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Abstract: Profit margins from plant operations may be improved by changing the 
constraints so as to increase the degrees of freedom for control. Due to the presence of 
disturbances the chances of operating the plant outside the set limits cannot be ruled out. 
Thus, the expected return should be estimated by taking into account the variability. 
Bayesian Statistics can be used to estimate these probabilities subject to changes in 
operating constraint limits. The maximum a posteriori estimate of the process state due to 
the change in the operating conditions can be inferred using Bayesian methods and the 
profits or return thus obtained can be estimated. Also the decisions to obtain target value 
of the return can be made using the Bayesian methods. Copyright © 2007 IFAC
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1. INTRODUCTION

Model Predictive Control (MPC) is an advanced 
method of process control, which relies on the model 
of the process to predict the behavior of the 
Controlled Variables (CVs). By operating the 
Manipulated Variables (MVs) a cost function is 
minimized. A multivariable MPC also takes into 
consideration the interaction between the process 
variables, thus providing a better control than 
conventional univariate controls. However, having a 
multivariable controller is not just enough to serve the 
purpose. They need to be tuned properly with a 
proper understanding of the process behavior and the 
control philosophy adopted for the MPC. There are 
different commercial controllers available in the 
market that adopt different control philosophies (Qin 
and Badgewell, 2003) but they all need to be tuned at 
the design and engineering level. 

MPC controller tuning is primarily being done 
through the tuning of the penalty matrix on the output 
errors and/or control moves so as to minimize the 
squared error of the controller output over the control 
horizon. The other tuning parameters involved are the 

prediction and the control horizon. Tuning of MPC 
controllers with these parameters is done at the 
engineering level and requires a thorough 
understanding of the process and the control 
philosophy of the MPC application used. Though 
these are the key tuning parameters for an MPC 
controller, there are other factors, like the CV/MV 
constraints and variability that also contribute to the 
performance of an MPC controller. The constraints 
should be carefully chosen as giving wrong constraint 
limits in CVs or MVs can lead to poor performance of 
the controller. 

In an MPC controller, CVs generally reflect the 
desired product qualities, which are to be controlled 
and optimized within certain limits while the MVs are 
the handles available for the purpose. Having a value 
within the limits for the CVs cannot always be called 
a good control, since within the limits, there also 
exists an optimum operating point (generally located 
at the constraints), at which the performance of the 
MPC controller is maximized. The presence of 
variability determines how far or close the CVs are to 
the optimum operating point. Thus, the CVs have 
probabilities associated with them to be under-spec 
(values less than low limits), in-spec (values within 
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the limits) or over-spec (values greater than the high 
limits) depending on which the expected return from 
the controller can be estimated (Rahim, 2000). 

During operations of an MPC controller it is, at times, 
required to change the constraints of one or more CVs 
and MVs. This study is to provide a probabilistic 
method to evaluate the effect of the change in the 
constraints, on the overall performance of the MPC 
controller. The study also aims at providing the 
maximum a posteriori (MAP) decision, using 
Bayesian methods, for the decisions to be made to 
achieve target value of return. Bayesian Statistics is a 
branch of statistical inference technique that deals 
with probabilities of occurrence of certain events 
given certain set of conditions or observations as 
discussed next. 

2. PRELIMINARIES 

2.1 Defining the Problem 

For illustration purposes, consider two outputs y1 and 
y2 of a system. Let y1 be the quality variable and y2 be 
the constraint variable. The current operating data for 
y1 and y2 are shown in Fig. 1.  Fig. 2 shows the 
approximated probability distribution for the current  
operating data. 

As can be seen from Fig. 1 and Fig. 2 that even 
though the mean values for y1 and y2 are within the 
specified limits throughout the period for which the 
data are collected, there are instances when the 
process values lie outside the limits. Here since y1 is a 
quality variable, having its value outside the set limits, 
if frequently, is undesirable as it can render the 
product unmarketable. 

Fig. 1 Base case operating data 

Fig. 2 Process data distribution  

It has been observed that, in practice the constraint 
limits for some CVs/MVs of an MPC controller can 
be adjusted (tuned), but cannot be changed 
dramatically and, in addition, not all of them have the 

equal preference to change the limits. Thus, for the 
purpose of exploratory study 10% constraint 
relaxation is being considered for selected CVs and 
MVs with different preferences (defined by prior). 
The limit set for the CVs and the MVs and their 
variability determine the operating point of the MPC 
controller. Relaxing the limits for one or more 
process variables provides the controller with 
increased degrees of freedom and thus may help in 
improving the expected return even if there is no 
reduction in the variability of the variables.  

