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Abstract: In the framework of process optimization, meaments can be used to
compensate for the effect of uncertainty. The method studiethis paper combines
a process model and measurements to iteratively improveyikeation of continuous
processes. Unlike many existing real-time optimizatiomesces, the measurements are
not used to update the process model, but to adapt the ciostira the optimization
problem. Upon convergence, all the constraints are respesten in the presence of large
model mismatch. Moreover, it is shown that constraints tategm can handle changes in
the set of active constraints. The approach is illustratedapumerical simulation, for the
optimization of a continuous stirred-tank reactor. Coglgti©2007 IFAC.

Keywords: Static optimization, Constraints adaptatioeagurement-based
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1. INTRODUCTION Typical RTO schemes use measurements for model
refinement (Marlin and Hrymak, 1997; Roberts and
Williams, 1981), thus implying an iteration between
identification and optimization (two-step approach).
However, the optimal inputs often fail to provide suf-

In the presence of uncertainty, the open-loop im-
plementation of off-line calculated optimal inputs or

setpoints leads to suboptimal operation. Worse, the_. . o . . .
b b P ficient excitation for estimating the uncertain parame-

satisfaction of safety constraints and product qualit . N
y b q y ters accurately. And when sufficient excitation is pro-

specifications can no longer be guaranteed unless a.d d th i luti | b timal
“conservative” strategy is adopted, i.e., a strategy thatV'0€¢, (€ resuiing solution may no longer be optima

: . . . due to the conflicting objectives of parameter estima-
ensures constraint satisfaction even in the worst-cas

scenario (Ménnigmann and Marquardt, 2003; Keahg e['on and optimization.
al., 2004). Unfortunately, this conservatism is detri- Fixed-model methods utilize both the available mea-
mental to the optimization objective. surements and a (possibly inaccurate) process model

Several measurement-based optimization (MBO) to 9.“'de th_e iterative scheme towards an optimal op-
erating point. Analogous to two-step methods, the

methods have been proposed to deal with uncertainty” ~. . o
in the form of model mismatch or process distur- a\r/gg%%etﬁgﬁisssowggerle'sezggfddggtVi\::tsr:;nagno][\ll‘ep
bances. For continuous processes, real-time optimiza—ﬁnin the Drocess modelrz‘rom oz.e RTO iteration to
tion (RTO) attempts to update the operating cond- the r?e t thpe measurements are used to directl date
tions (e.g., the setpoints), so as to optimize process Xt, the u u lirectly up

. . - the constraints as well as the cost function in such a
performance (e.g., its economic productivity). Many

successful industrial applications have been reportedway. that th_ey apprquate the actual cost and con-
(Young, 2006). straint functions. Thénternal model controller (IMC)
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schemas one such fixed-model method, wherein the :

constraint functions are simply offsetted based on their |pT2, 7 (Pk:%%) )
measurements (Desbiens and Shook, 2003). More re{ St h(P, xx) =0 P
cently, additional correction terms have been proposed &k + 2(Py, Xi) < Zmax

so that, not only the constraint values predicted by the Prmin < Pk < Pmax

model be equal to those of the actual process con-

straints, but also their gradients as well as the gradient Ek

z(p},x;) | Nominal
model

of the cost function (Gao and Engell, 2005). How- | iteration
ever, calculating these terms requires that the cost and discount
constraint gradients be estimated from the available
measurements.

€k+1

zmeadP}) | Real
process

The focus in this paper is on fixed-model RTO meth-
ods, with emphasis on the IMC scheme (Desbiens and__ ] ] ) ]
Shook, 2003), which we shall refer to asnstraint- Fig. 1. Iterative constraint-adaptation scheme for static
adaptation schem#roughout. The paper undertakes optimization.

a novel study of various aspects of these adaptation,, v (p — Pyyn)- Note that the NCO have two parts: the
| " .

schemes. It is organized as follows. The optimization -onstraint part (2-4), and the sensitivity part (5).
problem is formulated i§ 2. The iterative constraint-

adaptation scheme is presented; i and illustrated

by a continuous stirred-tank reactor example; id. 3. CONSTRAINT-ADAPTATION SCHEME
Finally, § 5 concludes the paper.

