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Abstract: In this work it is presented a PI controller loop-shaping redesign
technique. The existing closed-loop is excited using a relay experiment which allows
one to estimate the current phase-margin, the crossover frequency and a first-order
plus time-delay model. Techniques for continuous-time identification are examined.
Based on the information obtained from the experiment, a desired loop transfer
function is defined. The controller is obtained using least squares model-matching.
Constrained optimization is used in the estimation. Simulation examples illustrate
the technique. Copyright c©2007 IFAC
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1. INTRODUCTION

PI (and PID) controllers are commonly used to
control process which have a simple dynamics and
modest performance requirements. Simple exper-
iments like step responses and relay are widely
used in classical techniques to tune these con-
trollers as they are very simple to apply. However,
these techniques provide good performance only
for the process models for which they were tuned.
In this work it is presented a PI controller loop-
shaping redesign technique. The existing closed-
loop is excited using a relay experiment which
allows one to estimate the crossover frequency and
a first-order plus dead-time model (FOPDT). The
current phase-margin can also be estimated, but
it will not be used in the design.

Methods of closed-loop identification have been
used in industrial applications as they may not
cause stops in system operation, unlike open-
loop identification. Other reasons which can be
listed are demands on safety in process operation,

unstable processes and restrictions in production
(Ljung, 1999). An additional consideration to ac-
complish experiments in closed-loop is that the
dynamic exhibited by the plant with the old con-
troller is relevant to the new controller design (den
Hof and Schrama, 1998) and (Gevers, 1995). Here
a continuous-time model is identified. The esti-
mation of continuous-time models from sampled
data has received some attention in the last years,
motivated by the need of such models to recover
physical parameters or to use design techniques
developed for continuous-time controllers. An ex-
tensive list of references on the subject can be
found in (Mensler, 1999), where a detailed survey
discusses the advantages of a direct approach in
relation to the indirect estimation of a discrete-
time model plus a later transformation into a
continuous-time model. Although structural con-
straints such as model order and time delay have
been incorporated in continuous time system iden-
tification since its origin, the constraints on the
estimated parameters were rarely enforced (Wang
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Fig. 1. Closed-loop system.

et al., 2005). In this paper a constrained least-
squares minimization which uses frequency data
obtained from a relay experiment is used to obtain
a model.

When redesigning a controller, specially when us-
ing little information from the process transfer
function, it is important to evaluate the robust-
ness properties of the existing loop and to make
the controller design leaving some safety margins
for the case of model errors. One common ap-
proach is to evaluate the gain and phase margins
and use the information to redesign the controller
as the one presented in (de Arruda and Bar-
ros, 2003). In the present paper the closed-loop
crossover frequency is evaluated and the redesign
is based on the shaping of the loop transfer func-
tion to match a desired one. The new crossover
frequency is derived from the estimated FOPTD
model, thus resulting in a closed loop with some
stability margin. The loop shaping is performed
using a least squares model-matching in the fre-
quency range of interest.

This paper is organized as follows. Initially, the
problem is stated, followed by the presentation
of the relay experiment. Next, continuous-time
identification of FOPDT models is discussed and
an algorithm is proposed. The controller redesign
is then presented. Simulations examples and con-
clusions complete the presentation.

2. THE PROBLEM STATEMENT

Considered a closed-loop system shown in Fig. 1,
with yr is the setpoint signal, u is the control
signal or process input, y is the process output
and w is the disturbance signal. The closed-loop
transfer function is T (s), resulting from the com-
bination of a process transfer function G(s) and
a controller C(s), while the loop transfer function
is L(s) = C(s)G(s).

The controller is assumed to be a PI controller
given by

C (s) = Kp

(
1 +

1
Tis

)
=

Kps + Ki

s
. (1)

It is considered that the process dynamics can
be captured by a first-order plus dead-time
(FOPDT) continuous-time models represented by

G (s) =
b

s + a
e−Ls. (2)

It is assumed closed-loop operation and that the
excitation is generated from a relay-based exper-
iment to be presented in the sequel. The aim of
the paper is to redesign the controller after the
assessment of the closed loop.

3. THE LOOP GAIN RELAY EXPERIMENT

The feedback structure applied for frequency
point estimation of the loop transfer function is
presented in Fig. 2. The conditions of the limit
cycle operation are defined by the following propo-
sition.

