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Abstract: The availability of parallel fermentation systems comprised of miniature, independently 

controlled bioreactors provides new opportunities for high throughput bioprocess development. In this 

study, we demonstrated the use of a four bioreactor system to validate predictions from a dynamic flux 

balance model of Saccharomyces cerevisiae metabolism. First we showed that the four 250 mL 

bioreactors generated very reproducible aerobic batch culture data and that the parallel system results 

could be accurately scaled-up to a standard 1.25 L laboratory bioreactor by matching oxygen mass 

transfer coefficients in the different reactors. A S. cerevisiae dynamic flux balance model previously 

developed in our group was shown to produce anaerobic and aerobic batch profiles in excellent 

agreement with the parallel system. The validated model was used to determine the optimal aerobic-

anaerobic switching time for maximal ethanol production in batch culture. An optimal switching time in 

agreement with parallel system experiments was obtained. We concluded that parallel fermentation is a 

powerful tool for batch culture optimization when used in conjunction with dynamic metabolic models. 
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1. INTRODUCTION 

Dynamic flux balance analysis (DFBA) is a computational 

approach for analyzing and engineering cellular behavior in 

dynamic culture environments that predominate in batch and 

fed-batch biochemical reactor (Mahadevan et al., 2002; 

Varma et al., 1994). The basic element of DFBA is a 

dynamic flux balance model that combines stoichiometric 

mass balances on intracellular metabolites with dynamic 

mass balances on extracellular species through substrate 

uptake kinetics and the cellular growth rate. When a genome-

scale reconstruction of cellular metabolism is used (Hjersted 

and Henson, 2009), DFBA can be expected to generate more 

accurate predictions than a conventional unstructured 

bioreactor model based on phenomenological descriptions of 

cellular growth and product yields. The development of 

customized computational tools allows DFBA to address a 

wide variety of problems in bioreactor analysis and design, 

including the dynamic simulation of batch and fed-batch 

cultures (Sainz et al., 2003), the dynamic optimization of fed-

batch operating policies (Hjersted and Henson, 2006), the in 

silico design of metabolite overproduction mutants for batch 

and fed-batch bioreactors (Hjersted et al., 2007), and the 

simulation and optimization of microbial co-cultures (Hanly 

and Henson, 2010; Hanly et al., 2012). Validation of dynamic 

flux balance models requires the execution of batch and/or 

fed-batch experiments over the growth conditions of interest. 

Because the use of standard laboratory bioreactor systems for 

such experiments can be time consuming and expensive, 

there is considerable motivation to explore alternative cell 

culture technologies for dynamic metabolic model 

development. 

Bioprocess engineering often involves the screening of many 

fermentation conditions to discern optimal conditions for cell 

growth and product formation (Kennedy and Krouse, 1999; L 

et al., 2009; Parekh et al., 2000). Traditionally, shake flasks 

and microtiter plates have been used in early stages of cell 

culture development and optimization.  However, most of 

these systems lack on-line monitoring and control of crucial 

variables such as pH and dissolved oxygen (Archambault et 

al., 1996; Buchs, 2001; Szita et al., 2005). Recent 

advancements in bioprocess technology have focused on 

improving high throughput screening of fermentation 

operating conditions through the development of miniature, 

parallel bioreactors (Betts and Baganz, 2006; Weuster-Botz, 

2005; Amanullah et al., 2010). Unlike shake flasks and 

microtiter plates that provide only surface aeration, air can be 

directly sparged into the culture to provide more uniform 

aeration and achieve more stable dissolved oxygen 

concentrations (Betts et al., 2006; Puskeiler et al., 2005). 

Parallel bioreactor systems have been used to study media 

formulations (Betts and Baganz, 2006), the effects of 

substrate perturbations (Aboka et al., 2006), the effects of 

aeration and agitation on oxygen limitation (Gill et al., 

2008a), and the identification, characterization, and 

improvement of biocatalysts (Lye et al., 2003). 

