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1. INTRODUCTION

Dealing efficiently with process and control sys-
tem failures is becoming an issue of increasing
importance in the context of highly-automated
chemical processes. Automation tends to increase
vulnerability of the plant to faults that, if not
quickly handled, can potentially cause a host
of undesired economic, environmental and safety
problems. As chemical plants become more auto-
mated, there is an increasing need to detect and
isolate faults early and accurately to avoid such
problems. In this paper, our main focus will be
on fault detection and isolation (FDI), that is,
not only detecting that a fault has occurred, but
also diagnosing the underlying cause of the faulty
behavior. If a fault is isolated early, it can be more
safely dealt with through fault-tolerant control
systems (see, for example, Yang et al. (1998); Bao
et al. (2002); Mhaskar et al. (2006) for results in
this area).

Methods for process monitoring fall into two
broad categories: model-based methods and data-
based methods. Model-based methods utilize a
mathematical model of the process to build, under
appropriate assumptions, dynamic filters that use
process measurements to compute residuals that
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relate directly to specific process faults; in this
way fault detection and isolation can be accom-
plished for specific model and fault structures.
On the other hand, data-based methods are based
exclusively on process measurements. In the con-
text of fault isolation, data-based methods usually
require historical data under faulty operation and
perform data-based fault isolation through the use
of such techniques as contribution plots (Kourti
and MacGregor (1996)). Other methods have been
developed that take advantage of the structure of
dimensionally reduced data and the consequent
residual space created in principle component
analysis (PCA) or partial least squares (PLS).
Gertler et al. (1999) employ PCA to identify linear
relationships in the process data that can then be
used with analytical redundancy techniques. Yoon
and MacGregor (2001) compare steady-state fault
directions in the PCA space with historical fault
data. The main drawback of these methods is
that they require specific historical data that may
be costly to obtain. For a comprehensive review
of model-based and data-based fault detection
and isolation methods, the reader may refer to
Venkatasubramanian et al. (2003b,a).

These methods have had varying degrees of suc-
cess in detecting and isolating faults, but still leave
room for improvement. In particular, most results
are based on the premise that the controller is
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designed independently of the possible faults that
might occur. These works focus on designing a
fault detection and isolation scheme for a given
closed-loop system where the controller has al-
ready been fixed. The present work proposes a
novel method that takes into account the design
of the feedback control law. This method allows
isolating specific faults in the closed-loop system
using a purely data-based approach, without re-
quiring prior knowledge of fault history. This is
achieved through the design of appropriate non-
linear control laws that allow isolating given faults
by effectively decoupling the dependency between
certain process state variables. While the achieve-
ment of the key requirement, the enforcement of
a special structure in the closed-loop system, can
be accomplished by a variety of nonlinear control
laws, in the present paper we utilize feedback
linearization to achieve this task. The results are
demonstrated through a continuously stirred tank
reactor example.

2. PRELIMINARIES

2.1 Data-Based Detection

Data-based methods for fault detection in multi-
variate systems are well established in statistical
process control. A common approach to moni-
toring multivariate process performance is based
upon Hotelling’s T 2 statistic, which allows pro-
cesses to be monitored using a single variable
that gives a well-defined threshold for normal
operation. Specifically, given a multivariate state
vector x of dimension n, the T 2 statistic (see, for
example, Romagnoli and Palazoglu (2006); Kourti
and MacGregor (1996)) can be computed using
the mean µ and the estimated covariance matrix S
of process data obtained under normal operating
conditions as follows:

T 2 = (x − µ)T S−1(x − µ). (1)

The upper control limit for the T 2 statistic can
be calculated using the F distribution, where m
is the number of measurements used in estimating
the covariance matrix S, according to the formula

T 2

UCL =
(m − 1)(m + 1)n

m(m − n)
Fα(n, m − n) (2)

where Fα(n, m − n) is the upper critical value
of the F distribution with (n, m − n) degrees of
freedom and significance level α.

