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Abstract:
In many cases, optimal operation for a plant is the same as maximum throughput.
In this case a rigorous model for the plant is not necessary if we are able to
identify the bottleneck. Optimal operation is the same as maximum throughput in
the bottleneck. If the bottleneck does not move, this can be realized with single-
loop controller from the throughput manipulator to the bottleneck. However, if the
bottleneck moves, single-loop control would require reassignment of loops which is
undesirable. A better approach is then to use a multivariable coordinator controller
since input and output constrains are directly included in the problem formulation.
Copyright c©2007 IFAC
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1. INTRODUCTION

When disturbances of economic importance have
a dynamic character and especially if they oc-
cur frequently compared to the controlled plant
responses, steady state real-time optimization
(RTO) will be inadequate to follow the optimal
operation point in periods. However, in many
cases the prices and market conditions are such
that real-time optimization of the plant is the
same as maximizing plant throughput. From net-
work theory, the max-flow min-cut theorem states
that the maximum throughput in a plant (net-
work) is limited by the ”bottleneck” of the net-
work. In order to maximize the throughput, the
flow through the bottleneck should be at its max-
imum flow. In particular, if the actual flow at the
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bottleneck is not at its maximum at any given
time, then this gives a loss in production which
can never be recovered (sometimes referred to as
a ”lost opportunity”). Maximize throughput in a
network is a common problem in several settings
(Phillips et al. 1976, Ahuja et al. 1993). In the
special but important case of a linear network,
optimal operation is the same as maintaining
maximum flow through the bottleneck(s). A de-
tailed nonlinear network model is not necessary
in this simple case because the objective is to
identify the active ”bottleneck” constraint and
implement maximum throughput at the bottle-
neck. If the bottleneck is fixed, a single-loop con-
troller manipulating the throughput can be used
(Skogestad 2004a). If the bottleneck(s) moves, a
coordinator MPC (Aske et al. 2006) is suitable
because of its ability to handle constraints in
its process inputs and outputs and because the
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local MPCs can be used to estimate the available
capacity in each unit.

2. BACKGROUND

2.1 Inventory control

Inventory control deals with how the mass balance
is maintained in the plant. A chemical plant has
usually a single ”throughput manipulator” (TPM)
which indirectly through the process and product
requirements determines all the feed and product
rates. The main exception where we have more
than one TPM, is if there are several parallel
trains from feed to product.

Definition 1. (Price and Georgakis 1993, Price et
al. 1994). Throughput manipulator (TPM). The
TPM is the degree of freedom used to set the
throughput in the primary process path (from
the major feed streams to the major products).
Systems with parallel trains from feed to product
have one TPM for each train.

Price and Georgakis (1993) describe two kinds of
TPMs:

• Explicit TPM - a flow on a primary path
(from feed to product)

• Implicit TPM - not a flow on an primary
path, (e.g. a heat duty may be a TPM with
flow set by a temperature controller)

There are three basic schemes for inventory con-
trol (see Figure 1), depending on where in the
process the TPM is located (Buckley 1964, Price
et al. 1994):

• Scheme 1. Feed as TPM (given feed): Inven-
tory control system in the direction of flow
(conventional approach)

• Scheme 2. Product as TPM (”on demand”):
Inventory control system opposite to flow

• Scheme 3. TPM inside plant: Radiating in-
ventory control

The selection of throughput manipulator is im-
portant, because the chain of level controls need
to be constructed to radiate outward from the
throughput manipulator to obtain self-consistency
(Price and Georgakis 1993), which means that the
flow is maintained through the plant by use of the
local inventory loops only.

2.2 Modes of optimal operation

Most process plants have two main modes in terms
of optimal operation:

LC LC LC LCTPM

LC LC LC LC

LC LC LC LC

TPM

TPM

Scheme 1: Throughput manipulator at feed,
inventory control in the direction of flow

Scheme 2: Throughput manipulator at product,
inventory control in the direction opposite to flow

Scheme 3: Throughput manipulator inside plant,
radiating inventory control

Fig. 1. Basic schemes for inventory control

Mode 1. Given throughput. The objective is then
maximum efficiency, that is, minimize utility (en-
ergy) consumption for the given throughput. This
mode of operation typically occurs when the feed
rate is given (or limited) or the product rate is
given (or limited, for example, by market condi-
tions).

