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Abstract: The dynamic simulation of processes is much less used in practice for 
design and analysis than static simulation mainly due to the difficulty and the cost of 
obtaining a dynamic model. This paper is concerned with the possibilities of 
generating such representations on the basis of steady-state models, which are easier 
to develop and therefore more commonly encountered in the engineering practice. 
The analysis, focused on process control purposes, is based on a generic framework, 
and the extra work needed to generate a dynamic model from a static one is 
discussed. A simple computational example is given to illustrate the presented ideas.  
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1. INTRODUCTION 

Whereas the benefits of employing computer tools 
for process design, planning and off-line optimization 
become evident, and consequently their use in 
practice widespread, the same is not true for on-line 
and dynamic simulation. Although this type of model 
can potentially lead to enormous benefits as well, 
with applications ranging from operator training to 
dynamic optimization, the cost of developing such a 
model is still inhibiting, at least at a useful degree of 
realism. In this way, any methodologies that help to 
bridge the gap between the conceptual design of such 
tools and their industrial application are greatly 
welcome.  

One appealing possibility with this regard is to use 
simplified or shortcut dynamic representations based 
on steady-state models. It is quite common that a 
stationary model has been developed in some 
environment that does not support dynamic 
modeling. In this case, a way of making use of this 
model for the construction of consistent dynamic 
extension would be very beneficial. As an example, 
in some commercial programs the solutions of a 
stationary model and the corresponding dynamic 

model at steady-state do not match. In addition, when 
the dynamic simulation is employed for linear control 
design, it is generally used to generate linearized 
models (either from sensitivity analysis or from 
adjusting models with time responses), which are 
then used for tuning controller parameters. It would 
be therefore very valuable to have some methodology 
permitting to bypass the dynamic modeling step and 
to obtain the corresponding linearized dynamic 
models directly from the steady-state simulator. 

The integration of design and control received much 
attention in the past years. Methods that allow for the 
study of input-output controllability issues – that is, 
poles and zeros of the linearized models, RGA, RPN, 
etc. (Trierweiler 2002; Engell et al., 2004) – on the 
basis of steady-state models could facilitate greatly 
this kind of analysis, since it is generally carried out 
around an equilibrium state. Further, controllability 
issues could be considered together with the design 
task, leading for example for the optimal holdup in 
each equipment, with respect both to the control and 
the profit of the unit. 

The present paper aims at verifying the possibilities 
for the generation of dynamic models on the basis of 
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steady-state ones. Since the main focus of paper is on 
control and dynamic optimization, we consider solely 
lumped systems. In the formulation below, it will be 
assumed for simplicity that the control volumes are 
well mixed, and that the processes operate 
isothermally, although proper modifications in the 
formulation can account for non-isothermal 
conditions.  

This paper is organized as follows: Section 2 applies 
the considerations above to systems containing just 
one species and several control volumes, that is, 
processes represented by a set of total mass balances. 
Section 3 describes how a dynamic model can be 
determined directly on the basis of the steady-state 
model, and also what kind of additional information 
is necessary to perform this, as well as some 
applications. Section 4 exploits the somewhat 
reversal situation of Section 2, that is, the case of one 
single compartment and several species, particularly 
for systems with chemical reaction. Section 5 shows 
an example of the first case cited above. Conclusions 
are drawn in Section 6.

2. SINGLE-SPECIES, HOMOGENEOUS 
SYSTEMS 

Consider a system constituted by N control volumes 
containing a single species. A mass balance around 
each of these elements can be written in vector form 
as (Elnashaie and Garhyan, 2003): 

          (1) outinm k

where m  [m1 m2 mn ]T is the vector of mass 
holdups, in and out are respectively the vector mass 
flows into and from each compartment, and k is a 
common factor between in and out (the reason for 
letting it explicit will become clear later). It is also 
assumed for convenience that a single phase is 
present in the system. This set of ordinary differential 
equations (ODE’s), with proper initial conditions, 
describes the time evolution of the holdups as a 
function of the inflows/outflows.  

A very common situation is when one is not 
interested in the mass holdups directly, but in some 
related quantities given in the vector q (as for 
example, liquid levels, gas pressure and so on), 
which will be called here the state variables of the 
problem. These are related to the mass holdups by 
means of a relation of the form m (q), which is 
assumed to be invertible, at least locally.  
In this case, the mass balances can be expressed in 
terms of the new state variables as 

outin

1
)(

q
qq k .        (2) 

The invertibility of the Jacobian matrix above (also 
called “mass matrix”) is guaranteed by the 
continuous differentiability of . The flows among 

the compartments will usually depend on the state 
variables themselves, and therefore it is possible to 
write (the symbol “~” expresses formally the 
dependency of the flows on q):

)(~)(~)(
outin

1
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Moreover, especially for control applications, it is 
customary to distinguish manipulated variables u,
which are external to the system and, except in the 
case of feedback loops, independent of the states:  

),(),()(
outin

1

uquq
q
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where “  ” denotes the dependency on u.

