values for all three regions are similar 
and hence considered to be same. The controller is designed 
based on pure dynamics. A Smith predictor based time delay 
compensation is performed in closed loop. Gain scheduling 
determines the model/controller selection during closed loop 
control. Based on region classification provided in Section 
4.1, the scheduling is executed.  

The pure dynamics of the FOPTD model is converted to 
continuous time state space representation. This model is 
further discretized with a sample time of 5 minutes. The 
discrete state space models for the three regions are provided 
in Table 2. A Q/R ratio of 5 has been used in design of the 
three controllers. 

Table 2. Discrete Time State Space models 

Region A B C D 

Region 1 0.9355 4.837 -0.4813 0 

Region 2 0.9608 4.901 -0.5641 0 

Region 3 0.8669 4.659 -0.2136 0 

Table 3.  Meal Disturbance 

Meal Time 8:00 am 12:00 pm 7:00 pm 

DG 
(mmol/kg) 

3 5 4 

 

 

Fig. 3. Polyhedral partitioning of vector space (Region 2) 

and Trajectory of state vector in the vector space for a 5 

mmol/kg meal disturbance.   

4.2 Regulation of meal disturbances 

BGC control is approached as a regulatory problem owing to 
no changing of the reference.  

Another explicit form of MPC is the unconstrained MPC (U 
MPC) derived from (21). Hard input saturation is used before 
deploying it on the virtual patient. The constraint employed 

on the given mp-MPC is on the rate of change of insulin 
infusion rate. Considering the patient’s weight to be 165 
pounds, the total daily dose (TDD) of insulin is calculated to 
be 41.25 units. 

 A basal insulin infusion rate of 7mU/min is maintained. 
Based on BGC deviation during continuous glucose 
measurement (CGM) the bolus insulin infusion rate is varied 

 

Fig. 4. Regulation of 5 mmol/kg meal disturbance. 

 

Fig. 5. Regulation of multiple meal disturbances. Meal 

Disturbances as listed in Table 3.  

For the given meal sizes, the control action shown in Fig.5 
the total insulin infused is found to be 34.729 units by the 
mp-MPC. Whereas, the insulin infused by the unconstrained 
MPC is 36.809 units. 

It is evident from the comparison of graphs in Fig. 4 and Fig. 
5 and also, the mean square error values as seen in Table 3, 
the mp-MPC performs better. A control variability grid 
analysis (CVGA) shown in Fig. 6. 
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It shows that for varying meal sizes, the mp-MPC maintains 
the control in regions a and b and hence imparting better 
control in comparison to U MPC. Meanwhile, input cost is 
also contained by mp-MPC as indicated by the standard 
deviation mentioned of in Table 4.  

 

Fig. 6. CVGA analysis of various meal sizes. 

Table 4.  Qualitative Analysis of Regulation of multiple 

meal disturbances 

Controller mp-MPC Unconstrained 
MPC 

MSE 13.6043 51.7476 

Standard Deviation of 
Insulin Infusion Rate 

1.01 1.95 

5. CONCLUSION 

A Hovorka’s virtual patient model has been used. Multiple 
FOPDT models based on piecewise linearity have been 
obtained. Vector space partitioning based on active 
constraints using Lagrangian multipliers has been performed. 
Gain Scheduling based on BGC measured from virtual 
patient selects the controller profile. A multi model multi 
parametric MPC based on empirical models has been 
designed and deployed in-silico on a virtual patient. The 
explicit nature of the controller obtained, coupled with the 
simplicity of the control solution makes it an ideal choice for 
embedded deployment while preserving the benefits of MPC.  
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