Mode 2. Feed is available and throughput is a
degree of freedom. We have here two cases:

a Maximum throughput. The maximum through-
put is the largest given throughput that achieves
feasible operation, i.e. satisfies Equation 2.

b Optimized throughput. This mode of operation
occurs when feed is available, but where the in-
crease in production cost becomes large so that
is not optimal to go all the way to maximum
throughput.

This paper focuses on mode 2a, which is optimal
when feed is available and the product prices are
high.

Mathematically, optimal operation in all three
cases is to minimize the cost J (maximize the
profit −J), subject to satisfying given specifica-
tions and model equations (f = 0) and opera-
tional constraints (g ≤ 0):

min
u

J(x, u, d) (1)

s. t. f(x, u, d) = 0 (2)

g(x, u, d) ≤ 0 (3)

Here u are the manipulated variables (including
the feed rates), d the disturbances and x the (de-
pendent) state variables. A typical profit function
is

−J =
∑

i

pPi
·Pi−

∑

i

pFi
·Fi −

∑

i

pQi
·Qi (4)

where Pi are products, Fi are feeds, Qi are utilities
(heating, cooling, power), and p indicates the price
for each of the element.

• In mode 1, the feed rates Fi are given and the
optimization problem is modified by adding a
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set of constraint, Fi = Fi0 (alternatively, the
product rates or flow inside the plant could
be given).

• In mode 2a (maximum throughput), the feed
rates Fi are degrees of freedom, and the cost
data are such that we have an constrained
optimum with respect to the feed rates (i.e.
dJ/dFi < 0). Increasing Fi above its maxi-
mum (optimal) value gives infeasible opera-
tion.

• In mode 2b (optimized throughput), the feed
rates Fi are degrees of freedom, and the cost
data are such that we have a unconstrained
optimum with respect to the feed rates (i.e.
dJ/dFi = 0). Increasing Fi above its optimal
value is feasible, but gives a higher cost J .

In terms of location of the TPM, scheme 1 (in
Figure 1) is the natural choice for mode 1 with
given feed, scheme 2 is the natural choice for
mode 1 with given product, whereas scheme 3
is the best choice for modes 2a and 2b where
the optimal throughput is determined by some
conditions internally in the plant.

2.3 Maximum Throughput (mode 2a)

In mode 2a the objective is to find a feasible
solution with maximum throughput, and since the
maximum throughput is independent of cost data,
we can simplify the cost function J in Problem
(1). In the general case with multiple (indepen-
dent) feeds, the throughput may be defined as
the sum of the weighted external feeds, and we
have Fw =

∑

i wiFi, where Fi denotes external
(“fresh”) feeds. The maximum throughput is then
the solution to the problem

max
u

Fw (5)

s.t. f = 0

g ≤ 0

Remark 1: For the case with a single feed this may
be written on the form J = −F in (1) and we note
that dJ/dF = −1 (also at the optimum). Remark
2: For multiple feeds, the simplest case is were
all the feeds have equal weight, wi = 1. Remark
3: More generally, wi should express the relative
value of processing the various feeds, but this
value may be difficult to find. Thus, to find the
maximum throughput for the case with multiple
feeds, it may be better to use the economic cost
function in Equation (4).

3. BOTTLENECK

We consider here maximum throughput (mode
2a), which in practice is achieved by maximizing
the flow through the bottleneck.

Definition 2. Maximum flow for a unit. The max-
imum flow (capacity) of a unit is the maximum
feed rate Fu

i that the unit can accept subject
to achieving feasible operation. Mathematically,
this corresponds to solving the maximum flow
problem stated in (5) for a given unit i, that is, to
find the maximum value of Fu

i that satisfies the
constraints fi = 0 and gi ≤ 0 for the unit.