2.1 Stationary Models

A static model is the stationary solution of (4), that 
is, a set of algebraic equations of the form: 

0uquq ),(),( outin .         (5) 

The solutions of this equation are obviously 
insensitive to any multiplicative factor as k or as the 
Jacobian matrix in (4). Moreover, as long as there are 
N independent equations in (5), for a given vector u0
it is possible to solve the model equations for the 
steady-state q0, at least locally. A model of the form 
(5) in which q cannot be isolated is said here an 
implicit steady-state model. An explicit steady-state 
model will be considered to be a relationship of the 
form: 

)(uq .          (6) 

Eq. (6) above may be an analytical solution of (5),
what is not possible in general, or may represent any 
numerical procedure or black-box model of the 
steady-state solution, from which it is not possible to 
recover Eq. (5) entirely.
With this regard, it is possible to admit that the 
implicit model is just an approximation of the correct 
solution (as, in fact, all steady-state models are). 

3. FROM STATIONARY MODELS TO 
DYNAMIC ONES 

In many cases, it is interesting to develop dynamic 
models from existing stationary models, as discussed 
in Section 1. In view of this, two situations can be 
devised: implicit and explicit steady-state models. 

3.1 Implicit steady-state models

Observing (1), it can be realized that the implicit 
steady-state model (5) corresponds to the right-hand 
side of the state equation written in terms of m, up to 
the constant k. Thus, if this model is available, it is 
possible to generate a dynamic model on its basis, in 
the following form: 
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Fig. 1. Schematic representation of the proposed dynamic model 
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with output equation 

                         (8) )()1( mq

where “ (-1) ” denotes function inverse. The need for 
representing q by (m) in (7) comes from the fact 
that the associated initial value problem will be 
defined in terms of m and not in the state variables of 
the problem (q). Analyzing (7), it is possible to verify 
that the following extra work will be necessary in 
order to construct the dynamic model on the basis of 
(5):

to obtain the factor k, which will represent any 
common terms between in and out. It must be 
determined from phenomenological considerations; 

to obtain the expression relating the mass 
holdups of the compartments and the state variables 
of interest. 
These two steps can be understood as an additional 
modeling effort, necessary to generate the correct 
holdup terms in the dynamic mass balance. A 
schematic representation of this model can be seen in 
Fig. 1. 

3.2 Explicit steady-state models

In the case of the explicit steady-state models (6), the 
work of obtaining a dynamic representation 
equivalent to (4) is much more difficult because of 
the probable “loss of structure” implied by the 
analytical solution of (5), what is necessarily the case 
for numerical/approximated models. Apart from the 
few cases when it is possible to recover completely 
the steady-state equation, an additional step will be 
required for determining its structure. 

In the present work, only the following simple 
situation will be analyzed: the case of N sub-systems 
(compartments) in series, with no interconnections 
excepting between the i-th and the (i  1)-th 
elements, i  1, , N  1. In also necessary to admit 
that the (scalar) input u is the mass flow into the first 
compartment; if this is not the case, it is necessary to 
find first the relationship u g(v) between u and the 
actual input v. Admitting the elements of  in (6) are 
invertible functions, one can write 

                                     (9) )()1( qu

where the inverse can be taken element-wise (this is 
possible because there is just one global mass 
balance per compartment). In this case, due to the 
structure of the system, it is possible to write 

        (10) 
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and therefore the following model can be derived, 
which is in the form of (5):

.       (11) 
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Besides of an attempt to “recover” (5) from an 
explicit steady-state model, (11) can be used as a 
basis for the gray-box identification of a block-
oriented dynamic model, as in Pearson and Pottmann 
(2000), or as discussed in Bolognese Fernandes 
(2006) and Bolognese Fernandes and Engell (2005). 

