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Abstract: The status of using many, distributed optimization-based controllers
for feedback control of large-scale, dynamic processes is presented and evaluated.
We show that modeling the interactions between subsystems and exchanging
trajectory information among subsystem model predictive controllers (MPCs) is
insufficient to provide even closed-loop stability. The cause of this closed-loop
instability is competition between the local agents. We next discuss the cooperative
distributed MPC framework, in which the objective functions of the local MPCs
are modified to achieve systemwide control objectives. This approach provides
guaranteed nominal stability and performance properties, but at the cost of a high
degree of communication between the local controllers. We next discuss the issue
of taking advantage of the structure of the connections between the subsystems
to reduce the required communication. The paper concludes by briefly presenting

seven current and unsolved research challenges.
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1. INTRODUCTION

Feedback controller design is foremost a design
problem and design problems, even engineering
design problems, have proven remarkably resis-
tant to precise mathematical formulations with
unique solutions. Design problems are complex
and messy because what people want out of a
design is complex and messy. Some of the goals for
the design are hard to define and subjective, some
of them may be contradictory; at best, the stated
goals are usually incomplete. This does not mean
that precise mathematical problems and tools for
computing their solutions are not useful. They are
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incredibly useful. But their application is itera-
tive. Because the design goals are complex and
difficult to define precisely, the design process is
almost invariably iterative. The designer or design
team often proposes a precise, but limited, design
problem statement, solves it exactly and optimally
and then inspects the outcome, often through nu-
merical evaluation of idealized case studies. Some
features are deemed desirable, drawbacks are un-
covered, surprises, both good and bad, may be re-
vealed. Inspection of the first attempt is meant to
inform the designer about the problem. With this
extra knowledge in hand, the designer fashions
a better, more comprehensive statement of the
design goals and the process continues. At some
point the current design is deemed satisfactory
and the process of implementation commences.
Often the implementation process uncovers other



kinds of flaws that have escaped detection and the
design process is revisited and further iterations
are required.

If we examine the history of chemical plant design
and operation in the U.S., we see a steady increase
in the complexity in the interactions between the
various units comprising the overall plant. This
increase was driven by the gain in economic ef-
ficiency offered by these more complex and in-
teractive plant design and operation strategies.
The chemical plants of the 1950s, which could
be operated fully in manual mode by a team of
human operators, would be economically inviable
in today’s economy and environment. As complex-
ity of the plant increased, automatic monitoring
and control systems became a necessity. Multiloop
PID control at the unit level became the first
automatic control design. In the last twenty years,
however, centralized MPC of small to medium-
sized multivariable units has largely replaced mul-
tiloop PID in the process industries, particularly
for the economically important units in the plant.

It is interesting to note in passing that the un-
dergraduate control curriculum offered in chem-
ical engineering departments has not kept pace
with this most recent transformation in industrial
practice. Further discussion of the educational
challenges that have arisen due to this widespread
adoption of MPC in control practice are outside
the scope of this paper, but control educators are
aware of the problem and are working towards
addressing it (Edgar et al., 2006).

We appear now to be at an interesting histori-
cal juncture. After moving quickly from manual
control, to multiloop, distributed PID control,
to centralized, model-based MPC for controlling
single and small collections of chemical process
units, what is the status for improving dynamic
performance at the other end of the spectrum:
the large-scale, integrated collections of many of
these units that comprise the chemical plant? The
complexity and incompletely defined nature of the
controller design problem again arises. What do
we expect of this large-scale controller design?
How important is it that parts of the process can
be removed and added back to the overall control
system. What model size and complexity is al-
lowed? What is the time scale for online controller
decision making? How important is it to make an
evolutionary transition from the current control
technology to the next technology. Is a complete
overhaul and redesign allowed or forbidden? How
do the operations personnel evaluate the various
model and controller maintenance issues that they
face? Is a large, centralized control system mono-
lithic and difficult to maintain? Or is it easier to
maintain than collections of smaller models?
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In this paper, we do not try to answer all of
these difficult questions. We assume instead that
completely centralized control is not likely to be
the method of choice for large-scale problems.
Although we have to let future developments
speak to the validity of this assumption, there is
reason to expect a distributed approach to large-
scale problems to remain a popular choice.?