The objective of this study was to demonstrate the use of a 

parallel fermentation system for the validation and 

optimization of a dynamic flux balance model of 

Saccharomyces cerevisiae metabolism in batch culture. First 

the reproducibility of the parallel system was evaluated by 

operating each of the four 250 mL bioreactors at identical 

batch operating conditions and comparing their glucose, 

biomass and ethanol profiles. Then the oxygen mass transfer 

coefficient used in parallel fermentations was matched in a 
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standard 1.25 L bench-scale bioreactor to demonstrate scale-

up capabilities. Batch profiles generated from the S. 

cerevisiae dynamic flux balance model were compared to 

those obtained from the parallel bioreactors to validate the 

model predictions. We have previously shown that the 

dynamic flux balance model predicts optimal ethanol 

production at a particular aerobic-anaerobic switching time 

(Hjersted et al., 2007). The parallel system was used to 

validate this computational result and to efficiently determine 

the sensitivity of the ethanol productivity to the switching 

time. 

2. MATERIALS AND METHODS 

2.1 Experimental Procedures  

The wild-type Saccharomyces cerevisiae strain ATCC 32167 

was used in all experiments. Cells were cultivated in a 

minimal medium composed of 20 g/L glucose, 1.00 g/L 

MgSO4 ·7 H2O, 1.10 g/L KCl, 0.15 g/L CaCl2 · 2 H2O, 1.00 

g/L (NH4)2HPO4, 8.75 g/L (NH4)2SO4, 60.3 mg/L myo-

inositol, 30.0 mg/L Ca-panthothenate, 6.0 mg/L thiamine-

HCl (Vit. B1), 1.5 mg/L pyridoxine-HCl (Vit. B6), 0.03 

mg/L biotin (Vit. H), 15.0 mg/L FeCl3 · 6 H2O, 10.6 mg/L 

MnSO4 · H2O, 9.0 mg/L ZnSO4 · 7 H2O, and 2.4 CuSO4 · 2 

H2O. During fermentations in which S. cerevisiae grew 

anaerobically, the medium was supplemented with  20 mg of 

ergosterol dissolved in 1.25 mL of a 50/50 solution of Tween 

80 and ethanol for every liter of media.   

Prior to bioreactor inoculation, cells from plates stored at 4⁰C 

were grown in 150 mL shake flasks containing 60 mL of 

minimal media and 20 g/L glucose for 18 hours at 140 RPM.  

The miniature stirred tank bioreactor system studied in this 

work was a BioXplorer four reactor system (HEL Group Ltd., 

Barnet, UK).  The system consisted of four 250 mL glass 

reactors situated in one heating block that provides 

independent control of temperature. Each reactor also had an 

independent agitator. Dedicated electrochemical probes for 

dissolved oxygen, pH and temperature were fitted in the 

headplate of each reactor. Four peristaltic pumps for each 

reactor allowed the independent addition of acid and base for 

pH control, the addition of substrate for fed-batch or 

continuous operation, and/or the extraction of reactor 

medium samples. Batch operating conditions including 

temperature, pH and stirrer speed were set for each reactor 

through winISO software (HEL Group Ltd., Barnet, UK).  

The volumetric flow rate of air to each reactor was controlled 

manually by four independent rotameters. The reactors were 

operated at 30 ⁰C, 5.0 pH, 500 RPM stirrer speed and 150 

cm3/min air sparging rate. Fermentations were initiated with 

the inoculation of 12.5 mL of shake flask culture into 200 mL 

of media. The shake flask media added small amounts of 

ethanol produced by the preculture and some unconsumed 

glucose to the reactor media. On average, the initial 

concentrations of the inoculum were 8.6 g/L glucose, 0.46 

g/L biomass and 0.17 g/L ethanol. The batch time of each 

fermentation was determined as the time at which the glucose 

concentration of dropped below 0.1 g/L. The batch ethanol 

productivity was calculated by dividing the final ethanol 

concentration by the batch time. 