Definition 3. Bottleneck (operation). A unit is a
bottleneck if maximum throughput (maximum
network flow for the system) is obtained by oper-
ating this unit at maximum flow (with no available
capacity left). In some cases the bottleneck can
not be located to a specific unit, but rather to a
system of units (”system bottleneck”).

Definition 4. Bottleneck constraints (operation).
The active constraints at maximum flow in a bot-
tleneck unit are called the bottleneck constraints.
If one of the active constraints is a flow on the pri-
mary path, then this is called a direct bottleneck
constraints and the corresponding flow is called a
direct bottleneck manipulator.

Definition 5. Back off. Back off is the deviation
between the actual value and the constraints (op-
timal value) needed to avoid infeasibility dynami-
cally in the presence of disturbances (Govatsmark
and Skogestad 2005, Narraway et al. 1991, Nar-
raway and Perkins 1993).

These concepts are closely related to the problem
of maximum flow in networks considered in the
operations research community, (e.g. Phillips et
al. (1976)). Such a network consists of sources,
arcs, nodes and sinks. An arc is like a pipeline with
given (maximum) capacity, and the nodes may be
used to add or split streams. The main restriction
is that the flow must satisfy conservation at the
nodes. This may be written as a linear program-
ming problem, and the trivial but important solu-
tion is that the maximum flow is dictated by the
network bottleneck. To see this, one introduces
”cuts” through the network, and the capacity of
a cut is the sum of the capacity of the forward
arcs that it cuts through. The max-flow min-cut
theorem (Ford and Fulkerson 1962) says that the
maximum flow through the network is equal to
the minimum capacity of all cuts (the minimal
cut). We then reach the important insight that
maximum network flow (maximum throughput)
requires that all arcs in some cut have maximum
flow, that is, they must all be bottlenecks (with
no available capacity left).

In terms of process engineering systems, a unit
with a single product is an arc, and flow splits
and flow junctions are nodes. In network the-
ory, the flow splits in nodes are free variables,
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like crossovers between parallel trains in ”our”
processes. A unit with several products (e.g. a
distillation column) is a combination of an arc
and a node, but there is usually a limited degree
of freedom to adjust the split because of product
constraints. To get a linear network the split factor
must either be constant or a free variable.

To apply network theory to process engineering
systems, we first need to obtain the capacity
(maximum flow) of each unit (arc). This is quite
straightforward, and involves solving a (nonlinear)
feasibility problem for each unit (see Definition 2).
The capacity may also be computed on-line, for
example, by using local MPC implementations as
proposed in the next section.

Assumption: The mass flow through the network is

represented by a set of units (where each unit capacity

is obtained locally) with linear flow connections.

Note that the nonlinearity of the equations within
a unit is not a problem, but rather the possible
nonlinearity in terms of flows between units. The
main problem of applying linear network theory
to process engineering systems is therefore that
the flow split in a unit, e.g. a distillation column,
is not constant, but depends on the state of its
feed, and, in particular, of its feed composition.
The main process unit to change composition
is a reactor, so decisions in the reactor may
strongly influence the flow in downstream units
and recycles. Another important decision that
affects composition, and thus flows, is the amount
of recycle. One solution to avoid these sources of
nonlinearity is to treat certain combinations of
units, like a reactor-recycle system, as a single
combined unit as seen from maximum throughput
(bottleneck) point of view.

In summary, we derive from the max-flow min-cut
theorem the following useful insights (rules) about
the maximum flow solution for a linear network
which satisfies the above assumptions:

Rule 1. At maximum throughput the network
must have at least one bottleneck unit.

Rule 2. Additional independent feeds and flows
splits (”independent” means that they are not in-
directly determined by other flows in the process,
e.g. a crossover flow between processing trains)
may give rise to additional bottlenecks, and the
idea of ”minimal cut” may be used to identify the
location of the corresponding bottleneck units.