2.2 Bayesian Analysis 

Named after Thomas Bayes, Bayesian Analysis is a 
branch of inference that can be applied for decision 
making and statistical analysis using knowledge of 
prior events to predict future events. The Bayes 
theorem forms the backbone of Bayesian analysis. It 
enables calculating conditional probabilities for a 
hypothesis (Korb and Nicholson, 2004; Tan 2001).  
Thus, if xj is the set of observed variables, xi is the set 
of variables whose values we are interested in 
estimating, xk is the set of variables in the system, not 
included in xi and xj, then inference in a Bayesian 
analysis means to compute: 
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where, P(xi = a|xj = b) is the probability for node xi to 
take value a provided that node xj takes the value b,
and P(xj = b) is the probability for node xj to take 
value b and P(xi = a, xj = b)is the probability of 
conjunction of xi and xj.

2.3 Bayesian Networks 

For a system comprising of random variables, a 
network connecting all variables can be built, which 
represents the relationship between the various 
random variables. A Bayesian network is defined by 
Korb and Nicholson (2004) as “a graphical structure 
that allows us to represent and reason about an 
uncertain domain. The nodes in the network represent 
a set of random variables.” A pair of nodes is 
connected through directed arcs that represent a 
relationship between the nodes. The node through 
which the arc originates is called the parent node and 
the node where it terminates is called the child node.
The nodes in a Bayesian Network are the variables of 
interest and the link between them represents the 
probabilistic dependencies among the nodes. To 
specify the probability distribution of a Bayesian 
Network, prior probabilities are to be defined for the 
root nodes i.e. the nodes with no predecessor, and the 
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Conditional Probability Distribution Table (CPD or 
CPT) is defined for all non-root nodes, for all possible 
combinations of their direct predecessors (Charnaik, 
1991). The CPT quantitatively represents the 
relationship between the parent and the child nodes.  
A typical Bayes Network is shown in Fig. 3. Node 
“C” has two parent nodes “A” and “B”, and one child 
node “D”. Node “A” and ”B” have two states {1,2}
and node “C” has three states {X,Y,Z} and node “D”
has two states {P,Q}. The tables beside node “A” and 
“B” are their prior probability and that beside node 
“C” and “D” represents their CPT.  

Fig. 3 Typical Bayesian Network 

A Bayesian network cannot have directed cycles, i.e. 
a node cannot be reached again by following the 
directed arcs. Thus Bayesian Networks are also called 
Directed Acyclic Graphs (DAGs). 

The CPDs quantifies the dependencies between the 
nodes. They are probability distribution 
functions |i iP x Pa , where xi is the ith node and Pai

represents all of its parent nodes.  There are three 
types of nodes, two of which are being used in this 
paper. 1) Chance Nodes: These nodes represent 
random variables and are associated with CPT. 2)
Utility Nodes: These nodes represent the value of the 
utility function (benefit function). The parents for 
these nodes are the nodes whose outcome directly 
affects the utility. These nodes are associated with 
utility table, with the value for each possible 
instantiation of its parents perhaps including an action 
taken (Korb and Nicholson, 2004). 

2. BAYESIAN METHODS FOR MPC 
CONSTRAINT ANALYSIS AND TUNING 

For an APC application with n inputs and m outputs, 
let K be the steady state gain matrix and 00 , ji uy
be the current mean operating points, which are 
defined as the base case operating points. Also let the 
number of CVs and MVs for which it is allowed to 
change the constraint limits be a and b respectively. 
Thus, with N=a+b variables available, for which it is 
possible to change the constraint limits, there are 2N

combinations for applying the changes in the limits. 
Each combination, having a specific optimal return 
through LQ optimization of the operating point will 
affect MPC performance. 

The LQ optimization is carried out for each possible 
constraint change, with the CV/MV data collected 
over lN time stamps. The objective function is an 
economic benefit function of MPC, and the 
constraints are MV and CV constraint limits by taking 
into account CV/MV variability and process steady 
state gain relations (Xu, et al., 2006).  For the 
exploratory study, the optimization was carried out 
for 10% constraint relaxation. The 2N optimization 
results give the same number of optimum operating 
points for all the variables. 