A BioFlo 3000 (New Brunswick Scientific, Edison, NJ) with 

a working volume of 1.25 L was used to scale-up the 

fermentations performed in the parallel system. The reactor 

was controlled at a temperature of 30 ⁰C, pH 5, and an 

aeration rate of 0.7 VVM. Oxygen transport in the two 

reactor systems was quantified using the static gassing out 

method. Dissolved oxygen was monitored as the reactor was 

sparged with nitrogen until anoxic and then as the reactor was 

sparged with air until fully saturated with oxygen.  The 

following equation was used in the calculation of kLa: 

𝑑𝐶𝐿

𝑑𝑡
= 𝑘𝐿𝑎(𝐶∗ − 𝐶𝐿)                                  (1) 

where C* was the saturated oxygen concentration and CL was 

the dissolved oxygen concentration. Two times t1 and t2 

during air sparging were chosen, and a plot ln[(C*-CLt1)/(C*-

CLt2)] versus time produced a line with slope equal to kLa for 

the given aeration and stirrer speeds. The kLa values were 

measured for stirrer speeds ranging from 300 to 500 RPM in 

intervals of 50 RPM. 

A 17.5 mL sample was withdrawn from each reactor every 

two hours to measure the biomass, glucose and ethanol 

concentrations for the reproducibility study. The first 3 mL 

were discarded to flush the sample tubing of media that 

remained from the previous sample. The weight of dry 

biomass was measured by centrifuging 14.5 mL of the 

sample at 6000 rpm for 6 minutes. The resulting pellet was 

then resuspended in nanopure water and spun down again. 

The pellet was dissolved in 2 mL nanopure water, dried 

overnight in an oven set to 125 ⁰C and then weighed.  Prior to 

drying, the optical density of each sample was measured at 

595 nm with a WPA UV1101 Biotech Photometer (Biochrom 

Ltd., Cambridge, UK). A calibration curve of OD595 to 

biomass produced a regressed line with correlation 

coefficient (r2 = 0.9977) before the curve became nonlinear 

for OD595 greater than 0.4 (not shown). Samples with 

OD595 greater than 0.4 were diluted with sterile media to 

ensure analysis within the linear region. Once the calibration 

curve was established, the post-flush sample size was reduced 

from 14.5 to 2 mL and the biomass concentration was 

quantified solely by optical density. 

Extracellular glucose and ethanol concentrations were 

measured with an YSI 2700 SELECT biochemistry analyzer 

(YSI Inc., Yellow Springs, Ohio) equipped with the 

appropriate immobilized enzyme membranes. Although not 

measured due to lack of the necessary membrane, glycerol 

was expected to be produced under the partially aerobic and 

anaerobic growth conditions investigated in this study. The 

residual 3 mL from the original 17.5 mL sample was 

analyzed for glucose and ethanol concentrations during the 

reproducibility study. Due to the time delay associated with 

sampling, all measurements obtained from the flush were 

projected back 1.5 hours as an estimate of the reactor state at 

the most recent sample time. This approximation provided 

good agreement with dynamic flux balance model 

predictions. Metabolite measurements for the bench-scale 

reactor and switching time optimization were taken from the 

2 mL sample used to measure OD595. Off-gas measurements 

of oxygen and carbon dioxide were not available for this 
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Fig. 1. Reproducibility of the parallel bioreactor system. 

Comparison of biomass (top left), OD595 (top right), 

glucose (bottom left) and ethanol (bottom right) batch 

profiles for each of the four parallel bioreactors under 

aerobic growth conditions. Each bioreactor is 

represented by a different symbol. 
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study. While clearly useful for model validation, 

measurements of intracellular fluxes such as those obtained 

from C13 substrate labeling also were not available. 

2.2 Dynamic Flux Balance Model  

Transient predictions of the biomass, glucose and ethanol 

concentrations were produced from a dynamic flux balance 

model (Hjersted and Henson, 2009) based on the iND750 

genome-scale reconstruction of S. cerevisiae metabolism 

(Duarte et al., 2004). While more recent versions of the S. 

cerevisiae metabolic reconstruction are available (Mo et al., 

2009), our previous dynamic flux balance models have been 

based on the iND750 reconstruction and this model was 

deemed suitable for this study. The iND750 model consisted 

of 750 genes and 1149 intracellular reactions, which were 

divided into seven distinct intracellular compartments. 

Compartmentalization of the 646 unique metabolites 

produced a total of 1059 metabolites that were 

stoichiometrically balanced. The dimensions of the 

stoichiometric matrix were 1059 metabolites and 1264 fluxes, 

which included the intracellular reactions and 115 

compartmental exchange fluxes. 