Fig. 2. Relay Closed Loop Experiment.

Assume that for a stable T (s)

F (s) = 2T (s)− 1 (3)

is also stable. Then if a limit cycle is present it
oscillates at a frequency ωg such that

|L (jωo)| ≈ 1 .

Proof: See (Schei, 1994)

The setpoint yr (t) is the excitation applied to the
closed loop T (s). The process transfer function
at the crossover frequency is estimated computing
the DFT of one period of the process input u and
output y when the relay oscillation is present and
steady.

4. IDENTIFICATION OF DEAD-TIME
SYSTEMS

In this Section continuous-time system identifi-
cation is presented for FOPDT models. In order
to motivate the final algorithm, identification in
open-loop is initially reviewed and its limitation
evaluated when applied to closed-loop operation.

4.1 Identification of FOPDT Model from a Step
Response Experiment

In continuous-time identification, techniques which
use such models (with L = 0) are named Integral
Methods (Mensler, 1999). An integral method has
been used in (Wang et al., 2000), with the process
in open loop and under a step input with ampli-
tude h applied at t = 0. The process is assumed to
be at steady-state at t = 0, so u (t) = 0 for t < 0
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and zero initial conditions are assumed. For this
case the model also satisfy

y (t) = −a

∫ t

0

y (τ) dτ + bht− bhL, (4)

In closed-loop, this procedure cannot be applied,
so that some additional processing must be made.
Under the same conditions (steady-state at t = 0,
u (t) = 0 for t < 0 and zero initial conditions) the
process model can be written as

y (t) = −a

∫ t

0

y (τ) dτ + b1

∫ t

0

u (τ) dτ − b2

∫ t

t−L

u (τ) dτ.

(5)

from which a regression model can be obtained
on model parameters {a, b1, b2}. To estimate the
value of L a iterative algorithm is used. This
technique is presented in (Coelho and Barros,
2003).

4.2 A Simple Technique for Identifying a FOPTD
Model

In the above techniques the same initial conditions
are assumed (steady-state at t = 0, u (t) =
0 for t < 0 and zero initial conditions). The
unavoidable presence of noise makes it difficult to
exactly determine y (0) and u (0), so that these
conditions are violated leading to poor estimates
as illustrated in the simulation Section. In order
to overcome this limitation, a slightly different
technique is proposed. The technique can be used
a step response experiment, performed in the open
or closed loop, or to a more general one such
as the relay experiment used here. The process
is assumed to be at steady-state at t = 0 and
the data is collected until the closed loop system
reaches a new steady state. For the purposes of
this paper, the following approximation for model
2 is used:

G (s) =
b (1− sL)

s + a
. (6)

This approximation has been used in (Júnior et
al., 2006) showing good results and eliminating
the iterative algorithm used to estimate the value
of L. The process is assumed to satisfy the differ-
ential equation

ẏ (t) + ay (t) = bu (t)− bLu̇ (t) , (7)

where the disturbance term has been discarded.

Integrating Eq.(7) from τ = t to τ = tf yields

y (tf )−y (t)=−a

∫ tf

t

y (τ) dτ+b

∫ tf

t

u (τ) dτ−bL(u (tf )−u (t)).

(8)

Then, define

γ (t) = y (tf )− y (t) ,

φ (t) =
[
−

∫ tf

t

y (τ) dτ

∫ tf

t

u (τ) dτ −(u (tf )− u (t))
]T

,

θ =
[
a b bL

]T
. (9)

and Eq.(8) can be written in regression form

γ (t) = φ (t) θ. (10)

The estimate can be computed in one step us-
ing either least-squares or instrumental variable
methods. In order to improve the estimate, the
estimated crossover frequency transfer function
response is assumed to be true and used as an
equality contraint as shown below.

4.3 Identification of FOPDT Model with Frequency
Domain Constraints

It is straightforward to introduce equality con-
straints in least-squares minimization (Nelles,
2001). Here the process frequency response on
the first harmonic of the loop gain relay exper-
iment signal is used as a constraint on the esti-
mated model. The frequency response is obtained
computing the DFT of process input and out-
put. As expected, the loop transfer function has
magnitude close to one around this frequency.
The resulting estimate should result in a FOPDT
model with good accuracy close to the crossover
frequency.