The Bayesian Network is created with N parent nodes, 
q child nodes and 1 utility node, where q is the 
number of quality variables affecting the economic 
performance of the process. The parent nodes have 
two states {yes, no} where yes means “to change the 
limits” and no means “not to change”.  By changing 
the constraint limits, the q quality CVs are optimized 
to be operating as close as possible to their optimum. 
In the same time, other non-quality CVs are also 
moved due to the interaction. The CVs take 
continuous values but they are discretized into a finite 
number of operating zones, in this paper, 6 zones. 
Therefore, each child node has six states {Zone 1, 
Zone 2, Zone 3, Zone 4, Zone 5, Zone 6} defining the 
range in which the value of the output variables will 
lie, illustrated in Fig.4. (The number of zones can be 
increased depending upon the resolution required.)  
Zone 1 and Zone 6 represent the region below and 
above the limits, respectively and Zone 2 to Zone 5
represent the four zones defined within the limits. 
Thus, if Li and Hi are the low and the high limits for a 
particular CV (yi) then i is the span of the range in 
which its value is to be maintained i.e.  

                           i i iH L                                  (2) 

Then the six zones for the states of the CV can be 
defined as: 
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The prior probability or the priori for the parent nodes 
can be user defined or obtained from the historical 
data. It indicates the preference to change or not to 
change the limits e.g. if a parent node has a priori of 
0.8 for “making a change”. This means that the 
constraint for this variable has 80% tendency to 
change and 20% not to change. 
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Fig. 4 Division of zones for a child node 

Fig.5: Probability distribution of CVs in the six zones 

Fig 6: Bayesian Network for m  n plant 

The 2N optimization results obtained for each quality 
CV, when superimposed with the base case variability 
and assuming the data to be Gaussian distributed, can 
be used to obtain its probability distribution to be in 
each of the six zones. Fig.5 shows the probabilities 
for any quality variable to be in any of the six zones 
defined for CVs. The Bayesian Network thus created 
is shown in Fig. 6 assuming quality variables are 
independent. Pa in the figure represents the parent 
nodes, Ch in the figure is the child node and U is the 
utility node representing benefit functions.  

For q quality variables and with 6 zone discretization, 
the utility nodes will have 6q values for each 
combination of the state of the quality variables.  The 
values taken by the utility node are provided by the 
mean values taken by the economic objective 
function in all the 6 zones for each of the q quality 
variable. 

If the uncertainties associated with each of the q
quality variables are mutually independent then, 
without loss to generality, assuming first q CVs as 
quality variables, the values for the expected return 
for the process can be obtained as: 
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where, Jiz is the value of the objective function for ith

quality variable to be in the zth zone, Ci1 and Ci6 might 
be the penalty values set for the quality variables to 
be in Zone 1 and Zone 6 respectively and i iP y z is 
the probability of that quality variable to be in Zone-z.
Jiz can be defined as: 

221 h
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h l
    (5) 

where, h, l are the high and the low limits set for zth

zone for the ith quality variable, respectively.   

The Bayesian model thus created for the system can 
now be used for 1) Decision evaluation i.e. to infer 
the expected return or the objective function values, if 
certain decisions regarding to make or not to make 
the change of limits are made. For the decision 
evaluation, the decision whether to change or not to 
change the limits is provided. These decisions are 
equivalent to the evidences for the Bayesian Network 
conditional on which, the probabilities of locations of 
the quality CVs are then estimated. Thus, the 
expected return can be evaluated using the relation 
specified in equation (4). 2) Decision making i.e. to 
obtain the maximum a posteriori explanation for 
decision making that will help to achieve a target 
value of expected return. For decision making 
purposes the target expected return are provided and 
the corresponding states for the CVs affecting the 
benefit function are then read from the utility node 
table for the network. The states thus obtained from 
the table are the evidences for the Bayesian Network 
and the maximum a posteriori explanation for the 
limit changes of the parent nodes can be made. 