The stoichiometric equations of iND750 were augmented by 

glucose and oxygen uptake kinetics as well as extracellular 

mass balances on biomass, glucose and ethanol as follows 

(Hjersted and Henson, 2009): 

max
𝑣𝑖

µ = 𝑤𝑖
𝑇𝑣𝑖                                       (2) 

𝐴𝑣𝑖 = 0                                           (3) 

𝑣𝑖,𝑚𝑖𝑛 ≤ 𝑣 ≤ 𝑣𝑖,𝑚𝑎𝑥                               (4) 

𝑣𝑔 = 𝑣𝑔𝑚

𝐺

𝐾𝑔 + 𝐺
                                 (5) 

𝑣𝑜 = 𝑣𝑜𝑚
𝑂

𝐾𝑜+𝑂
                                    (6) 

𝑑𝑋

𝑑𝑡
= 𝜇𝑋                                       (7) 

𝑑𝐺

𝑑𝑡
= −𝑣𝑔𝑋                                    (8) 

𝑑𝐸

𝑑𝑡
= 𝑣𝑒𝑋                                      (9) 

Here  is the growth rate, vi are the intracellular fluxes, wi are 

coefficients that represent the contribution of each component 

to biomass formation, A is a matrix of stoichiometric 

coefficients, vi,min and vi,max are lower and upper bounds on the 

fluxes, G, O and E are the extracellular concentrations of 

glucose, oxygen and ethanol, respectively, X is the biomass 

concentration, vg and vo are uptake rates of each substrate, vgm 

and vom are the corresponding maximum uptake rates, Kg and 

Ko are corresponding saturation constants, and ve is the 

ethanol flux.  

A fully anaerobic fermentation was performed, and the 

resulting biomass, glucose and ethanol profiles were used to 

obtain the maximum uptake and saturation constant for 

glucose uptake (vgm = 22.4 mmol/g/h, Kg = 0.7 g/L). With the 

glucose uptake parameters fixed, the oxygen uptake 

parameters (vom = 1.5 mmol/g/h, Ko = 1.0 g/L) were obtained 

by fitting the model to biomass, glucose and ethanol profiles 

obtained for a fully aerated fermentation. The dynamic flux 

balance model was simulated in MATLAB by solving the 

intracellular linear program with the MOSEK optimization 

code and the extracellular differential equations with the 

ode23 function. 

3. RESULTS AND DISCUSSION 

First, parallel aerobic growth experiments were performed at 

the same batch fermentation conditions (see Materials and 

Methods) to investigate reproducibility of the four 

bioreactors. Following inoculation at time zero, the biomass 

concentration, optical density, glucose concentration and 

ethanol concentration measured at each time point showed 

excellent agreement across all four reactors (Figure 1). 

Furthermore, similar dissolved oxygen profiles were obtained 

in all four reactors (not shown).  Over the course of the batch 

fermentations, small differences in the media volume in each 

reactor occurred due to non-uniform addition of acid and base 

for pH regulation and small deviations in the volume of 

extracted samples. Along with inherent measurement errors, 

these factors can explain the small variability in biomass, 

glucose and ethanol concentrations between the reactors. We 

concluded that the parallel system was capable of precisely 

maintaining operating conditions in the four bioreactors and 

generating reliable data under well controlled fermentation 

conditions. 

Miniature bioreactor systems are well suited for efficiently 

screening different cell mutants and growth conditions to 

determine optimal fermentation conditions. This approach 

requires scalability of parallel system results to larger 

production scale bioreactors. To examine this issue in a 

laboratory setting, the aerobic growth results obtained in the 

0.25 L bioreactors (Figure 1) were scaled-up to a bench-scale 

bioreactor with 1.25 L working volume. Air was sparged into 

the bench-scale reactor at the same volume of gas per reactor 

volume per minute as used in the miniature bioreactors. 

Aeration was scaled-up by matching the volumetric oxygen 

mass transfer coefficient (kLa) in the miniature and bench-
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Fig. 2. Validation of the dynamic flux balance model. 

Comparison of biomass (top left), glucose (top right) and 

ethanol (bottom left) batch profiles under partially 

aerobic growth conditions for the bench-scale reactor, the 

parallel system and the dynamic flux balance model. The 

parallel system results were obtained by averaging 

individual profiles from the four miniature bioreactors. 
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Fig. 3. Comparison of the batch ethanol productivities for 

different aerobic-anaerobic switching times 

experimentally determined using the miniature 

bioreactors (points) and predicted with the dynamic flux 

balance modeling (solid line). The error bars represent 

standard deviations calculated from the four independent 

miniature bioreactors. 