The constraint-adaptation scheme is presented in Fig-
ure 1. At thek*® RTO cycle (or iteration), the NLP
2. PROBLEM FORMULATION problem (1) is solved fop; andx; based on the
nominal modelh(p,,x;) = 0. Due to model mis-
The usual objective in RTO is the minimization or Match, the predicted values of the constrained vari-

maximization of some steady-state operating perfor- ables, z(pj, xj), do not quite match the measured
mance of the process (e.g., minimization of the oper- Valueszmeadp;,). To account for this difference, the
ating cost or maximization of the product rate), while corresponding constraints are adapted from cycle to
satisfying a number of constraints (e.g., limits on pro- cycle, by using the additive correction teres Since

cess variables or product specifications), based on &he model represents steady-state behavior, great care
steady-state model of the process. The optimizationmust be taken that the process has reached steady state

calculations execute at a given period, and proceed byPefore a new input update is made. In other words, the
solving an NLP of the following form: RTO cycle period must be longer than the dynamics

of the process.

min J(p, X) 1)
P,X
st h(p,x)=0 3.1 Principles of Constraints Adaptation
z(p7x) < Zmax
Prmin < P < Pmax The constraints in the optimization problem are

adapted between successive RTO cycles to track the
constraints measured in the real process. This is done
by adapting the additive constraint factars as fol-
lows:

whereJ is a scalar cost function to be minimizqsle
R"” the input (or decision) variables agd= R" the
state variables. In this formulatioh;, i = 1,...,n,
stands for the steady-state model of the process,
i =1,...,n., is a set of constrained quantities, and €x+1 = (I — B)ex. + B(zmeadP},) — 2(Pks X1)),
Pmin: Pmax d€Note bounds on the input variables (these (6)
bounds are considered separately since they are no@nd then considering the modified constraints

affected by uncertainty and do not require adaptation). e + 2(py, X1) < Zmax @)

The necessary conditions of optimality (NCO) for ;, the NLP Problem (1). Observe that,, € R"
Problem (1) read: is the filtered difference between the measurements

w(z—2max) =0, w>0 2) gmea{p;) apd the m(_)del predigtigg(p;,x;)_, both
T _ - in thg previous iterationB € R =*"= is a diagonal
V;“(p Prmax) =0, V4 >0 (3) matrix of filter parameters; with i = 1,...,n.. In
v.(P—Pmn) =0, v-<0 (4)  particular, each constraint can be filtered individually
L, =0, Ly=0, Lx=0, (5) by settingd < b; < 1: no adaptation is performed

whereA € R™, u € R™, v, v_ € R™ are whenb; = 0, whereas no filtering is used when= 1.

Lagrange multipliers, anél stands for the Lagrangian An important difference with Desbiens and Shook
definedl = J+ATh+p" (2~ 2Zmax) + V1 (P—Pmad + (2003) is that the exponential filtering (6) is performed
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on the constraint factors rather than on the inputs. Theln this example, the inpyp has two components,
rationale behind this choice is that it permits to treat and ps, and there is a single constrained quantity
each constraint individually. Note also that only the to be adapted using the constraint factorFigure
constrained quantitiesare considered for adaptation 2a presents the constrained quantity calculated by the
here, and not the model constrairits Hence, only model,z = zmax, and the location of the constrained
the measurements of the constrained quantitiase quantity for the real processmeas= zmax- 1he shad-
required at each RTO cycle. owed area corresponds to the feasible region of the
optimization problem using the model with = 0.
Point A represents the optimum calculated by the
model without constraint adaptation, where the active
Meeting the Constraints. It is important to ensure  constraints args min andzmax. However, the optimum
that the iterative scheme converges towards the con-of the real process is at point B, where the active con-
straints of the real process. straints are min andpz min. IN this example, depend-
ing on the gradient of the cost, calculated with the
Theorem 1.If the constraint-adaptation scheme con- model, the adaptation may converge to different sets of
verges, then the constraints for the real process areactive constraints. Figure 2b presents the case where,
respected. upon adaptation of, the operation converges to the
true optimum B. The shadowed area corresponds to
Proof Upon convergence, i.e., fér — oo, (6) gives the feasible region of the optimization problem given
€00 = ZmeadPL) — 2(PL,, x5, ). Inserting this equa- by the model withe = ¢, wheree g is evaluated at
tion into (7) leads t0 gead PZ,) < Zmax O point B. Figure 2c presents the case where, because