So in what respect is the current historical junc-
ture interesting? We have faced the tension be-
tween centralized and distributed decision making
before, in many different contexts. The move from
distributed PID to MPC of small systems was es-
sentially a move towards centralized decision mak-
ing. This technology gained support because the
performance benefit was large. The main theme
in this paper is that the current situation is in-
teresting because the local agents are so capable.
Imagine trying to coordinate the decision making
of a collection of multiloop PID controllers. If the
overall system performance is not going well, what
are your options to change the behavior? You can
modify the local agents by adjusting their three
knobs: P, I and D. The impact of turning all of
these knobs up and down on the overall system
performance is far from obvious. To know, we
generally have to do a simulation and a simula-
tion requires starting conditions and gives only a
single forecast. We would need many simulations
to assess the impact of a change. Choosing which
simulations are sufficient to show the entire range
of behavior is an unsolved problem. Human inter-
vention and judgment during this learning pro-
cess is way too slow. We can try larger surgeries:
re-configure assignments of measurements with
valves as various types of operational problems are
encountered. A skillful process control engineer
who has experience with a specific process can
do remarkable things with this toolset. But cen-
tralized decision making based on a multivariable
model allows a richer set of actions to be evaluated
and produces generally better operation.

Next imagine we wish to coordinate the decision
making of a collection of MPC controllers. How
can we modify the behavior of these local agents?
The situation is strikingly different. Each agent
has a specific model of part of the process that
it uses to forecast outcomes of its decisions. The
model is available for the asking. Each agent has
a specific cost function that it optimizes to make
its decision. The cost function is available for
the asking. Each agent encodes the differences
between its forecast and the measurement in a
specific way. This model is available for the ask-
ing. We argue in this paper that the impact of
changing the local agents’ models, cost functions,

3 Consider, for example, a centrally planned economy
versus a local, market-driven economy.



and feedback structures can be reliably assessed
without extensive online simulation. Because we
know precisely what the agent is trying to do and
what model it is using to do it, we can predictably
and reliably alter its behavior. We do not need
to design a centralized supervisor to accomplish
this task. The design and maintenance of such
a supervisor is no easier than the design and
maintenance of the fully centralized controller for
the large-scale system.

If we coordinate optimization-based controllers,
the local agents have a rich structure that we
can modify, with predictable and transparent out-
comes, to suit overall performance goals. Coor-
dinating paired PID controllers is problematic
because the agents are so limited. Coordinating
MPC controllers starts in a strikingly different
place. The potential is greater. This paper pro-
vides an overview of some of the opportunities and
challenges in coordinating MPC controllers.

2. COMMUNICATION AND COOPERATION
AMONG SUBSYSTEM CONTROLLERS

We require some terminology and notation to de-
scribe the total system, or plant, its decomposition
into subsystems, or units, and the components of
the controller design problem.

Models. Consider a total system (plant) to
be comprised of M interconnected subsystems
(units). Let (y;(t),u;(t)) be the (p;,m;) dimen-
sional vectors of (output, manipulated) variables
of the i-th subsystem at time ¢, in which ¢ € I; =
(1,...,M). We assume a finite dimensional linear
time invariant model is suitable to describe the
dynamics between any manipulated input u; and
any measured output y;

zij(k+ 1) = Ajjwii(k) + Biju;(k)
yi(k) =Y Cijayi (k) i,j €Iy
7

in which integer k is the sample time. The decen-
tralized model is the set of M models between
u; and y;, @ € I)y. The centralized model is the
set of M? models between all inputs and outputs:
u; and y;, 4,7 € Ipy. The interaction model for
subsystem ¢ is the set of M — 1 models between
the inputs of other subsystems and outputs of sub-
system i: u; and y; j € Ips, j # i. The centralized
model is the union of the decentralized model and
the M sets of interaction models.