Rule 3. Focus on the bottleneck unit(s). To maxi-
mize throughput, the flow through the bottleneck
should be as close as possible to its maximum
at any given time. This requires ”tight” control
of the bottleneck unit, as any deviation from
optimal operation in the bottleneck unit due to

poor control (including any deviation or back off
from the bottleneck constraints) implies a loss in
throughput (which can never be recovered).

Rule 4. Use TPM for control of the bottleneck
unit. This follows because TPM is the degree
of freedom for throughput which according to
Rule 3 should be maximized at the bottleneck.
In practice, TPM is often used to control one of
the bottleneck constraints (see Definition 4).

Further refinements of Rules 3 and 4 are given by
Rules 5 and 6.

Rule 5. TPM should be located so that control-
lability of the bottleneck unit is good (Skogestad
2004a). This is to reduce the throughput loss due
to imperfect control. For example, if TPM is used
to control one of the bottleneck constraints then
the effective time delay from TPM to its bottle-
neck constraint should be small. Selecting TPM as
a direct bottleneck manipulator (if there is one;
see Definition 4) is a good choice as it directly
maximizes the flow through the bottleneck.

Rule 6. Bottleneck unit: focus on tight control on
the variable with the most costly back off in terms
of loss in throughput. This follows because back
off is needed on the constraint variables in the
presence of disturbances.

The ideas of linear network theory may be very
useful for ”our” systems. Although the linear-
ity assumptions will not hold exactly in most of
”our” systems, the bottleneck result is neverthe-
less likely to be optimal in most cases.

4. ESTIMATION OF BACK OFF (LOSS)

The back off is the distance to the active con-
straint needed to obtain feasible operation due
to unmeasured disturbances, model errors, delay
and other sources for imperfect control. Back off
results in a loss and should be as small as possible
Narraway and Perkins (1993). The back off is
a “safety factor” and should be obtained based
on information about the disturbances and the
expected control performance. We here assume
that the control of the active constraints y (for
which we want to estimate the back off) is based
on feedback control. For the linearized system the
transfer function from a disturbance d to y is

y = (I + GK)−1 · Gdd = SGdd (6)

where G is the process model, K is the controller,
S is the sensitivity function and Gd is the dis-
turbance model. Assume that the disturbances
are sinusoidal d(t) = d0 sin(ωt) and that ‖d0‖2
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Fig. 3. |Sgd| (solid), |gd| (dashed) and |S| (dash-
dotted) for disturbances 1 − 5 entering the
process, see Figure 2

is bounded. The worst case amplification from d
to y is then given by

Back off = max ‖y‖2 = ‖SGd‖∞ · ‖d0‖2 (7)

The maxω,d |y| represents the effect of the worst
case disturbance over all frequencies and direc-
tions and therefore represents the minimum back
off.

Let us consider the scalar case. Then

‖SGd‖∞ = max
w

|SGd(jω)| ≥ |SGd(jω0)| (8)

where ω0 is any specific frequency.

Normally, the worst case frequency is around
the closed loop bandwidth and let us consider
two particular frequencies, ωs and ωresonance This
gives

Back off ≥

{

‖Gd(jωs)‖∞ · ‖d‖2

MS · ‖Gd(jωresonance)‖∞ · ‖d‖2

(9)

where by definition |S(jωresonance)| = MS and
|S(jωs)| = 1. Typically MS ≤ 2 and robust
tunings make MS smaller.

Consider a process string similar to Figure 2 where
we want to maximize throughput. The plant has a
bottleneck and the TPM is placed inside the plant
and disturbances entering the process.

Assume that the disturbances 1 − 5 enters as
displayed in Figure 2. The Gd is of first order and
the feedback controller K is tuned by using Sko-
gestad’s tuning rules (SIMC) (Skogestad 2004b).