It should be noted that the adapatation scheme mayOf the ”.‘Ode' mismatch in t_he evaluation g, Fhe
. . : . .., “adaptation converges to an incorrect set of active con-
converge by following an infeasible path, i.e., with

violation of the constraints. This highlights the inter- straints at point C. The shadowed area corresponds to

- . . the feasible region given by the model with= ¢,
est of devising an iterative scheme such that, when . . S
. L . evaluated at point C. The active constraints in this case
starting with initial back-offs from the constraints, the

. . . arepi min andzmax.
iterations follow a feasible path. P1,min AT Zmax

3.2 Properties of Constraint Adapation

The convergence of the constraint-adaptation scheme'vIOre generally, how close to the true optimum the

. . . terative process gets, and whether or not the correct
can be improved by reducing the performance, i.e,

by decreasing the filter parametesis Theoretical active constraint set is found, depends upon the error

conditions under which this scheme converges are not" the estimation of the sensitivitids, andL in (11).

studied in this paper, and will be the topic of future
research.
4. ILLUSTRATIVE EXAMPLE
Evaluation of the NCO. With the constraint-
adaptation schemey(p,x) in (1)-(5) specializes to ~ The example presented in Srinivasanal. (2006) is
er + z(py, xx). Upon convergence, and noting that considered to illustrate the constraint-adaptation ap-
€00 +2(Pl, X5) = Zmead PL, ), the NCO (2)-(5) can  proach. It consists of an isothermal continuous stirred-

be rewritten as: tank reactor with two reactions:
HT(ZmeaiP;o) —Zmax) =0, p>0 (8) A+ B — C, 2B — D. (13)
VTk(pZo_pmax):()v vy >0 9) . ) ] ] )
VT (p5 —pmn) =0, v_ <0 (10) The desired product i€, while D is undesired. The
—\Poo ™ Pmin T reactor is fed by two streams with the flow ratés
Lp S 0, Ix PL 0, L*'p; =0 (11) and Fz and the corresponding inlet concentrations

Hence, the constraint part of the NCO (8-10) is de- ca,, andcg,, -
termined accurately from the measurements, while
the sensitivity part (11) is evaluated using the model,
which can be a poor approximation due to model mis-

4.1 Model Equations and Parameters
match.

The steady-state model results from material balance

Changing Set of Active ConstraintsMuch insight equations:

on how the method works, and why it can handle

changes in the active set, can be gained by visualizing Faca,, — (Fa+ Fg)ea —mV =0 (14)
the situation for the simplified problem: Fgep,, — (Fa+ Fp)eg —mV — 2V =0 (15)
—(FA+FB)Cc+T1V =0, (16)

min - J(p) 12 yith
St Pmin <P, €+ 2(p) < zZmax r1 = kicacn, ro = kQCQB. a7
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a) b)

Py Py

c)

Py

Fig. 2. Sketch of the constraint-adaptation scheme in tBecse. Thick solid lines: constraint bounds for the
real process. Thin solid lines: constraint bounds evatliaging the model. Thick dashed lines: isoline of
J corresponding to the true optimum. Thin dashed lines:nsgliofJ evaluated using the model. Arrows:
negative of the cost gradient,J,. a) No constraint adaptation. Point A: Nominal model optimdPoint
B: Real process optimum. b) Constraint adaptation and e¢gewee to the true optimum B. ¢) Constraint
adaptation and convergence to the suboptimal solution C.