Objectives. We assume the objective function of
each subsystem can be expressed as a quadratic
function of that subsystem’s input and outputs
evaluated at discrete sample times in a prediction
horizon
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N
b; = ZLi(yi(k + k), ui(k +1|k))
=1

in which L is the stage cost, L;(y,u) = y'Q;y +
w' Rju, Q;, R; > 0, and N is the forecast horizon.
The forecast of outputs is computed from the
forecast of inputs (the decision variables) under
different model assumptions described below. We
assume a suitable objective function for the total
system is a convex combination of the subsystem
objective functions

o= wd;
i€lpr

i€l

w; >0

(1)

Communication. For the distributed controllers,
each control problem is solved by a local sub-
system controller. We also consider solving these
control problems iteratively with a communica-
tion strategy between the iterations of the sub-
system controllers. Because an MPC optimization
provides a trajectory of inputs and not just the
current input, we communicate a trajectory of
inputs at each iteration. The iteration of decision
variables is defined as

p—1
)

uf = wluj(p) + (1 — wi)'u, 1 €l

At each iteration, p, the trajectory of inputs is
a convex combination of the current local optimal
solution and the previous iteration. After the iter-
ation converges or the available computation limit
is reached, the first input in the trajectory is in-
jected into the system and the next measurement

is obtained.

Controller design. We consider the following
four controller design choices (Venkat et al.,
2006a). An agent refers to any optimizer working
at the subsystem level.

(1) Centralized control. Single controller. The
model is the centralized model of the total
system and the objective function is the ob-
jective function of the total system. Achieves
optimal nominal control performance.
Decentralized control. M controllers. Each
model is the local subsystem model. Each ob-
jective function is the local subsystem objec-
tive function. Design ignores all interactions
between units.

Communication-based control. M con-
trollers. Each model is the local subsystem
model plus interaction models. Each objec-
tive function is the local objective function.
For controller ¢ at iterate p, forecast of inputs
from controllers j # i at iterate p — 1 are
available.

Feasible-cooperative control. M controllers.
Each model is the local unit model plus in-
teraction models. Each objective function is
a copy of the total objective function. For
controller i at iterate p, forecast of inputs



from controllers j # i at iterate p — 1 are
available.

3. GOOD CONTROLLERS GONE BAD —
DENSELY CONNECTED SYSTEMS

The centralized controller and decentralized con-
troller define two limiting design extremes. Cen-
tralized control accounts for all possible inter-
actions, large and small, whereas decentralized
control ignores them completely. In decentralized
control the local agents have no knowledge of each
others’ actions. It is well known that the nominal
closed-loop system behavior under decentralized
control can be arbitrarily poor (unstable) if the
system interactions are not small. The following
reviews provide general discussion of this and
other performance issues involving decentralized
control (Siljak, 1991; Lunze, 1992; Larsson and
Skogestad, 2000; Cui and Jacobsen, 2002).

The next level up in complexity from decentral-
ized control is communication-based control. In
this framework, the agents have interaction mod-
els and communicate at each iteration (Jia and
Krogh, 2002; Motee and Sayyar-Rodsari, 2003;
Dunbar and Murray, 2006). The big advantage of
communication-based control over decentralized
control is that the agents have accurate knowledge
of the effects of all other agents on their local
objectives. The basic issue to analyze and under-
stand in this setup is the competition between the
agents. That analysis is the subject of noncoop-
erative game theory (Bagar and Olsder, 1999). To
illustrate some of the issues, consider a simple two-
subsystem problem with scalar inputs and outputs
and forecast horizon of N = 1. Figure 1 shows the
possible behavior. The Pareto optimal solution is
defined by combining the two local objectives with
equal weight. The Pareto optimal solution is the
one found by a centralized controller. The Nash
equilibrium is defined as a point satisfying the
optimality conditions for each local agent. In the
top figure, iterating the two local controllers un-
der communication converges to the stable Nash
equilibrium, which is near the Pareto optimal
solution. Communication-based control is likely
to provide good closed-loop system behavior in
this scenario. By changing the cost functions, we
create the middle figure in which the Nash equi-
librium is far from the Pareto solution. The con-
verged solution obtained using a communication-
based strategy is far from optimal, and the closed-
loop system using this controller may not be even
stable. Finally, the bottom figure shows a case
in which the Nash equilibrium is close to the
Pareto solution but the Nash equilibrium is not
stable. In this case, the communication-based it-
erates do not converge to the Nash equilibrium.
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Fig. 1. Top: Nash equilibrium is stable and near
the Pareto optimal solution. Middle: Nash
equilibrium is stable but not near the Pareto
optimal solution. Bottom: Nash equilibrium
is unstable.