3.3 Other Application: Taylor Linearization

Additionally to the construction of dynamic models 
on the basis of stationary representations, another 
interesting application of this analysis concerns the 
Taylor linearization of the system (4), which is of the 
form:  

uBqAq         (12) 

where “  ” stands for the fact that the linearized 
states are approximations of q, and the matrices A
and B are given by: 

q
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Particularly for the linearizations corresponding to 
equilibrium points (steady-states), the dynamic 
matrix A is constituted solely by the product of the 
inverse of the mass matrix and the gradient of the 
stationary model (5) with respect to q (all evaluated 
at the steady-state), since the first term in (13)
vanishes for any stationary solution of (4), by virtue 
of (5).

Moreover, given that the equilibrium points can be 
parameterized by u (which is, at least in principle, of 
smaller dimension than q), it is possible to obtain 
interpolated versions of A A(u), thus “compacting” 
the linear representations of the system (Bolognese 
Fernandes, 2006). 

Another possibility with this respect is to consider 
these parameterized models to formulate control-
related optimization problems, in which one is 
interested in finding the best setting (operating point, 
holdups) in order to achieve good control 
performance, or to minimize any measure (RGA, 
non-linearity, etc…) that can be parameterized in 
terms of the equilibrium points. 

4. MULTI-SPECIES, HOMOGENEOUS 
REACTION SYSTEMS 

Consider now a single control volume, in which a set 
of m chemical reactions involving p species takes 
place. The dynamic balance is now of the form 
(Elnashaie and Garhyan, 2003): 

        (15) n outin

where n  [n1 n2 np ]T are the number of moles of 
the individual species, in and out are the mole 
flows into and from the system, and  are the overall 
generation/depletion rates due to chemical reaction. 
These reaction terms are generally written as 
volumetric rates; moreover, it is also customary to 
write them in terms of the law of mass action, that is, 
as a function of the individual molar concentrations. 
This makes the concentration c a more natural state 
variable, and since n c·V, the mole balance (15)
becomes: 
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where V is the volume of the reacting mixture and 
and in,out are the volumetric in/outflows. Because the 
system is constituted by a single control volume, it is 
possible to consider in as an external input (in case 
of no feedback loops). Obviously, an extra equation 
is necessary to account for the variation in the 
volume, which can be obtained, for example, by an 
overall mass balance. We can write this extra 
equation as a relationship similar to (1), that is: 
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where  is the specific mass of the mixture (which is 
in general a function of its concentration) and in,out
are the overall mass flows into/out of the system,. 

At steady-state, it is thus possible to write 
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Implicit steady-state model. In this case, a model in 
either forms in (18) can be used to construct a 
dynamic model by means of the knowledge of the 
dynamic variations of in and out. The analysis can 
be coupled here with that in the Section 3 in order to 
provide such a relationship (that is, the overall mass 
balance). 

Explicit steady-state model. For the construction of a 
dynamic model on the basis of an explicit steady-
state model c (u), it will be assumed that u is the 
entire vector of feed concentrations (cin), individual 
molar flow rates ( in·cin) or any other multiple of 
them by an scalar factor (the reason for this will 
become clear). Evidently, in the case of variable 
mixture volume and/or variable overall feed flow 
rate, it is required that the steady-state model is of the 
form c (u, in/V), thus accounting for varying 
residence time. 

In the case that u cin, at a given stationary point 
(cin,s, cs) we have for the rate term in (18):
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ssins
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where it was assumed for simplicity that (cin) (c). 
Consequently, at any point (cin, c), not necessarily 
stationary, it is possible to substitute (19) in (16),
thus giving: 

)()1(in ccc inV
        (20) 

what constitutes a dynamic model of the form (15).
Constant mixture volume was assumed for simplicity 
in the expression above. It is important to notice that, 
under the previous assumptions, (20) represents no 
approximation, but an exact relationship. This is due 
to the fact that  has (at least locally) a “full” 
inverse, because the dimensions of its input/output 
arguments are the same. Geometrically speaking, this 
means that the projection of any point (cin, c) on the 
phase plane (state-space) will be contained by the 
projection of the space of equilibrium points itself on 
the same plane. In other words, for any point (cin, cs)
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it will be possible to find a value of cin,s such that 
(cin,s, cs) is an equilibrium point. 

Obviously, it is also possible that this inverse does 
not exist locally, although this must occur for a 
countable set of points. The numerical problem of 
finding the correct solution of the inversion problem 
in face of output multiplicities will not be considered 
here. 