In systems where the measurement vector x is of
high dimension, it is quite common to perform
a dimensionality reduction using PCA or PLS to
reduce the number of variables with respect to
which T 2 should be computed. Although these
methods are useful in reducing the dimensionality
of x, and thus the complexity of the fault detection
algorithm, we will not discuss or employ them in

the present paper; our objective is to simply illus-
trate how properly designed nonlinear controllers,
can lead to enhanced data-based diagnosis and
isolation of specific faults. For this same reason,
when considering data-based isolation, we do not
utilize more standard methods such as contribu-
tion plots for the Q-statistic and T 2 statistic as
demonstrated in Kourti and MacGregor (1996).
Instead we use a plot of the normalized error
(Erri) of the output and each of the states in the
system.

Erri =
(xi − µi)

si

(3)

where µi is the mean and si is the estimated co-
variance for each variable. Monitoring the normal-
ized error plot of the output, it is possible to iso-
late specific faults using the controller-enhanced
isolation technique described in the present work.
The normalized error plots for the output and
each of the states also demonstrate that in the
case where the presented technique is not used, it
is not clear where the fault lies.

In the proposed scheme, fault detection will be
carried out using the T 2 statistic of the state
vector (note that we will assume that the state is
fully accessible), while fault isolation will be based
on the normalized error plot of the output.

2.2 Feedback Linearizable Systems

We assume that the process is modeled by a
single-input single-output nonlinear system with
multiple faults/disturbances which has the follow-
ing state-space description

ẋ = f(x) + g(x)u +
∑

i∈D

wi(x)di

y = h(x)
(4)

where x ∈ Rn is the state, u ∈ R is the input, y ∈
R is the measured output and di ∈ R represents a
possible fault. We assume that f , g, h and wi are
sufficiently smooth functions and that a set D of
possible faults has been identified. Each of these
faults is characterized by an unknown input to the
system di that can model sensor errors, actuator
failures and disturbances. The system has an
equilibrium point at x = 0 and h(0) = 0. Note
that in general this equilibrium point corresponds
to a given set-point of the output. Throughout
the paper, the notations Lk

fh(·) and LgL
k−1

f h(·)
denote the standard k-th order Lie derivative and
mixed Lie derivative of a scalar function h(·),
with respect to vector functions f(·) and g(·). We
assume that the state is fully accessible.

The main control objective is to design a feedback
control law u(x) such that the origin is an asymp-
totically stable equilibrium point of the closed-
loop system. We use feedback-linearizing control
to accomplish this. Next we consider state feed-
back control of input-output linearizable systems.
To this end, we review the following definition:
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Definition 1. (Isidori (1989)). Referring to (4), the
relative degree of the output y with respect to the
input u is the smallest integer, r ∈ [1, n], for which

LgL
i
fh(x) = 0, i = 0, . . . , r − 2

LgL
r−1

f h(x) 6= 0.

A system with relative degree r ≤ n is feed-
back linearizable. If r = n the entire input-state
dynamics are linearized. If r < n, the feedback
controller can be chosen so that a linear input-
output map is obtained from the external input
to the output, even though the state equations are
only partially linearized. In this case, if the inverse
dynamics satisfy a given stability condition (in
particular, input-to-state stable inverse dynam-
ics), an appropriate control law can be designed
for the input-output subsystem that guarantees
stability of the entire closed-loop system. To be
specific, if system (4) has relative degree r < n,
then there exists a coordinate transformation (see
Isidori (1989)) (ζ, η) = T (x) such that the repre-
sentation of system (4) with di = 0 for all di ∈ D
(that is, the system without faults), in the (ζ, η)
coordinates, takes the form

ζ̇1 = ζ2

...

ζ̇r−1 = ζr

ζ̇r = Lr
fh(x) + LgL

r−1

f g(x)u

η̇1 = Ψ1(ζ, η)
...

η̇n−r = Ψn−r(ζ, η)

(5)

where y = ζ1, x = T−1(ζ, η), ζ = [ζ1, . . . , ζr]
T

and η = [η1, . . . , ηn−r]
T . Choosing u(x) in an

appropriate way, the dynamics of ζ can be lin-
earized and controlled properly using linear con-
trol theory. The stability of the closed-loop sys-
tem, however, can only be assured if the inverse
dynamics (η̇ = Ψ(ζ, η)) satisfy additional stability
assumptions. In the following theorem, we review
one example of an input-output state feedback
controller. The controller presented, under the
assumption of no faults, guarantees asymptotic
stability of the closed-loop system.