The iterates converge to a point on the bound-
ary of the feasible region, which is far from the
Pareto solution. Again, closed-loop instability of
the communication-based control system is likely.
Note that none of the undesirable behavior is
caused by a lack of knowledge about the over-
all system. All agents have complete information
about the effects of all the other agents’ actions.

Therefore, if the overall system is composed of
strongly interacting subsystems, closed-loop in-
stability of decentralized and communication-
based control seems unavoidable. One alterna-
tive to ensure closed-loop stability, of course, is
to use a single centralized controller. But there
are other alternatives. We can maintain the dis-
tributed structure of the M local controllers, but
change the objective functions so that the local
agents cooperate. Changing the cost function is a
simple matter of rewriting the data in the local
agents QP subproblems. In fact, the data for var-
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MPC (Comm-MPC) and FC-MPC.

ious levels of cooperation, varying from decentral-
ized control to fully cooperative control, can be
stored so that different control scenarios can be
loaded and implemented. This approach provides
an evolutionary path from a current decentralized
technology to something approaching centralized
control, but without removing the local control
structure that may already be in place.

Venkat (Venkat, 2006) studied a number of small
typical chemical process examples and found it is
rather easy to generate closed-loop instability for
decentralized and communication-based control
systems. Table 1 summarizes some of these results.
The examples are: (i) a 2 x 2 transfer function
of a distillation column, (ii) a reactor/separator
obtained by linearizing a nonlinear, fundamental
model at a desired steady state, and (iii) a an
open-loop unstable mathematical example. De-
centralized and communication-based MPC are
unstable for the first two examples and increase
the cost compared to centralized MPC by almost
100% in the third example. Cooperative MPC
is always closed-loop stable. The nominal perfor-
mance of the closed-loop system improves with the
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number of iterations of the local controllers and
converges to the centralized solution. The rate of
convergence to centralized performance depends
strongly on the type of subsystem interactions
— for example, the distillation column requires
more iterations than the reactor/separator or the
unstable system.

Properties of feasible-cooperative MPC.
The following properties of cooperative MPC have
been established (Venkat et al., 2006a; Venkat et
al., 2006b).

(1) The iterations generated by the cooperative
MPC algorithm are systemwide feasible.
Control based on any intermediate termi-
nation of the algorithm provides nominal
closed-loop stability and zero steady-state
offset.

If iterated to convergence, the distributed
MPC algorithm achieves optimal, centralized
MPC control.

To handle output instead of state feedback,
a distributed estimator design strategy can
be implemented, in which each estimator
is stable and uses only local measurements
to estimate subsystem states. The combined
distributed estimator-distributed regulator is
feasible and closed-loop stable for all itera-
tion numbers in the case of decaying estimate
error.

(2)

4. TOPOLOGY OF TYPICAL CHEMICAL
PROCESSES

In Section 2 an MPC cooperation strategy with
guaranteed performance was summarized. Yet,
while ensuring stability and centralized-like be-
havior, it requires a completely connected commu-
nication strategy. Every agent in the plant com-
municates with all the others. This level of com-
munication makes sense because each subsystem
in the plant, in open loop, may affect all the oth-
ers. This communication is not desirable, however,
because it requires the final unit to communicate
with the initial unit, even if these processes are
connected only through many intermediate units.
This drawback motivates developing a strategy in
which closed-loop stability, at least, is guaranteed
but unnecessary communication is eliminated. In
this section we focus on the characterization of
such a strategy.