 

 

 

 

 

 

 

Fig. 4. Experimental (data points) and predicted (lines) 

glucose, ethanol and biomass concentration profiles for 

anaerobic growth (switching time of 0 hours), aerobic 

growth (switching time of 10 hours) and combined 

aerobic-anaerobic growth (switching time of 7 hours). 

 

 

 

 

 

 

scale bioreactors (Gill et al., 2008b; Flores et al., 1997). 

Following the static gassing out method (see Material and 

Methods), the miniature bioreactors were found to be 

operated with kLa = 0.0225 s-1. To ensure that the scaled-up 

fermentation was operated under the same oxygen transport 

conditions, the kLa of the bench-scale bioreactor was 

determined at different impeller speeds using the static 

gassing out method. The dissolved oxygen concentration 

need for this calculation was very stable. The resulting graph 

(not shown) was used to determine that an impeller speed of 

400 RPM produced the target kLa value. Because the bench-

scale bioreactor has an assembly of two impellers compared 

to a single rotor in the miniature bioreactors, the reduced 

stirrer speed (400 RPM compared to 500 RPM) agreed with 

our expectations.   

Figure 2 provides a comparison of the aerobic growth profiles 

obtained from the bench-scale reactor, the parallel system and 

the dynamic flux balance model where the measured biomass 

concentrations were calculated from the OD595 correlation 

(see Materials and Methods). The parallel system results were 

obtained by averaging individual profiles from the four 

miniature bioreactors. The two experimental systems and the 

dynamic model produced similar biomass, glucose and 

ethanol concentration profiles over 7 hour batch 

fermentations. The procedure for matching the initial biomass 

concentrations in the two systems created a small disparity 

between the initial glucose concentrations. The shake flask 

used to inoculate the bench-scale reactor had a lower cell 

density but slightly more residual glucose than the shake 

flask used for the parallel system. This small discrepancy 

resulted in minor growth rate reduction in the parallel 

bioreactors as exemplified by the biomass concentration 

profiles. We concluded that fermentation conditions used in 

the parallel system could be readily scaled-up to larger 

bioreactors and that the metabolic model predictions were 

consistent with experimental results. 

We have previously used the S. cerevisiae dynamic flux 

balance model to predict optimal switching times between 

aerobic and anaerobic growth phases to optimize ethanol 

production in fed-batch culture (Hjersted et al., 2007). 

Experimental validation of such predictions can be a time and 

labor intensive process when fermentations are performed in 

a single, laboratory scale bioreactor. We used the miniature 

bioreactors to validate optimal switching time predictions 

obtained from the dynamic flux balance model to illustrate 

the combined capabilities for bioprocess engineering. The 

model was initialized with 0.04 g/L biomass, 8.4 g/L glucose 

and 0.17 g/L ethanol and simulated for a range of switching 

times between 0 and 10 hours. The ethanol productivity for 

each batch simulation was calculated at the final batch time 

when the glucose concentration dropped below 0.1 g/L. A flat 

maximum productivity of 0.43 g/L/h was obtained at a 

switching time of approximately 8 hours (Figure 3).  
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The miniature bioreactors were used to validate these in silico 

predictions by performing two sets of parallel fermentations 

over the same range of switching times. The seven 

experimentally derived productivities showed good 

agreement with the model predictions, with an optimal 

productivity of 0.43 g/L/h at a switching time of 7 hours. 

Relatively large deviations between experimental and 

predicted productivities were observed for smaller switching 

times and mostly anaerobic operation (Figure 3). Such 

deviations were not unexpected as the dynamic flux balance 

model does not account for known differences in glucose 

uptake kinetics under aerobic and anaerobic growth 

conditions (Akesson et al., 2004).  