Theorem 2. (Isidori (1989)). Consider system (4)
with di = 0 for all di ∈ D, under the feedback law

u(x) =
1

LgL
r−1

f h(x)
[KTζ(x) − Lr

fh(x)] (6)

where ζ = Tζ(x). Assume K is chosen such that
the matrix A + BK has all of its eigenvalues in
the left-hand side of the complex plane where

A =

[

0r−1 Ir−1

0 0T
r−1

]

, B =

[

0r−1

1

]

.

Ir−1 is the (r − 1) × (r − 1) identity matrix and
0r−1 is the (r − 1) × 1 zero vector. Then, if the

dynamic system η̇ = Ψ(ζ, η) is locally input-to-
state stable (ISS) with respect to ζ, the origin of
the closed-loop system is locally asymptotically
stable.

2.3 Controller Enhanced Isolation

In this section, we prove that under certain as-
sumptions, if the state-feedback law (6) is used,
then the faults of system (4) can be isolated into
two different groups: those that affect the output
and those that do not. We use the following defi-
nition of relative degree of a fault (this definition
was introduced in Daoutidis and Kravaris (1989)
in the context of feedforward/feedback control
of nonlinear systems with disturbances but it is
employed here to address a completely different
problem):

Definition 3. Referring to (4), the relative degree
of the output y with respect to the fault di,
ρi ∈ [1, n], is the smallest integer for which

Lwi
Li

fh(x) = 0, i = 0, . . . , ρi − 2

Lwi
Lρi−1

f h(x) 6= 0.
(7)

The definition of relative degree of a fault is
analogous to the definition of relative degree of
the input, but instead of relating the input to the
output, this definition of relative degree relates
a particular fault to the output. If a feedback-
linearizing controller is used, then the faults can
be divided in two different groups: those with a
relative degree ρi that is greater than the relative
degree r and those with a relative degree ρi that
is less than or equal to r. When a fault occurs, the
faults of the first group will not affect the output y
while those of the latter will. This dependence can
be monitored using the normalized error plots.

To show this point, taking into account defini-
tions 1 and 3, there exists (see Isidori (1989)) a
coordinate transformation (ζ, η) = T (x) such that
the representation of system (4) with dj = 0 for
all dj ∈ D−{di} (that is, the system subject only
to fault di), in the (ζ, η) coordinates, takes the
form

ζ̇1 = ζ2

...

ζ̇r−1 = ζr

ζ̇r = Lr
fh(x) + LgL

r−1

f g(x)u

η̇1 = Ψ1(ζ, η, di)
...

η̇n−r = Ψn−r(ζ, η, di)

where y = ζ1, x = T−1(ζ, η), ζ = [ζ1, . . . , ζr]
T

and η = [η1, . . . , ηn−r]
T . Following the definition

of the state-feedback law (6), the following state-
space representation is obtained for ζ:

ζ̇ = (A + BK)ζ.

83



This dynamical system is independent of di.
Therefore, the trajectory of the output y is inde-
pendent of the fault di. This result, however, does
not hold if the relative degree ρi of the fault di is
equal to or smaller than r. In this case, the coor-
dinate change does not eliminate the dependence
of the output with the fault. Applying the same
coordinate change (ζ, η) = T (x), the dynamics of
system (4) with dj = 0 for all dj ∈ D−{di} (that
is, the system subject to fault di), in the (ζ, η)
coordinates, takes the form

ζ̇1 = ζ2 + Φ1(di)
...

ζ̇r−1 = ζr + Φr−1(di)

ζ̇r = Lr
fh(x) + LgL

r−1

f g(x)u + Φr(di)

η̇1 = Ψ1(ζ, η, di)
...

η̇n−r = Ψn−r(ζ, η, di)

where y = ζ1, x = T−1(ζ, η), ζ = [ζ1, . . . , ζr]
T

and η = [η1, . . . , ηn−r]
T . In this case, when the

fault occurs, the output is affected. In summary,
if controller (6) is used, the possible faults of
system (4) are divided in two groups, each with
a different signature. When a fault occurs, taking
into account whether the trajectory of the output
is affected or not, one can determine which group
the fault belongs to. Note that if only two faults
are defined, that is D = {1, 2} and ρ1 ≤ r and
ρ2 > r, then the fault is automatically isolated.