4. INDUSTRIAL CASE STUDY 

Consider a distillation plant, where the hot feed is 
flashed into the distillation column to obtain top 
product, middle distillates and the bottoms. The 
vapors from the top are cooled and collected into the 
reflux drum, from where a part is sent back into the 
column as reflux, and the rest is drawn as the 
overhead product. The draw from the middle of the 
column is flashed into a side stripper where it is 
stripped with steam, to strip off any lighter fractions 
which have been drawn off along with it from the 
column. The middle distillates are then drawn from 
the bottom of the side stripper. The pump-around 
stream from column removes some excess heat from 
the column and preheats the feed. Also, the column 
bottoms may contain some traces of middle distillates, 
which are stripped off by stripping steam to the main 
column. The schematic diagram for the system is 
shown in Fig.7.  
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Fig.7 Distillation Column 

The MPC application for the process has 8 CVs, 5 
MVs. The CV-MV list for the plant and their 
availability for limit change is given in Table-1. 
Based on which a total of 27=128 optimizations were 
carried out offline. CV2 is the only quality variable 
related to economic performance of the MPC 
application. The Bayesian Network is created for the 
system defined with 7 parent nodes, 1 child node and 
1 utility node. Table-2 gives the prior probabilities for 
the changes to be made on the parent nodes. The 
optimization results are used to create CPT for the 
child nodes. 

The expected return for the system were estimated 
using equation (4) (with 2=0.30 and 2=0), the 
information provided in the Table 1 and 2, and the 
conditional probabilities of the CVs in the six zones. 
For the existing system setup the expected return for 
the operation are estimated to be 123.20 units. 

Table 1: CV-MV List and their limits change allowed

 Description Change Lts 
CV1 Mid Dist Flow  Yes 
CV2 Top Prod 90%Pt No 
CV3 Mid Dist 5% Pt No 
CV4 OVHD Vsl Boot Lvl Yes 
CV5 Flood No 
CV6 Col Top Temp No 
CV7 Steam Temp No 
CV8 Col OVHD Temp Yes 
MV1 Col Pr Yes 
MV2 Col Reflux  Yes 
MV3 PA Ret temp Yes 
MV4 Str Steam Yes 
MV5 Side Str Stm No 

Table 2: Prior probability for making changes for 
parent nodes

Node MV1,MV2,MV3,MV4,CV1*, CV4*,CV8*
Yes 0.5
No 0.5

Decision Evaluation: If the decision is being made to 
increase the constraint limit of the MV2, the 
maximum a posteriori estimate of CV2 is Zone 2 and 
the expected return is 123.80 units.  

Thus, it can be inferred that the decision to increase 
the limits set for MV2 will marginally increase the 
expected return from the process. 

Decision Making: If the target is set to increase the 
return from 123.20 to 123.90 units, then with this as 
“evidence” the maximum a posteriori estimate for the 
state of the parent nodes that are to have their limits 
changed are calculated and MV1, MV2, MV3 are 
expected to have their limits changed. Comparing this 
result with that of decision evaluation, one can see 
that to achieve a similar return, the solution needs not 
to be the same. Bayesian inference is to pick the most 
probable one in the decision making. 

5. BINARY DISTILLATION COLUMN CASE 
STUDY

Consider the simulated binary distillation column 
(Volk et.al.2005, Fig. 8) which is used to separate 
light petrol and the heavy petrol from the petrol 
obtained from an upstream desulphurization unit. The 
hot feed is flashed into the column.  The lighter 
fractions of the feed vaporize and are collected as the 
top product in the overhead vessel and the heavier 
components are obtained at the bottoms of the column. 
The vapors from the top of the column are condensed 
and a part of the condensed overhead vapors are sent 
back into the column as the reflux and the rest is 
drawn as light petrol. The heavier components in the 
feed do not vaporize and are obtained from the 
column bottoms. A part of the bottom stream is sent 
to the reboiler. The vapors from the reboiler are sent 
back into the column. The balance of the heavier 
components is drawn from the column as the heavy 
petrol.  

Fig.8 Binary Distillation Column 

The MPC controller designed for the system 
described above has 4 input variables and 10 output 
variables.  Table-3 provides CV-MV list and their 
availability for limits change. Based on this 
information, 27=128 optimizations were carried out. 
As CV2 and CV8 govern the overall economics of the 
operations of the column, they are chosen as the 
quality CVs here. The correlation coefficient between 
these two CVs is 0.0049 and they can be considered 
as independent.  The Bayesian Network is created for 
the system defined with 7 parent nodes, 2 child nodes 
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and 1 utility node. Table-4 gives the prior 
probabilities for the changes to be made on the parent 
nodes. The optimization results are used to create 
CPT for the child nodes. 