The equality constraint is defined through the
following regression vector: ẑ = xT (ω̂g) θ̂

with

ẑ = jω̂gĜ (jω̂g) ; xT (jω̂g) =
[
−Ĝ (jω̂g) 1 −jω̂g

]

θ̂ =
[
a b bL

]T

where ω̂g is the crossover frequency estimated
using the relay experiment.

Assume the data is grouped in a vector from
yielding matrices Y and θ̂. The least-squares op-
timization problem is given by

J =
(
Y − Φθ̂

)T (
Y − Φθ̂

)
(11)

subject to Mθ = γ, which express the equality
constraints in a linear form.

In this case, the least-squares optimization prob-
lem with constraint is equivalent to minimize in
relation to θ̂ and λ the cost function given by

J =
(
Y − Φθ̂

)T (
Y − Φθ̂

)
+ λ(γ −Mθ) (12)

By defining E = 2ΦT Φ and F = 2ΦT Y .

The optimization problem solution is given by
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λT =
[
ME−1MT

]−1 [
γ −ME−1F

]

θ̂ = [E]−1 (F + MT λT ).

5. THE CONTROLLER REDESIGN

The experiment from last section results in an
estimate of the crossover frequency ω̂g and a
FOPDT model given by the parameters a, b and
L. It is desired to redesign the PI controller in
order to obtain a loop transfer function

LD (s) =
ω2

d (2s + ωd)
s2 (s + 2ωd)

e−Ls.

This loop transfer function has 20db/decade de-
cay over the frequency range

{
ωd

2 , 2ωd

}
(slope

−1) one decade above and one decade below the
desired crossover frequency ωd. The time delay
τd is used to yield a causal controller. With a
proper choice of ωd, the proposed design yields
robustness margins, while maintaining good per-
formance (Skogestad, 2003). It should be noticed
that this loop transfer function yields a high over-
shoot when using a one degree of freedom con-
troller. A two degree of freedom controller could
be used if desired.

Choice of ωd: Consider frequency ω1 for which

]G (j2ω1) = −135o.

The new crossover frequency ωd is computed such
that ωd = αω1. The constant α is a factor to make
the loop faster or more robust depending on the
designer’s choice. In this paper α = 0.5 is used.

For a PI controller, a limiting factor in the choice
of ωd is the frequency range for which the process
model ceasses to behave like a first order sys-
tem. The motivation comes from the symmetrical-
optimal(S.O.) design as follows: Consider the sim-
plified model

G (s) =
K

s (τΣs + 1)
.

The S.O. loop-shaping assumes that the crossover-
frequency is defined as ωd = 1/(2τΣ). It should be
noted that at frequency 1/τΣ the transfer function
has phase of φ = −135o. At this ωd the transfer
function has phase approximately −90o (Voda
and Landau, 1995).

6. SIMULATION EXAMPLES

In this section the controller redesign technique
with closed loop identification algorithms defined
early are applied to two processes. The cost func-
tion used to compare the estimates is

ε =
1
N

N−1∑

k=0

[y (kTs)− ŷ (kTs)]
2

where y (kTs) is the real process output, while
ŷ (kTs) is the estimated process output from a
open loop simulation under the same step. In all
experiments Ts = 0.01s. White noise is added only
to the output of the process. The processes and
the results are shown below.

6.1 Identification Example

The objective is to show the effectiveness of the
technique proposed and the difficulty to exactly
determine y(0) and u(0) necessary to satisfy the
initial conditions (steady-state at t = 0, u (t) = 0
for t < 0 and zero initial conditions) assumed
for the technique represented by Eq. 5. For the
simulation the process is given by G1(s) = 1

(s+1)8

and the controller used is C1 = 0.7s+1
s . The noise

variance is 0.02.

The excitation is generated from a step response
experiment performed in a closed-loop system.
Firstly, yr = 2 is applied and when the steady
state is reached, yr = 3 is applied. The data is
collected until the closed-loop system reaches a
new steady state. Assuming the closed-loop stable
and that an integrator is present in the controller,
the new steady state output is equal to yr.

Figure 3 is given in terms of deviation variables
with respect to the initial conditions. Application
of the estimator based on regressor of Eq. 5 gives
the estimate Gls1(s) = 0.158

s+0.19e−4.32s.