Figure 4 shows experimental and predicted glucose, ethanol 

and biomass concentration profiles for three cases: anaerobic 

(switching time of 0 hours), aerobic (switching time of 10 

hours) and the experimentally derived optima (switching time 

of 7 hours). The experimental data and model predictions 

generally showed good agreement with the largest deviations 

observed for the optimal case, perhaps due to unmodeled 

regulatory phenomenon associated with the aerobic to 

anaerobic transition (Cohen et al., 2001). Both simulation and 

experiment demonstrated that the productivity was a weak 

function of the switching time if the switching time was 

sufficiently large (Figure 3). For example, similar 

productivities were obtained for aerobic growth and 

combined aerobic-anaerobic growth with a switching time of 

7 hours (Figure 4). Due to the low maximum oxygen uptake 

rate (vom = 1.5 mmol/g/h), fermentative pathways were still 

active under the partially aerobic growth conditions used and 

the ethanol synthesis rate was similar under aerobic and 

anaerobic conditions. Therefore, the advantage of anaerobic 

operation was partially mitigated and substantially depressed 

productivities were observed only for prolonged anaerobic 

growth (short switching times) when total biomass formation 

was reduced. Our previous modeling studies (Hjersted and 

Henson, 2006) yielded a more pronounced productivity 

maximum for larger maximum oxygen uptake rates (e.g. vom 

= 8 mmol/g/h). Despite this complication, we concluded that 

the combined capabilities of the dynamic flux balance model 

and the parallel fermentation system represented a powerful 

tool for batch culture optimization. 

ACKNOWLEDGEMENTS 

This work was supported by the NSF-sponsored UMass 

Institute for Cellular Engineering IGERT program (Grant 

number DGE-0654128). 

REFERENCES 

F.O. Aboka, H. Yang, L.P.d. Jonge, R. Kerste, W.A.v. 

Winden, W.M.v. Gulik, R. Hoogendijk, A. Oudshoorn, 

J.J. Heijnen, Characterization of an experimental 

miniature bioreactor for cellular perturbation studies, 

Biotechnology and Bioengineering, 95 (2006) 1032-

1042. 

M. Åkesson, J. Förster, J. Nielsen, Integration of gene 

expression data into genome-scale metabolic models, 

Metabolic Engineering, 6 (2004) 285-293. 

A. Amanullah, J.M. Otero, M. Mikola, A. Hsu, J. Zhang, J. 

Aunins, H.B. Schreyer, J.A. Hope, A.P. Russo, Novel 

micro-bioreactor high throughput technology for cell 

culture process development: Reproducibility and 

scalability assessment of fed-batch CHO cultures, 

Biotechnology and Bioengineering, 106 (2010) 57-67. 

J. Archambault, R.D. Williams, C. Bédard, C. Chavarie, 

Production of sanguinarine by elicited plant cell culture 

I. Shake flask suspension cultures, Journal of 

Biotechnology, 46 (1996) 95-105. 

J. Betts, F. Baganz, Miniature bioreactors: current practices 

and future opportunities, Microbial Cell Factories, 5 

(2006) 21. 

J.I. Betts, S.D. Doig, F. Baganz, Characterization and 

Application of a Miniature 10 mL Stirred-Tank 

Bioreactor, Showing Scale-Down Equivalence with a 

Conventional 7 L Reactor, Biotechnology Progress, 22 

(2006) 681-688. 

J. Büchs, Introduction to advantages and problems of shaken 

cultures, Biochemical Engineering Journal, 7 (2001) 91-

98. 

B.D. Cohen, O. Sertil, N.E. Abramova, K.J.A. Davies, C.V. 

Lowry, Induction and repression of DAN1 and the 

family of anaerobic mannoprotein genes in 

Saccharomyces cerevisiae occurs through a complex 

array of regulatory sites, Nucl. Acids Res., 29 (2001) 

799-808. 

N.C. Duarte, M.J. Herrgård, B.Ø. Palsson, Reconstruction 

and Validation of Saccharomyces cerevisiae iND750, a 

Fully Compartmentalized Genome-Scale Metabolic 

Model, Genome Research, 14 (2004) 1298-1309. 

E.R. Flores, F. Pérez, M. de la Torre, Scale-up of Bacillus 

thuringiensis fermentation based on oxygen transfer, 

Journal of Fermentation and Bioengineering, 83 (1997) 

561-564. 