The heat produced by the chemical reactions is:
qr = (—AHl)mV + (—AHQ)TQV (18)
Variables and parameters:x: concentration of

speciesX, V: volume,r;: rate of reaction, k;: kinetic
coefficient of reaction, A H;: enthalpy of reaction.

Table 1. Nominal model parameters and
operating bounds

k1 nom 15 "“I"P ko 0.014 I
ca,, 2 molep,, 15 o
AH;  —7x10* % AHy  —10° il
% 500 I grmax 106 mﬁo

Finax 22 i

The numerical values of the parameters are given in
Table 1. Since, in this work, the reality is simulated

by varyingk, in the model, the nominal value &f
is denoted byt nom. Note that this value is different
from the one used in Srinivasanal. (2006).

4.2 Optimization Problem

The cost function is chosen as the amount of product

C, (Fs+ Fg)cc, multiplied by the yield facto(F 4 +
Fg)cc/Faca,,. Upper bounds are defined for the

amount of heat produced by the reactions and the tota

flow (Table 1). The optimization can be formulated
mathematically as:

max —(FA i FB)QCQC
Fa,Fp FACAm
s.t. model equations (14)-(18)

Fa+ Fp < Fmax

Gr < Gr,max-

J= (19)

of active constraints in the optimal solution changes
with the value ofk;.

Table 2. Optimal solutions for various val-
ues of the parametés

* qr
k1 F3 Fg T T Cost
0.3 8.21 13.79 0.887 1.000 8.05
0.75 17 13.83 1.000 1.000 11.16
1.5 7.61 13.05 1.000 0.940 12.30

4.3 lterative Constraints Adaptation

Since the constraint ofF4 + F'5) is not affected
by the uncertainty, only the constraint gnrequires
adaptation.

4.3.1. Accuracy of the Constraint-Adaptation Scheme
In this subsection, the accuracy of the constraint-
adaptation scheme upon convergence is investigated
in the absence of measurement noise and process

disturbances (ideal case).

The scaled constrained quantitig$ g, maxand(Fa +
F5)/Fmax are represented in Figure 3 for values of
k1 (simulated reality) varying in the range 0.3 to 1.5
m_cl)l'ﬁ' Note that the constrained quantities obtained
Iwith the the constraint-adaptation scheme (thick lines)
follow closely those of the true optimal solution (thin
lines). However, although the proposed scheme guar-
antees feasible operation upon convergence irrespec-
tive of the value ofky, it fails to detect the correct
active set in the vicinity of the operating points where
the active set changes (i.¢;, ~ 0.65 andk; ~ 0.8).

As discussed in subsection 3.2, this deficiency results
from the error introduced by the nominal model in the
evaluation of the sensitivities with respectfa and

F'g of both the cost function and the state constraints.

The optimal feed rates, the values of the constrainedFigure 4 shows the performance loss

guantities, and the cost function féf = 0.3, 0.75
and 1.5+ are given in Table 2. Notice that the set
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1.5
1.02 T T T T T T .
0.68 0.79

0.98 AN (Fa+FB)/Fmax

0.96F SR

Constraint factor, ek

0.94r ~, 1
q/q -1.5F

r'r,max

0.92 , ) . ‘ : : :
0 1 2 3 4 5 6 7 8 9
Iteration index, k

0.9r

Normalized constrained quantities

R TR T : R TE— Fig. 5. Evolution of the constraint facter Thick line:

K, [/mol h] Case 1; Thin line: Case 2.