In a typical chemical process, subsystems are con-
nected through material, energy, and information
flows. These flows generally pass from subsystem
to subsystem, so that each subsystem directly
interacts only with its nearest neighbors. Inter-
actions beyond nearest neighbors occur through
intermediate subsystems. Therefore, non-nearest



Fig. 2. Ethylene glycol flowsheet. 1. Feed tank 2.
Preheater 3. Reactor 4. Evaporators 5. Light
end columns 6. Mono ethylene glycol column
7. Higher glycol recovery

<=

U; D;

Fig. 3. The set U; is the set of upstream subsys-
tems and the set D; is the set of downstream
subsystems. Subsystem 1 is linked to all other
subsystems in the flowsheet by the upstream
subsystems [ € U; and the downstream sub-
systems j € D;.

neighbor interactions may be modeled as the
product of multiple nearest neighbor interactions
in series. Also, in many sections of the plant, a
given subsystem directly interacts only with its
downstream subsystems. For example, in Figure 2,
subsystem 1 affects subsystem 2 directly, but af-
fects subsystem 4 by way of subsystems 2 and -
3. This topology may be exploited to reduce the
amount of communication required for coopera-
tive control.

Given the structure above, a different interaction
model can be derived. This model assumes the
states of a given subsystem are a function of
only the subsystem’s states and inputs and the
states of the upstream subsystems as in Figure 3.
Specifically,

zi(k+1) = Auz;(k)+ Y Auzi(k)+ Biui(k) (2)
leU;

in which U; C I, is the set of nearest neighbor
subsystems upstream of subsystem . This model
implies a fundamentally different set of interac-
tions than used in Section 2 in which input-to-
state interactions are considered. This model in-
stead considers state-to-state interactions. These
interaction models are equivalent however. The
equivalence is revealed by recursively substituting
for all ;(k) into x;(k+ 1), and recovering a strict
input-to-state model. More importantly, by con-
sidering this state-to-state model, communication
is reduced. Defining the set U, also defines the
set of subsystems that directly affect subsystem 3.
Typically U; is a subset of the entire plant’s sub-
systems, which reduces the interactions that must
be considered.

24

In MPC, each optimizer is given the task of pre-
dicting the effect of its inputs on a given objective.
In cooperative MPC, this objective is the perfor-
mance of the entire plant ®. As in Section 2 the
entire plant’s objective is the convex sum of the
subsystems’ objective ®;. Using Equation (2) to
predict how the inputs of subsystem i affect the
plant objective, the summation in (1) is over only
1 and the subsystems downstream from ¢

(bi = Z w, P,

re{i,D;}

(3)

in which ¢; is the reduced centralized objective
for subsystem ¢ and D; is the set of nearest neigh-
bor subsystems downstream from subsystem 1.
The reduction of terms in the summation follows
from examining each term. If no decision variables
appear in a term of the summation, then this
term is constant and does not affect the solution.
Using (2) for the prediction of the plant objective,
the decision variable w;(k) appears in (1) only in
the ith term and jth terms such that 7 € U;. The
latter may be restated as j € D;. After substitut-
ing (2) into (3) the MPC subproblem is obtained.
The controller for subsystem ¢ must consider the
state trajectories of the upstream subsystems U;
and the input trajectories of the downstream sub-
systems D;. Qualitatively, in order to make an
optimal input decision, subsystem ¢ must know
where the upstream subsystems are going and be
able to forecast the downstream subsystems. But
notice it does not need a forecast of any other
subsystem. This behavior is acceptable because
the other subsystems make these forecasts, and
account for these non-nearest neighbor interac-
tions.

This reduction of communication does not come
for free, however. The MPC optimization returns
an optimal trajectory of inputs. The states, which
are communicated after local optimizations, must
be synchronized with the optimal inputs to ob-
tain the optimal state trajectory. In general, these
states cannot be obtained using the local model.
The trouble arises in the presence of recycle. Con-
sider the ethylene glycol plant in Figure 2 in which
subsystems 1 and 2 are involved in a recycle. Ac-
cording to Equation (2), the states of subsystem 1
affect subsystem 2, but at the same time the states
of subsystem 2 affect subsystem 1. These states
must then be obtained simultaneously. Therefore
an extra step, and extra time, is needed to itera-
tively synchronize the states, or one of the MPCs
solves for the states of both systems. Adding time
to the optimization is never a good idea, however,
and, in a distributed optimization, allowing one of
the subsystems to solve for all states is not much
different than centralized control.