In this work we propose to detect the occurrence
of a fault using the T 2 statistic of the full state vec-
tor. Once a fault has been detected, the normal-
ized error plot of the output determines whether
the output has been affected or not.

Remark 4. There are systems where different out-
puts can be chosen. Depending on the structure of
the system, isolation of a given set of faults can be
accomplished by choosing an appropriate output.
Note that isolation is done with a purely data-
based approach. Even if a model is used to design
the controller (which is the case in most control
schemes), the isolation of a fault is done only on
the basis of the trajectory of the output y.

Remark 5. The proposed approach to fault iso-
lation can also be extended to multiple-input
multiple-output systems. In this case, the possi-
ble faults can be divided into different groups,
depending on whether they affect one, several or
none of the system outputs.

3. ILLUSTRATIVE EXAMPLE

We consider a well-mixed continuously stirred
tank reactor in which a feed component A is con-
verted to an intermediate species B and finally to

Table 1. Process parameters

F 1 [m3/h] V 1 [m3]
k10 1.0·1010 [min−1] E1 6.0·104 [kJ/kmol]
k
−10 1.0·1010 [min−1] E

−1 7.0·104 [kJ/kmol]
k20 1.0·1010 [min−1] E2 6.0·104 [kJ/kmol]
k
−20 1.0·1010 [min−1] E

−2 6.5·104 [kJ/kmol]

∆H1 -1.0·104 [kJ/kmol] R 8.314 [kJ/kmol · K]
∆H2 -0.5·104 [kJ/kmol] T0 300 [K]
CA0 4 [kmol/m3] ρ 1000 [kg/m3]
cp 0.231 [kJ/kg · K]

the desired product C, according to the reaction
scheme

A
1
⇀↽ B

2
⇀↽ C.

Both steps are elementary, reversible reactions
and are governed by the following Arrhenius rela-
tionships

r1 = k10e
−E1

RT CA, r−1 = k−10e
−E

−1

RT CB

r2 = k20e
−E2

RT CB, r−2 = k−20e
−E

−2

RT CC

where ki0 is the pre-exponential factor and Ei is
the activation energy of the ith reaction where
the subscripts 1,−1, 2,−2 refer to the forward
and reverse reactions of steps 1 and 2. R is the
gas constant while CA, CB and CC are the molar
concentrations of species A, B and C respectively.
The feed to the reactor consists of pure A at
flow rate F , concentration CA0 and temperature
T0. The state variables of the system include the
concentrations of the three main components CA,
CB, and CC as well as T , the temperature of
the reactor. Using first principles and standard
modeling assumptions, the following mathemati-
cal model of the process is obtained

ĊA =
F

V
(CA0 − CA) − r1 + r−1 + d1

ĊB = −
F

V
CB + r1 − r−1 − r2 + r−2

ĊC = −
F

V
CC + r2 − r−2

Ṫ =
F

V
(T0 − T ) +

(−∆H1)

ρcp

(r1 − r−1)

+
(−∆H2)

ρcp

(r2 − r−2) + u + d2

(8)

where V is the reactor volume, ∆H1 and ∆H2

are the heats of reaction for the first and second
steps, ρ is the fluid density, cp is the fluid heat
capacity, d1 and d2 are possible faults of the
system and u = Q/ρcp is the manipulated input,
where Q is the heat input to the system. For the
purpose of data-based fault detection, system (8)
is modeled with autoregressive process noise of the
form wk = φwk−1+ξk and white sensor noise with
a sample time of 1 min. Values of φ, the standard
deviation of ξk, σp, and of the white noise, σm,
are given in Table 2.
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Table 2. Noise Parameters

σm σp φ

CA 1E-2 1E-3 0.9
CB 1E-2 1E-3 0.9

CC 1E-2 1E-3 0.9
T 1E-1 1E-2 0.9

The output y of the system is defined as the
concentration of the desired product CC . This
particular definition of the output, while mean-
ingful from the point of view of regulating the
desired product concentration, will be also use-
ful in the context of fault isolation. We consider
only faults d1 and d2, which represent undesired
changes in CA0 (disturbance) and T0/Q (distur-
bance/actuator fault) respectively. These changes
may be the consequence of an error in external
control loops. In this system, the input u appears
in the temperature dynamics and is relative de-
gree 2. The fault d1 appears only in the dynamics
of CA and is relative degree 3. Finally, fault d2

is relative degree 2. The values for the constants
of the process model are given in Table 1. The
control objective is to regulate the system at the
equilibrium point

CCs = 0.9471
kmol

m3
, Ts = 312.6K, us = 0K/s.