From Figure 3 we see that the peak of |Sgd| occurs
at different frequencies, dependent on the distance
from the bottleneck. For disturbances that enters
the process near the TPM (2 and 3), ωs is a good
approximation of the peak frequency. However, for
disturbances that enters the process at a distance
from the TPM (1,4 and 5), the ωs is not a good
estimate of the peak frequency.

5. REALIZE MAXIMUM THROUGHPUT

In terms of realizing maximum throughput there
are two problems:

(1) Identify the bottleneck(s)
(2) Implement maximum flow at the bottleneck

In the simplest case, the bottleneck is fixed and
we can use single-loop control (Skogestad 2004a).

If the bottleneck moves in the plant, then single-
loop control requires reassignment of loops, both
the TPM to control the bottleneck unit (Rule 5),
and the inventory loops to ensure self-consistency
in the plant In addition, the moving bottleneck
needs to be identified. A better approach is to use
a multivariable controller were input and output
constraints are included directly in the problem
formulation (e.g. MPC).

A case study using this method is described in
Aske et al. (2006). The conventional inventory
control (scheme 1 in Figure 1) is considered in the
case study, using feeds, feed splits and crossover
are used to maximize the plant throughput.

Also when using MPC, there may be a ”long”
loop between the bottleneck and the TPM (feeds).
Therefore is back off needed on the constraint vari-
ables in the presence of unmeasured disturbances
and model errors (Rule 6). There are two ways
of avoiding this long loop. First, the TPM can
be moved closer the the expected bottleneck unit.
This requires (permanent) reassignment of the
level loops. The idea is that the ”mean” distance
to the bottleneck unit will be smaller, which is
similar to the arguments of Price and Georgakis
(1993). However, if the bottleneck moves the dis-
tance to the loop may still be longer than desired.
Also, moving the TPM inside the plant requires
that the inventory control will be in both direction
of flow and direction opposite to flow in the plant,
to ensure self-consistency in the plant, and this
may be undesirable, for example because it adds
confusion for engineers and operators.

Another way for reducing the long loop is to use
inventories (buffer tanks etc.) as dynamic degrees
of freedom to maximize the flow through the
bottleneck unit. Buffer volumes placed upstream
the bottleneck leads to smaller back off, whether
a buffer volume downstream the bottleneck has
no effect. However, hold-up volumes between the
TPM and the bottleneck increases the effective
delay, and tight control of the bottleneck unit
becomes more difficult. With large buffer volumes
inside the plant and with the TPM placed at
the feed, it become therefore even more impor-
tant to exploit the buffer volumes between the
inlet and the bottleneck to obtain tight control
of the bottleneck unit. An MPC controller can
manipulate on the level control set points in the
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Fig. 2. Process example with disturbances

hold-up volume or directly manipulate the bias on
the flow. The first approach has the disadvantage
that it depends strongly on the tuning of the
inventory loops. For example, if the hold-up level
control is tuned to work as a buffer volume, the
response from the level control set point to the
flow change will be slow. The second approach
where the MPC controller can manipulate directly
on the level control valve depends less on the
tuning of the level loop in the regulator control
layer. The disadvantage that it requires the bias
for the inputs is available in the MPC layer.

By using inventories, the flow rate through a bot-
tleneck can be corrected faster due to shorter dead
time and settling time in the plant, compare to
using only the TPMs, which reduces the necessary
back off.

6. CONCLUSION

In many cases, the optimal operation for a plant is
the same as maximum throughput. The concepts
are closely related to maximum flow in networks
considered in operation research community. The
max-flow min-cut theorem can be used in process
engineering systems under the assumption of the
mass flow through the network can be represented
as a set of units with linear flow connections. The
most important rule derived from the max-flow
min-cut theorem is the TPM should be used for
control of the bottleneck unit to obtain maximum
flow. However, back off is needed to avoid infeasi-
bility dynamically in the presence of disturbances.
With some knowledge of where the disturbance
enters and the shape of the disturbance model and
the controller, frequency analysis can be used to
obtain an estimate of the back off.
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