Consider the special case without recycle. In
this case, material flows only downstream and
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Fig. 4. Periodic recycle. Flow is mostly in the
direction from the first subsystem to the
last with local recycle occurring periodically
throughout the flowsheet.

the problem of downstream subsystems affecting
upstream subsystems is avoided. This property
yields an important effect: the synchronization
step can be solved locally on each subsystem.
To synchronize, subsystem ¢ must know only the
states, already available from the optimization
step, of the subsystems upstream. Therefore no
extra communication is needed. The reduced com-
munication requirement in distributed MPC in
this case is analogous to the relative gain array
(RGA) becoming a diagonal matrix for a triangu-
lar matrix of transfer functions (Ogunnaike and
Ray, 1994, p.737).

A typical plant has many recycle streams, and
the recycle streams may be difficult to identify, as
in the ethylene glycol example in Figure 2. How
can communication be reduced in this situation?
We propose a hybrid strategy. Total communi-
cation, as in Section 2, is implemented between
subsystems involved in the recycle while reduced
communication, described in this section, is used
between subsystems not in the recycle. The total
communication and reduced communication areas
exchange information and iterate in parallel. For
example, in Figure 4, subsystems 3-5 are involved
in recycle, so full communication is used between
these subsystems. Between all others, reduced
communication may be used. Similar techniques
are used in the optimal matching and shrinking
algorithms in graph reduction (Cook et al., 1998,
pp.127-198) and in the analysis of electrical net-
works (Chan, 1969, pp.263—-280). The analysis of
this simple example is straightforward, but more
complicated flowsheet topologies may require gen-
eral and sophisticated tools. In Figure 2, for exam-
ple, must subsystem 1 communicate with subsys-
tem 4 directly, or is it sufficient to communicate
only with subsystem 27

Consider the extremes of the recycle problem. Fig-
ure 4 represents the most basic recycle, in which
flow moves, on average, downstream with a recycle
occurring occasionally. This periodic recycle may
be controlled via the hybrid strategy outlined
above. Figure 5 is the other extreme of recycle.
Subsystem 1 is affected directly by subsystem 6,
the final unit in the flowsheet. Must all subsystems
communicate in this example or is there a more
elegant way to reduce communication? In general,
a plant is a combination of these recycle extremes.
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Fig. 5. Total recycle. The last subsystem in the
process flows into first.

The next step in this line of research is to derive
a framework for identifying these recycles and
specifying the necessary communication strategies
to handle them.

5. FUTURE CHALLENGES

The following issues represent open research chal-
lenges. Progress on any of these issues will likely
further the development of a more comprehensive
and reliable controller design strategy suitable for
the large-scale, and challenging applications faced
by practitioners.

Exploiting the structures in application do-
mains. As a research community, we have just
begun to think about the types of structure arising
in applications. The topological connections of
chemical processes described in Section 4 is one
such example. Recognizing and exploiting these
kinds of structures may prove critical to success
in many fields.

Coupled input constraints. The FC-MPC al-
gorithm converges to the optimal centralized so-
lution when the input constraints are uncoupled
between subsystems. For input constraints coupled
between subsystems, nominal closed-loop stability
is still guaranteed, but performance remains an
open question. At present we do not have any
bounds on the degree of suboptimality that can
be caused by coupled input constraints.

Communication disruption. The goal of a dis-
tributed control design system is to maintain a
high level of overall system performance with
as little communication as possible between the
subsystems. Reliable strategies are required for
handling possible disruptions and delays in the
communication of input trajectories among sub-
systems. It is expected that the closed-loop system
can be destabilized with incorrect input trajec-
tory information due to information loss or de-
lays. It would be desirable to have lower perfor-
mance backup strategies available if communica-
tion fails completely. A plant’s previous decen-
tralized control system may be suitable for this
task, but other options may be investigated such



as those considered in recent work on control over
networks (Baliga and Kumar, 2005; Casavola et
al., 2006; Imer et al., 2004).