5. NUMERICAL EXAMPLE: 
THREE TANK SYSTEM 

In this section, it will be shown how a dynamic 
model of the level system shown schematically in 
Fig. 2 can be constructed on the basis of the previous 
analysis. The plant is constituted by three spherical 
tanks with different diameters Di [cm] disposed in 
series. Water flows from tank 1 to tank 3 by gravity 
at constant temperature and the flows are assumed to 
be turbulent. The manipulated variable is the inlet 
flow rate of the first tank, F0 [cm3 /min]. The state 
variables (called q in the previous discussion) are the 
liquid levels hi in the tanks [cm], i  1, 2, 3. A 
stationary model of the system is given by: 

       (21) 3,2,1,/ 2
,0 icFh ivi

where cv,i is the valve coefficient. 

Fig. 2. Diagram of the spherical tank system 

The system exhibits nonlinear dynamic features, as 
displayed in Fig. 3; this is evidenced by the 
differences of the step responses at the three 
equilibrium points corresponding to low, medium 
and high levels in the third thank. These differences 
of the behaviour are very useful to test the proposed 
modelling approach. 

Implicit steady-state model. Since the system is in 
compartmental, the analysis in Section 3.2 can be 
applied here, thus giving 
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Fig. 3. Step responses of the spherical tank system at 
three typical operating points  

which is in this case exactly the implicit stationary 
model and therefore in the form of (5).

Dynamic shortcut model. In order to generate a 
dynamic model on the basis of (22), as described in 
Section 3.1, it is necessary to represent the 
dependence m (h) of the holdup in each 
compartment with the respective level. Since the 
tanks are spherical, this relationship is given by 

3,2,1,
2
3

3
2 ihDhm iiii        (23) 

where  was considered constant for convenience. 
The inverse  is the root of a third order 
polynomial in hi and has therefore a quite complex 
form. The extra factor k (recall Eq. (7)) can be seen 
in this case to be . A model of the form (7) was then 
constructed in Matlab for the dynamic simulation of 
this system, resulting in the following equations: 

3,2,

3,2,1,0
2
3

3

,11,

11,01

2

ihchcm

hcFm

ihDhm

jjvjjvj

v

iiii

(24) 

along with output equations as in (23). The algebraic 
equations above are decoupled from the state 
equations, in the sense that they can be solved 
separately for the hi, and thus the system is not a 
“true” DAE representation. Observe that the dynamic 
model (24) is in the form of Fig. 1 and was obtained 
solely on the basis of (21), which can be in principle 
a heuristic steady-state model or a “black-box” 
function, as a compiled routine, for example. 

The model (24) was compared with the one obtained 
by the “traditional”, or direct, approach, that is, by 
directly writing down the dynamic balances: 
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The simulations of both models with respect to a 
given input sequence are depicted in Fig. 4. The 
values of the parameters are given in the Appendix. 
As it can be expected, both responses are identical, 
since the models are totally equivalent. 

Fig. 4. Dynamic simulation of the three tank system 

Fig. 5. Analysis of the linearization parameters in 
terms of the operating points for the three tank 
system 

Linearization analysis. Another interesting 
application is to employ sensitivity studies of the 
steady-state model, coupled with the information 
given by (23), in order to determine the Taylor 
linearizations of the system, as described in Section 
3.3. In order to illustrate this, the time constants of 
three linear models, obtained by this shortcut method 
at the equilibrium points determined by the feed flow 
rates of 4470, 7070 and 8940 cm3/min, are compared 
with the values determined analytically, as shown in 
Fig. 5. Again, since the shortcut method represents 
no approximation, the results are identical. A 
numerical procedure (Matlab function NUMJAC) was 
employed in order to generate the sensitivities of the 
steady-state mass balances with respect to the state 
variables of the problem at the three operating points.  

6. CONCLUSIONS 

This paper showed some possibilities of exploiting 
steady-state information in order to construct 
dynamic models, as well as the necessary extra 
information to produce them. The analysis was 
restricted to lumped, isothermal systems, although, at 
least in the last situation, extensions seem to be 
straightforward.  

The proposed approach can also be extended and 
combined with different tools. For instance, it can be 
included as a comprehensive environment for process 
design including dynamic operability. In this 
situation, the optimal operating conditions can be 
calculated by static optimization and the dynamic 
behavior can be synthesized afterwards to mitigate 
the problems of right half plane (RHP) zeros, 
dynamic coupling, disturbance effects, variability of 
product quality, etc. In the case of more complex 
models, it can also be associated with bifurcation 
analysis tools to provide valuable information for 
design.  
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APPENDIX 

Parameter values used in the example of the three 
tanks: 

 1000 kg/m3, D1  35 cm, D2  20 cm, 
D3  25 cm, cv,1  0,0169 m2.5/min, cv,2  0,0183 
m2.5/min, cv,3  0,02 m2.5/min. 
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