140 160 180 200 220 240 260

−0.5

0

0.5

1

1.5

y
yr

Fig. 3. Data used for estimate Gls1

The use of the proposed estimator applied to raw
data as shown in Fig.(4) results in the estimate
Gls2(s) = 0.207

s+0.207e−4.1s.

120 140 160 180 200 220 240 260
1.5

2

2.5

3

3.5

4
y
yr

Fig. 4. Data used for estimate Gls2

The step response for estimated models is show
in Figure (5) and the mean squared errors are
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εLS1 = 0.033 and εLS2 = 0.002, from which it
is clear the superiority of the proposed technique.
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0.6
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1.2

1.4
Step Response

Gls1
Gls2
G1

Fig. 5. Step Response for Identification Example

6.2 Controller Redesign Examples

Now the joint identification and controller re-
design examples are presented. The relay excita-
tion is applied to the closed-loop.

6.2.1. Example 1 The process is now given by

G2(s) =
(6s + 1)(3s + 1)

(10s + 1)(8s + 1)(s + 1)
e−0.3s.

and its initial controller is C2(s) = s+0.1
s .

The noise variance is 0.02. The estimates are

Gls2(s) =
0.105

s + 0.115
e−0.578s

Gls3(s) =
0.10

s + 0.108
e−0.344s.

The mean squared errors are εls2 = 0.004 and
εls3 = 0.003.

In this case, the estimated crossover frequency is
ŵg = 0.08 and the process magnitudes are

|G2(jŵg)| = 0.7482
|Gls2(jŵg)| = 0.7532
|Gls3(jŵg)| = 0.7472.

The identification using constrained least-square
minimization provides a better fitting in the
crossover frequency and the decreasing of the
quadratic error.

For the estimated model GLS3(s), w1 = 1.208 and
wd = 0.604 are calculated.

The new controller is Cn(s) = 1.89(1 + 1
0.49s )

The loop gain transfer functions bode diagrams
are shown in Figure 6. In this example it can be
noted good approximation between the desired
(L′) and designed (L1) loop transfer function
around the crossover frequency.

The closed-loop step response is shown in Figure
7. The controller designed have a faster closed-
loop response. Notice the comparison with the
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Fig. 6. Loop Gain Transfer Example 2

response that would be obtained with the desired
loop transfer function(Cdes) which, as mentioned,
has a large overshoot.
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Fig. 7. Step Response for Example 2

6.2.2. Example 2 The process is again

G1(s) =
1

(s + 1)8
.

and its initial controller is the same C1(s).

The noise variance is 0.01. The estimates with-
out constraints(Gls2(s)) and with constraints
(Gls3(s)) are (relay excitation)

Gls2(s) =
0.201

s + 0.205
e−3.26s

Gls3(s) =
0.21

s + 0.208
e−3.51s.

The mean squared errors are εls2 = 0.0015 and
εls3 = 8.44e− 04.

In this case, the estimated crossover frequency is
ŵg = 0.0847 and the process magnitudes are

|G1(jŵg)| = 0.9718
|Gls2(jŵg)| = 0.9054
|Gls3(jŵg)| = 0.9342.
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For the estimated model Gls3(s), w1 = 0.185 and
wd = 0.0925 are calculated.

The new controller is Cn(s) = 0.23(1 + 1
2.09s ).

The loop gain transfer functions bode diagrams
are shown in Figure 8. In this example the results
are similar to the first example.
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Fig. 8. Loop Gain Transfer Example 2

The closed-loop step response is shown in Figure
9. The controller designed have less oscillatory
response.
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Fig. 9. Step Response for Example 2

Notice the difference between the desired and
obtained step responses. This indicates that the
FOPDT model is not a good approximation in
this case.

7. CONCLUSIONS

In this paper a controller redesign technique was
presented. The closed loop is evaluated estimating
a simple model with good accuracy close to the
crossover frequency. A simple estimation proce-
dure is proposed and uses time data and fre-
quency equality constraints. The obtained model
is used to define the desired loop transfer function.
The use of least-squares model-matching results in
loop shapes closer to the desired specification in
the relevant frequency range. Simulation examples
illustrate the use of the technique.
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