Closed-loop Identification of subsystem in-
teractions. The distributed MPC framework re-
quires both subsystem models and models of
the important interactions between subsystems.
While closed-loop identification is a well-studied
field, tailoring the existing techniques for dis-
tributed MPC is a relatively recent research
area (Gudi and Rawlings, 2006). Improvements
in techniques for closed-loop identification for dis-
tributed MPC will likely prove critical for prac-
tical implementation. Reliable integration of the
algorithm used for closed-loop identification with
the algorithm for distributed MPC may have sig-
nificant impact in the process industries.

Robustness to model errors. Handling uncer-
tainty in the controller model remains a key issue
that needs to be addressed. Interaction models
are typically identified using closed-loop operating
data. Typically, for small plant-model mismatch,
the feedback in standard MPC is adequate to
obtain good closed-loop performance. When the
plant-model mismatch is more significant, robust
distributed MPC design may be necessary. With
this issue in mind, a thorough investigation into
robustness theory for distributed MPC needs to
be undertaken. Establishing properties such as
robust feasibility and stability in the distributed
MPC setting could prove to be both useful and
interesting. Construction of disturbance invariant
sets (Kolmanovsky and Gilbert, 1998; Rakovic et
al., 2004) for each subsystem could prove useful
to establish robust stability.

Partial cooperation. Partial cooperation is a
method that allows the control designer to en-
force limitations on the ways optimization-based
controllers use their available inputs to meet per-
formance specifications (Venkat et al., 2005). It
has the nice side benefit of reducing communica-
tion among subsystem controllers. But closed-loop
properties for the partial cooperation framework
are not available. Techniques for further reducing
communication among subsystems, without com-
promising closed-loop stability, should be investi-
gated.

Time-scale separation and fast subsystems.
To implement cooperative distributed MPC for
systems with fast sampling rates, one may require
techniques that allow a quick evaluation of the
MPC optimization problem. The possibility of
employing explicit MPC techniques (Bemporad
and Filippi, 2003; Bemporad et al., 2002; Pan-
nocchia et al., 2006; Tondel et al., 2003) for dis-
tributed MPC should be investigated. One com-
plication in distributed MPC is that the input tra-
jectories for interconnected subsystems’ MPCs are
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additional parameters for each MPC optimization
problem. The dimensionality of the parameter
space consequently, is much greater in distributed
MPC.

Zero-order holds have been the method of choice
in centralized MPC applications. First-order holds
offer many advantages for fast systems. For the
same control performance, a first order hold allows
a larger sampling time than a zero order hold;
this feature by itself allows further iteration of the
distributed MPC system. At this time we know
little about the advantages and disadvantages
of first-order holds in asynchronous, distributed
MPC.

6. CONCLUSION

Given the long introduction, the conclusion can
be brief. We have argued that coordinating
optimization-based controllers offers interesting
capabilities for tackling control system design
for large-scale processes. Optimization-based lo-
cal agents operate at a high level. By modify-
ing their objective functions, the agents cooper-
ate. By modifying their interaction models, the
agents are aware of the impact of their decisions
on other parts of the overall system. By taking
advantage of the process topology, we can reduce
the required communication between the agents.
There is no free lunch. If the system is highly
interactive, it requires a high degree of commu-
nication among the local agents, or a centralized
controller. But a highly interactive overall system
is unlikely to be the rule in large-scale chemi-
cal processes. Chemical process design does not
typically produce this kind of highly interactive
overall system. Material, energy and information
generally flows sequentially from unit to unit with
smaller levels of recycle and integration providing
the major interactive coupling. Because controller
design for large-scale systems is a complex design
problem, many interesting research issues remain.
These include: exploiting system structure, han-
dling input constraint coupling and disruption
in communication, identifying interaction models
online, ensuring robustness to model errors, im-
posing controller restrictions, and treating time-
scale separation.

Further research in this field will benefit greatly
from close contact between theory and practice.
The major downside risk to avoid is producing
elegant controller design methodologies that no
one uses. Because this line of research is motivated
by practical needs, close collaboration between
researchers and practitioners is a prerequisite for
evaluating progress and defining new research
opportunities.
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