Table 3: CV-MV list and their limits change allowed

 Description Change Lts 
CV1 Ref Flow  No 
CV2 Lt Petrol FBP Yes 
CV3 Top PCT No 
CV4 Pr. Vlv OP No 
CV5 Bttm PCT Yes 
CV6 Col Pr Yes 
CV7 Feed Temp Yes 
CV8 Reb Furnace Duty No 
CV9 Duty No 
CV10 Bypass Vlv OP No 
MV1 Ref Flow Yes 
MV2 Col Pr  Yes 
MV3 Feed Temp Vlv OP Yes 
MV4 Duty Vlv OP No 

Table 4: Prior probability for making changes for 
parent nodes

Node MV1,MV2,MV3, CV2*, CV5*,CV6*,CV7* 
Yes 0.5
No 0.5

The expected return for the system were estimated 
using equation (4) (where ( 2, 2) and ( 8, 8) are 
(0.2364,0) and (0.1714,0) respectively), the 
information provided in the Table 3 and 4, and the 
conditional probabilities of CV2 and CV8 in the six 
zones. For the existing system setup the expected 
return for the operation are estimated to be 145.36 
units. 

Decision Evaluation: If the decision is being made to 
increase the constraint limit of the column reflux, 
MV2, the maximum a posteriori estimate of the state 
of CV2 and CV8 are Zone 3 and Zone 4 and the 
expected return is 173.27 units.  

Thus, it can be inferred that the decision to increase 
the limits set for MV2 will increase the expected 
return from the process. 

Decision Making: If the target is set to increase the 
return from 145.36 units to 165.00 units then the 
states for the child nodes i.e. CV2 and CV8 is 
determined as Zone 1 and Zone 4, respectively. With 
this as evidence the maximum a posteriori estimate 
for the state of the parent nodes that are to have their 
limits changed are calculated and the parent node 3 i.e. 
MV3 is expected to have its limits changed. 

6. CONCLUSION 

A Bayesian approach that takes into consideration the 
process variability to tune the MPC controller for 
constraint limits change has been developed. The 
proposed method gives the constraint tuning 
guidelines by performing the Bayesian analysis of the 
process variables in the MPC controller.    

As the real world is associated with uncertainty, the 
Bayesian approach of analysis is an appropriate tool 
that takes into consideration the probabilities for CVs 
to lie in the different operating ranges defined. The 
results thus obtained from the analysis are more 
realistic than simple deterministic profit 
calculations/optimizations. The Bayesian network 
built can also be used to assist in decision making 
when the set target value for objective function is 
defined. 

Two case studies have also been provided that explain 
the industrial utility of the tool. The results from the 
studies illustrate its significance and utility for the 
process engineer for day to day maintenance of the 
MPC controllers in the plant. The constraint tuning 
guidelines obtained from the tool can be applied to 
improve the controller performance. 

REFERENCES 

Charnaik, Eugene (1991), Bayesian Networks without 
tears, AI Magzine, Winter 1991, 50-63 

Korb, Kevin B., Ann E. Nicholson (2004). Bayesian 
Artificial Intelligence. Chapman & Hall/CRC, 
London, UK 

Qin, S. Joe, Thomas A. Badgewell (2003). A survey 
of model predictive control technology, Control 
Engineering Practice, Vol 11, 733-764 

Rahim, M.A., A.B. Shaibu, (2000). Economic 
Selection of Optimal Target Values. Process 
Control and Quality, Vol 11(5), 369-381 

Tan, S.B. (2001) Introduction to Bayesian Methods 
for Medical Research, Annals Academy of 
Medicine, Singapore, 30, 444-446 

Volk, U., D.W. Kniese, R. Hahn, R.Haber, U.Schmitz 
(2005). Optimized multivariable predictive 
control of an industrial distillation column 
considering hard and soft constraints. Control 
Engineering Practice, 13, 913-927 

Xu, Fangwei, Biao Huang, Edgar C. Tamayo (2006). 
Assessment of economic performance of model 
predictive control through variance/constraint 
tuning. IFAC International Symposium for 
Advanced Control of Chemical Processes 
(ADCHEM).

62