To this end, we consider two different feedback
controllers: a controller based on input-output
linearization and a proportional controller (it is
important to point out that the conclusions of
this simulation study would continue to hold if
the proportional controller is replaced by PID,
MPC or any other controller that does not achieve
decoupling of the output from d1 in the closed-
loop system). The feedback-linearizing controller
takes the form of (6) with:

K = [−1 − 1].

Note that the state variables are shifted so that
the origin represents the desired set point. The
proportional controller takes the form:

u = (Ts − T ).

In the closed-loop system operating under the
feedback-linearizing control law, faults with a rel-
ative degree higher than that of the input will
not affect the output in the event of a failure.
Therefore d1, with relative degree 3, will not af-
fect the output. Conversely, because fault d2 is
relative degree 2, it cannot be decoupled from
the output. This property does not hold for the
closed-loop system under proportional control. In
that case, under the presence of a fault (whether
in d1 or d2), the output is modified. The above
statements were tested by simulating system (8)
in closed-loop under both proportional control
and feedback-linearizing control. In all cases, the
system was initially operating at the steady-state
with a failure appearing at time t = 25 min.
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Fig. 1. System under feedback-linearizing control.
Upper figure: plot of T 2 (solid) with TUCL

(dashed). Lower figure: each state’s normal-
ized error, with a failure in d1 at t = 25 min.
T = o, CA = ×, CB = ⋄, CC = ⋆.
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Fig. 2. System under proportional control. Upper
figure: plot of T 2 (solid) with TUCL (dashed).
Lower figure: each state’s normalized error,
with a failure in d1 at t = 25 min. T = o, CA

= ×, CB = ⋄, CC = ⋆.

Failures in d1 were introduced as a step change of
magnitude 1 kmol/m3s and in d2 as a step change
of magnitude 10 K/s. These faults change the
equilibrium point of system (8) to an undesired
state. Hotelling’s statistic (1) and normalized er-
ror plots (3) were used to monitor the closed-loop
system.

Simulating the closed-loop system under feedback-
linearizing control with a fault in d1 (see Figure
1), the T 2 statistic shows a failure at t = 25 min.
The normalized error plot clearly shows that the
output was not affected by the failure. In the case
of proportional control with a failure in d1 (see
Figure 2), the T 2 statistic accurately shows that
the failure occurred around time t = 25 min. In
this simulation, each of the state trajectories was
affected by the failure. In the case of a failure
in d2, both proportional control and feedback-
linearizing control show failures at t = 25 min
as well as changes in the normalized error plots
for all states, see Figures 3, 4.
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Fig. 3. System under feedback-linearizing control.
Upper figure: plot of T 2 (solid) with TUCL

(dashed). Lower figure: each state’s normal-
ized error, with a failure in d2 at t = 25 min.
T = o, CA = ×, CB = ⋄, CC = ⋆.
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Fig. 4. System under proportional control. Upper
figure: plot of T 2 (solid) with TUCL (dashed).
Lower figure: each state’s normalized error,
with a failure in d2 at t = 25 min. T = o, CA

= ×, CB = ⋄, CC = ⋆.

Looking at the normalized error plot of the output
in Figures 1 and 3, it is clear that fault d1 did
not affect the output whereas d2 did. Fault d2

is relative degree 2 and thus affects the output,
while d1 is relative degree 3 and does not. In this
situation, where we consider only one fault in each
group, we can successfully identify the failure in
Figure 1 as d1. However, for proportional control,
all of the states were affected by each failure (see
Figures 2, 4) leaving an unclear picture as to the
cause of the fault. Although prior knowledge of
faulty behavior could possibly narrow down the
likely fault or even isolate the fault, it is not
readily apparent from the recorded data.

The feedback-linearizing controller is not an opti-
mal control scheme. Nonetheless, Figure 5 shows
that the requested control action is not excessive
and is comparable to the one requested by the
proportional controller.
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Fig. 5. Manipulated input profiles for both the
proportional controller (⋄) and the feedback-
linearizing controller (×)
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