N.K. Gill, M. Appleton, F. Baganz, G.J. Lye, Design and 

characterisation of a miniature stirred bioreactor system 

for parallel microbial fermentations, Biochemical 

Engineering Journal, 39 (2008) 164-176. 

N.K. Gill, M. Appleton, F. Baganz, G.J. Lye, Quantification 

of power consumption and oxygen transfer 

characteristics of a stirred miniature bioreactor for 

predictive fermentation scale-up, Biotechnology and 

Bioengineering, 100 (2008) 1144-1155. 

T.J. Hanly and M.A. Henson, Dynamic flux balance 

modeling of microbial co-cultures for efficient batch 

fermentation of glucose and xylose mixtures, 

Biotechnology and Bioengineering, 108 (2010) 376-

385. 

T.J. Hanly, M. Urello and M.A. Henson, Dynamic flux 

balance modeling of S. cerevisiae  and E. coli co-

cultures for efficient consumption of glucose/xylose 

mixtures, Applied Microbiology and Biotechnology, 93 

(2012) 2529-2541. 

J.L. Hjersted, M.A. Henson, Optimization of Fed-Batch 

Saccharomyces cerevisiae Fermentation Using 

Dynamic Flux Balance Models, Biotechnology 

Progress, 22 (2006) 1239-1248. 

J.L. Hjersted, M.A. Henson, Steady-state and dynamic flux 

balance analysis of ethanol production by 

Saccharomyces cerevisiae, IET Systems Biology, 3 

(2009) 167-179. 

IFAC CAB 2013
December 16-18, 2013. Mumbai, India

123



 

 

     

 

J.L. Hjersted, M.A. Henson, R. Mahadevan, Genome-scale 

analysis of Saccharomyces cerevisiae metabolism and 

ethanol production in fed-batch culture, Biotechnology 

and Bioengineering, 97 (2007) 1190-1204. 

M. Kennedy, D. Krouse, Strategies for improving 

fermentation medium performance: a review, Journal of 

Industrial Microbiology and Biotechnology, 23 (1999) 

456-475. 

S. Lu, M.A. Eiteman, E. Altman, Effect of CO2 on succinate 

production in dual-phase Escherichia coli 

fermentations, Journal of Biotechnology, 143 (2009) 

213-223. 

G.J. Lye, P. Ayazi-Shamlou, F. Baganz, P.A. Dalby, J.M. 

Woodley, Accelerated design of bioconversion 

processes using automated microscale processing 

techniques, Trends in Biotechnology, 21 (2003) 29-37. 

R. Mahadevan, J.S. Edwards, F.J. Doyle Iii, Dynamic Flux 

Balance Analysis of Diauxic Growth in Escherichia 

coli, Biophysical Journal, 83 (2002) 1331-1340. 

M. Mo, B. Palsson, M. Herrgard, Connecting extracellular 

metabolomic measurements to intracellular flux states 

in yeast, BMC Systems Biology, 3 (2009) 37. 

S. Parekh, V.A. Vinci, R.J. Strobel, Improvement of 

microbial strains and fermentation processes, Applied 

Microbiology and Biotechnology, 54 (2000) 287-301. 

R. Puskeiler, K. Kaufmann, D. Weuster-Botz, Development, 

parallelization, and automation of a gas-inducing 

milliliter-scale bioreactor for high-throughput 

bioprocess design (HTBD), Biotechnology and 

Bioengineering, 89 (2005) 512-523. 

J. Sainz, F. Pizarro, J.R. Pérez-Correa, E. Agosin, Modeling 

of yeast metabolism and process dynamics in batch 

fermentation, Biotechnology and Bioengineering, 81 

(2003) 818-828. 

N. Szita, P. Boccazzi, Z. Zhang, P. Boyle, A.J. Sinskey, K.F. 

Jensen, in, 2005. 

A. Varma, B.O. Palsson, Stoichiometric flux balance models 

quantitatively predict growth and metabolic by-product 

secretion in wild-type Escherichia coli W3110, Appl. 

Environ. Microbiol., 60 (1994) 3724-3731. 

D. Weuster-Botz, Parallel Reactor Systems for Bioprocess 

Development, in, 2005, pp. 125-143. 

 

 

 

 

 

IFAC CAB 2013
December 16-18, 2013. Mumbai, India

124