4.3.2. Convergence of the Constraint-Adaptation

Fig. 3. Optimal values of the constrained quanti- Scheme In this subsection, we take a closer look

ties ¢, /¢, max and (Fa + F')/Fmax versusk;, at the convergence properties of the iterative scheme.

for ki nom = 1.5 m—érﬁ. Thick lines: Constraint-  Two scenarios are considered, which correspond to

adaptation solution; Thin lines: True optimal so- different sets of active constraints at the optimum.

lution. In either scenario, the nominal model is chosen with
k1nom = 1.5 =L Note also that the adaptation is
started with a highly conservative initial constraint
factore, = 1.5 x 10° 2, and the filter parameter is
taken a9 = 1 (no filtering).

o
2]
T

To depart from the ideal case of the previous subsec-
tion, Gaussian noise with standard deviation of 1%00

is added to the measurementgpfln response to this,

a back-off is defined to ensure that the heat production
constraints is satisfied, i.€4, max = 9.9 x 10° %

o 1
&) >
T T

Performance loss, AJ [%]
o
N

Case 1) Simulated Reality with, = 0.75. The
] evolution of the constraint facterwith the RTO cycle
) is shown in Figure 5 (thick line). A negative value of
¢ indicates that the heat production is overestimated
by the model, which is consistent with the values of
k1 chosen for the simulated reality. Note also that
the convergence is very fast in this case, as the re-
gion where the adaptation is within the noise level is
reached after two RTO cycles only. The corresponding
dashed linekynom = 0.75 w4p; Thin dashed  constrained quantite$ = F, + F andg, are
line: k1,nom = 0.3 . represented in Figure 6. Observe that only the heat
production constraint is active in this scenario, and
that the chosen back-off ensures that the maximum
where Jye denotes the true optimal cost, and value of 10¢ } does not get exceeded despite mea-
J(p%.,x%,) the optimal cost obtained upon conver- surement noise. On the other hand, the feed rate con-
gence of the constraint-adaptation scheme. Clearly,straint remains inactive, although its value gets close
AJ is equal to zero fork; = 1.5, for there is no  to the maximum feed rate. Finally, the evolution of
model mismatch in this case. Interestingly enough, the cost function/ is shown in Figure 7 (thick line).
AJ is also equal to zero when the two constraints are The converged cost value is closelty i.e., within a
active and the adaptation scheme provides the correctew percent of the ideal cost given in Table 2, despite
active set; this situation occurs fds in the range  the performance loss induced by backing-off the heat
0.68 < k1 < 0.79 (see Figure 3). Overall, the per- production constraint.
formance loss remains lower thar6% for any value
of ky in the range 0.3 to 1.5, and is even lower  Case 2) Simulated Reality with = 0.3. The evo-
(less than0.2%) with k1 nom chosen a$).3 and0.75 lution of the constraint factar, the constrained quan-
m_c|>|‘ﬁ in the nominal model. These results demonstratetities F' = F'4 + Fp andg,., and the objective function
that the performance loss remains limited, despite the.J is shown as thin lines in Figures 5, 6 and 7, respec-
error made in the detection of the active set for sometively. Itis seen from Figure 5 that the constraint factor
scenarios. is larger in this scenario than in the previous one, as

e
o

i >
oL ; .
0.2 03 04 0.6 0.75 1 1.2 14 15 16
k, [Vmol h]

Fig. 4. Performance loss of the constraint-adaptation
solution. Thick line%; nom= 1'5m_(|1|'ﬁ; Thin dot-
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be obtained within a small number of iterations, even
in the presence of (considerable) model mismatch.

22—
— A major advantage with respect to many existing RTO
< 20 — . . .
= methods is that the nominal model does not require
LL

refinement, and thus the conflict between the parame-
ter estimation and optimization objectives is avoided.
o 1 2 s 4 s & 7 8 o Thisfeature, together with constraint satisfaction and
‘ ; ; ; ‘ ‘ fast convergence, makes the constraint-adaptation ap-
o proach much appealing for RTO applications.
9/ This paper has demonstrated that the constraint-
adaptation approach has the ability to capture changes
in the set of active constraints. The NCO-tracking
1 2 3 2 s & 7 & 9 scheme (Srinivasaat al, 2003) uses measurements
lteration index, k and feedback control to enforce the NCO for the true

process, but it relies on the assumption that the ac-
Fig. 6. Evolution of the constrained quantities. Thick tive set does not change with uncertainty. Hence, both

q [I/h]

lines: Case 1; Thin lines: Case 2. approaches could complement each other nicely, and
finding a proper way of doing so will be the topic of
12 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ future work.
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